
Implementation of Semantic Services in Enterprise Application
Integration

PETER MARTINEK1, BALAZS TOTHFALUSSY2, BELA SZIKORA1

Department of Electronics Technology1
Department of Automation and Applied Informatics2
Budapest University of Technology and Economics

Goldman Gy. tér 3., 1111 Budapest
HUNGARY

martinek@ett.bme.hu http://www.ett.bme.hu

Abstract: - In this paper, we present an approach for the implementation of semantically enriched services in
Enterprise Application Integration (EAI). We present an integration platform based on a Service Oriented
Architecture (SOA) which consists of a service registry, a process designer and a run-time engine. There are
some additional components for realizing semantic enrichment of services and composed processes e.g. the
semantic profiler and the Ontology. The focus of the paper is the preparation for the process run-time. We
propose a mediator based approach where data transformations are assigned to each service during the
deployment. The standard services of ERP, CRM, SCM etc. systems are encapsulated into mediator services
which makes possible to apply them in a semantic integration framework. Still, created semantic services
remain compatible with current Web service standards and communicate with standard SOAP messages. Hence
the collaborative processes composed by attached semantic meta-information of services are also executable by
standard Business Process Execution Language (BPEL) run-time engine.

Key-Words: - Enterprise application integration, Semantic services’ run-time, Collaborative business processes

1 Introduction
Organizations are hard to imagine without complex
software systems today. Information systems
support the everyday working processes of
companies, non-profit organizations and
governmental organizations [1]. Spreading of such
systems indicated the need for exchanging data and
realizing communication between them. Thus
companies strongly focus on business collaboration
via enterprise application integration [2].

A lot of current approaches in enterprise
application integration (EAI) are built upon a
Service Oriented Architecture (SOA) [3]. The main
concepts and definitions of SOA are briefly
described in the next paragraph.

The basic building construct of SOA are
services. There are many definitions for services in
the literature. Some paper presents, that services are
interfaces, some defines them as programming
objects and some consider them as complex
functions. In our case let say, that services represent
exposed functionality of enterprise system and
invoking a service means the execution of a function
of an enterprise system.

Depending on the goal, the participating
applications and the services in a specific case,

different integration scenarios can be defined. There
are service requesters and service providers in a
specific SOA integration scenario. Requesters
invoke services offered by the providers what means
the specific execution of a function, e.g. a query, a
calculation or the simple posting of data.

The solution of an integration scenario is one or
more composed process. The processes consist of
services, links connecting services and rules
defining operations on process data or service
execution order. For example in the simplest case
the process is only a chain of services (services are
invoked in a pre-defined order, after one another).
The participating enterprise systems can be service
requesters, service providers or even both in a
composed process.

Besides building processes out of services can
solve integration problems we can also create new
capabilities on existing services of applications this
way. A composed process can offer complex
functionality which can be adopted in further
composed processes as a single service.

Evolution of the semantic web raised new
possibilities also in EAI. Although the typical SOA
technologies rely only on syntactical approach for
process based integration [4], adopting the

WSEAS TRANSACTIONS on COMPUTERS

Peter Martinek, Balazs
Tothfalussy and Bela Szikora

ISSN: 1109-2750 1658 Issue 10, Volume 7, October 2008

fundamentals of the semantic web into the world of
EAI is reasonable: on the analogy of the self-
describing entities of the semantic web services can
also provide meta-information about their type,
compatibility, capability etc. Classification of
available services due to a common, global schema
describing the concerned business area may also be
necessary.

To be SOA enabled, software vendors of
enterprise application systems already created
services to their systems. However these are mainly
described on a rather technological way and can be
understood only by the experts of the specific
system. Attaching some semantic meta-information
to the services may also help business consultants
by designing collaborative business processes.

Hence semantic enrichment of process
composition and services can have a two-fold focus:
exploiting the advantages of semantic web
technologies (well structured meta-data description
of concepts and entities, strong reasoning
capabilities, etc.) and help business consultants to
recognize business entities originating from
different systems in different format.

There are numerous current proposals which
offer full approach e.g. methodologies and working
tools for supporting the semantic extension of
services. For example in [5] you can find a possible
solution for attaching semantic meta-data to Web
services by applying an improved WS-Policy (WS-
Policy4MASC) standard.

In most of the current approaches the services are
stored by semantic repositories. The repositories
assign various indexes to the services, which makes
possible to compose collaborative processes easily
by finding (discovering) services by their semantic
matter. However from the point of view of business
logic we can create a perfect process in this
environment, our newly composed process possibly
won’t be able to run and perform the operations
what it was designed for. The descriptions of the
services were extended by semantic content, but the
interface of services (required input and output data
format and communication protocol) of the services
remained intact. Thus there is a certain semantic gap
between the description of input and output data
schema of the service and its semantic description.
For example we can have meta-data about the
service defining that the service consumes data of
address type. The address type is defined in our
semantic repository (Ontology) as a data set
consisting of country, town, ZIP-code, street and
number data fields. However our standard service
can provide this information in a different
representation format, e.g. street and number can be

contracted into one field separated by a special
character. In this case applying our service in a
composed process data type mismatch could be
occurred by simply invoking it with an address data
type. The same semantic distance can exist between
services, where address output of a service can’t be
directly consumed by a service awaiting an input in
another format of the address type. In spite of this,
the attached semantic information referencing to the
address concept is correct in both cases because this
is the corresponding real world concept.

Defining transformations to overlap this
semantic gap between the intact services of standard
systems and the applied semantically described
services (semantic services) is a good start to solve
the problem but a framework for executing the
transformations itself is also required. In our
approach we show how to attach semantics to
services, how to discover them and provide a lot of
easy to use tools to realize it all. However this paper
mainly focuses on the automatic creation of directly
invokable proxy services for the process run-time.

The rest of the paper is organized as follows:
Section 2 compares our approach with related work.
Section 3 briefly describes our methodology for
designing semantic services. Section 4 provides for
in detail description of the transformation creation
process and our mediation technique for the process
run-time, and section 5 contains evaluation of the
results. Section 6 draws conclusions and outlines
future work.

2 Related work
There are numerous researches presented in the
literature about interoperable systems in service
oriented architecture. For example, see [6, 7, 8, 9,
10, 11].

Solutions are adapted to many kind of field of
application, e.g. digital multi-media [12] or
production systems [13].

There are many tools and solutions to design and
run standard BPEL processes, for example the
Oralce Fusion Middleware [14] or the IBM
Websphere [15]. But usually they don’t provide the
extension to characterize the services also with
semantics. Without information about service
capabilities and behavior it is hard to compose
collaborative business processes. On the other hand,
adding semantics may exclude the pure using of
such standard run-time environments.

The Intelligent Software Agents Lab [16] at
Carnegie Mellon deals with a SOA approach which
is using Web Ontology Language for Services
(OWL-S) semantic description for choreography.

WSEAS TRANSACTIONS on COMPUTERS
Peter Martinek, Balazs
Tothfalussy and Bela Szikora

ISSN: 1109-2750 1659 Issue 10, Volume 7, October 2008

They also developed tools for supporting the
creation of the OWL-S description from a Web
Service Description Language (WSDL) [17] basis
and publicating them into a UDDI [18] registry.

In [19] the authors apply OWL-S to describe
service behavior as well. The attached semantic
description makes possible to discover services in
the presented agent based framework. Services are
found and ranked by the expected capability
contained in the consumer’s query and the matching
algorithm involves ontological matching and
evaluation of process constraints.

Instead of OWL-S we use BPEL to describe
processes. In the last 2 years BPEL became the de-
facto standard in business process description and
run-time. We think, that it is not only more reliable,
but more scalable than OWL-S. By applying
Semantic Annotations for WSDL (SA-WSDL) for
describing the services it was also possible to add
semantic extensions and keep services in a BPEL
compatible format at the same time.

In [20] the authors create a methodology and
framework to compose processes by dynamic re-
binding participating services. The processes are
built of abstract services first. To find the proper
binding to abstract services (in other worlds to find
their equivalent invokable pair) a genetic algorithm
is applied. Similar to our proposal proxy services
are generated automatically in deployment time to
encapsulate existing invokable services, but binding
of concrete services is only done in run-time. In
contrast to this we create fully invokable
encapsulated proxy services already in deployment
time what excludes the necessity of further central
components (e.g. service registry) and methods (e.g
implementing the binding part of services) in run-
time. Furthermore providing transformation creation
tools, and automatic adaptation of these rules into
the encapsulated services, we also support the
bridging of semantic gaps between different services
of several vendors. In real world integration
scenarios the participating services mostly provide
their input and output information in different
format. This implicates the necessity of applying
such data mediation techniques during the service
encapsulation.

In [21] the authors already apply transformations
for data mediation. However this is done in process
run-time. Hence it requires a very high reliability of
the central units – a VieDAME 4 WS-BPEL
environment containing a monitor, a selector, a
transformer etc. unit in run-time as well. Our
solution does not require additional installed units
and special environment. The encapsulated services
can be invoked and handled by standard soap

messages of BPEL run-time engines the same way
as standard web services. Furthermore, the new,
mediated (proxy) service can also be hosted at the
same place and the same way as the original
(encapsulated) service is hosted.

Grossmann et al. [9] present a behavior based
integration methodology for business processes. By
using integration operators, the authors can create,
deal and finalize compositions between them.
However the approach in this work is based only on
the observed states of the processes and the behavior
of participating services. This may lead to a valid
transformation of processes but any integration is
hardly realizable without taking into consideration
the differences in the input and output data schemas
of services and processes. Indeed, processes coming
from different companies and application systems
may use different semantic conceptualization to
describe the same real world concept. This raises
several issues which must be taken into
consideration as well if we are planning to go also
for run-time.

3 Semantic Web Services
The vendors of enterprise application systems have
created standard services in their systems to prepare
for SOA based integration scenarios. Unfortunately,
the offered services are usually described only by
technical information. This information is enough to
invoke the service with some test data, but not
enough to understand its behavior. Business process
composition also requires attached pre- and post-
conditions, which should be taken into consideration
by invoking the services. Our architecture offers
tools for enterprise application developers to attach
such information to service descriptions.
Furthermore, it is possible to label a service
operation upon the identified functionality of
services. A business ontology serves as a common
reference to the labeling [22]. Fig. 1. shows our
simplified system architecture. The implemented
tools are shown on the right and the composed
process on the left side of the figure. Directly co-
operating tools are also connected by lines.

Using the semantic profiler tool one can attach
additional information about service behavior to the
service descriptions. The semantically enriched
descriptions are stored in the semantic registry.
Using the discovery interface of the registry we can
already identify existing enterprise application
services and compose process from them. However
the composed process won’t be ready to ‘go live’.
Detailed information about the schema of input and

WSEAS TRANSACTIONS on COMPUTERS
Peter Martinek, Balazs
Tothfalussy and Bela Szikora

ISSN: 1109-2750 1660 Issue 10, Volume 7, October 2008

output data of the services is also necessary to the
run-time [4].

Real world concepts are described in the
databases of enterprise applications. It is obvious,
that the identifiers (e.g. name, ID, attributes) of the
same real concepts may differ in the applications
developed by different vendors. So services applied
in composed processes rely on their own schema in
their input and output data. To create mappings
between them, semantic relationships between their
concepts must be known. Only concepts
representing the same real world entities can be
mapped to each other. For example, if a service
requires the name of a customer as an input field,
the address field of the customer provided by
another service cannot be used.

Ontology

Service A

Service B

Service C

Init Process

End Process

Process Desginer

Semantic
Registry

Run-time
engine

Semantic
Profiler

Process

Fig. 1 Our integration architecture

Creation of the mapping of each service input to
each service output in an integration scenario
requires enormous resources. Furthermore, this
structure is also hard to maintain. If a new service is
added to the integration scenario, the mapping to
every other service has to be defined [23].

Defining a global schema reduces the complexity
of the system. This global schema covers all
possible real world concepts to the specific scenario.
The services are mapped only to the global schema
concepts, and the communication between services

in processes is done on the level of global schema
concepts. After that the mapping of services on the
process level is not a complex issue any more
because same real world concepts are represented
by the same concepts in the global schema. Our
global schema concepts and the taxonomy are also
stored in the Ontology [22].

The first step of enabling services of standard
systems to participate in our semantic integration
scenario is the semantic service annotation. In this,
the service description is extended with semantic
meta-information. Actually these are references to
the semantic concepts stored in the Ontology. (The
semantic profiler component supports the
identification and association of appropriate
concepts e.g. service capabilities, input/output data
types, service’s pre- and poststates to services. Easy
to use graphical interfaces were also implemented
for the business consultants.)
The semantic gap between the global schema and
the services’ so called local schema should be
bridged afterwards. Two types of transformations
are defined to each annotated service:
• The down-cast transformation is used to
transform global schema data input of the semantic
service to services local schema input, and
• The up-cast transformation is used to
transform the service reply from the local schema
concepts into valid concepts of our global schema.
Transformations are stored in a transformation
repository and are referred also from the
semantically extended service description.
The last step of the semantic service creation is the
creation of a directly invokable interface. This is
done by the encapsulation of the annotated service
which is actually a web service generation in
technically sense.

The next chapter presents our approach, methods
and tools for the transformation creation and service
encapsulation.

4 Mediator Services and
Transformations
In this section we concentrate on the problems e.g.
the semantic gap between standard and semantic
services, the transformation creation and the
invokable proxy service generation, introduced in
the previous section. As it was demonstrated, there
are two layers of services: the layer of standard
services (native services), which hold some
functionality of an enterprise system providing
value for us and the layer of encapsulated services
(mediator service), which communicates towards

WSEAS TRANSACTIONS on COMPUTERS
Peter Martinek, Balazs
Tothfalussy and Bela Szikora

ISSN: 1109-2750 1661 Issue 10, Volume 7, October 2008

the outer world based on the common (global)
schema concepts. First, we summarize the
expectations that the implemented mediator service
should meet. The proxy service:
1. Provides an endpoint for service calls,
which is a well-known XML web service interface,
described by a pure WSDL file.
2. Catches the incoming requests and applies
down-casting based on the invoked operation.
3. Relays the invoke containing the
transformed information to the native service.
4. Catches the reply of the native service and
applies upcasting transformation (actual operation
name must be determined).
5. Replies the transformed information to the
client (service invoker) of the mediator service.

The current standard for services is web services
and the description of them is done by WSDL. We
rely on SA-WSDL descriptions, which are the
semantically enriched versions of pure WSDL
documents. An SA-WSDL document carries all the
required information for creating invokable
mediator services: modelReference extension
attributes on certain elements of the WSDL
document, which were designed and inserted by
using the Semantic Profiler tool. These references
connect the simple syntactic data types with the
ontology level concepts, and points to upcasting and
downcasting information for the web service
operations. This means that the description can be
enriched with semantics but the service itself (and
its standard interfaces) remains intact. Although this
section concentrates on mediator services, where the
“data related” semantic information is used, please
note, that modelReference attributes contain also

other semantic information than this of the data
level. State annotations, service taxonomies and
other descriptions of service behavior must also be
recognized, but are to be ignored from the point of
view of the data-mediation.

Our service annotation methodology [23] defines
the set of WSDL elements, where the data related
annotations must appear, so the SA-WSDL
document is parsed and used based on well-defined
rules. As an example we specify the place of
upcasting and downcasting information later on. For
input, it must be on the topmost XSD element (to
which the WDSL input element refers), which holds
all possible input arguments. This is needed,
because the argument number of the native and
mediator services may not be the same. If multiple
modelReference values are used, then the mediated
service will have more arguments than the native
one. In this case, the downcasting transformation
must join these arguments into the native version.
This method is the same for outputs. Furthermore
for the output elements our approach adopted the
concept of conditional outputs from the OWL-S
specification. Conditional outputs are the list of
possible output, but it is not guaranteed, that all
output elements is contained by the response. A
simple example can be a book search service, which
returns the book record if it is found, or a simple
string message (“Book can not be found”), if it is
not contained by the database. If conditional outputs
are present, than on the topmost element of the
choice (possible output) must refer to the upcasting
transformation. This transformation may split the
native argument into more ontology level arguments
or simply map them.

Service client JAX-WS
 message handler

JAX-WS
inner classes

Mediator
implmentation class

Native
web service

Mediator service
request

Apply downcasting
XSLT transformations

Apply upcasting
XSLT transformations

JAX-WS
handles the

request

Native request

Native response

Mediator service
response

Fig. 2 Mediator service request-response sequence diagram

WSEAS TRANSACTIONS on COMPUTERS
Peter Martinek, Balazs
Tothfalussy and Bela Szikora

ISSN: 1109-2750 1662 Issue 10, Volume 7, October 2008

As defined above, the mediator service has to
implement five steps to accomplish its goal.
Functionality of web services is stored in the
implementation class, thus the implementation class
relays the service request to the native service, and
sends the native level data objects to the interface of
the implementation class which is also the native
interface at the same time. Then where is the
transformation done? The answer is a little bit based
on the applied technology: JAX-WS 2.0 is used for
implementing mediator services and this technology
offers so-called message handlers (in previous
releases, it was called message interceptors).
Message handlers are designed to operate on SOAP
messages (SOAP messages are the standard
communication blocks of web services i.e. service
requests and replies), process or alter them if
needed. This is also the case for mediator services,
as the transformations must be applied here. In our
example, XSL Transformation (XSLT) documents
(the documents containing the up- and downcast
transformation rules) define the transformation
procedure and a logical message handler is
introduced, which operates on the SOAP body – this
ensures, that the service call preserves all the SOAP
header elements, which can contain additional
information for the native service (for security,
transaction etc). As the message handler alters the
SOAP message to set it to the native data types, the
implementation class can retrieve the information in
the form of native data objects. The implementation
class only relays the call to the native service so far,
but this can be a possible extension point for
middleware services as well. After the response is
got back, the message handler starts to work again.
In this case the uplifting transformations are applied,
at the end the returned SOAP message conforms the
ontology-level data structure for the client of the
mediator service.

The complete service invoke-reply process of the
mediator service is shown in Fig. 2.

4.1 Generation of Mediator Services
Another issue is the creation of the mediator service
itself. The developed method is able to perform it
automatically, so a code generation step was also
implemented. Although this may looks quite simple
for the first time, there are more complex issues
during the mediator service generation as described
by the implementation class and the message
handlers in the previous section.

As already mentioned, the mediator service uses
the ontology level concepts, which are an
abstraction over the available native services data

layer (from our point of view). The ontology
concepts are described in some ontology language,
in our case in Web Ontology Language (OWL) is
used. The mediator service must have a WSDL
interface, in which the data types must be declared
in the form of standard XSD elements, which
means, that the ontology concepts must be mapped
to XSD constructs. Fortunately, this process can
also be automated:

The input of our mapping algorithm is an earlier
identified OWL class, which represents an argument
of the service request. The algorithm is based on the
following rules:
• All DatatypeProperty and ObjectProperty are taken
into consideration, which have the identified OWL
class as their domain,
• The OWL class is mapped to an XSD
complexType (this will be a Java class in the
implementation class),
• Every DatatypeProperty is mapped as a
“primitive” or “simple” property of the
complexType,
• Every ObjectProperty is mapped as a property with
a reference to the complexType of the range of this
ObjectProperty,
• Recursively the range OWL class of the
ObjectProperty is mapped the same way,
• All the mapped XSD complexTypes are merged at
the end and this merged set of definitions is
included in the input and output data type
description of the mediator service.

During the mediator service generation, some
technical aspects must be taken into account as well.
As a Java-based web service, the whole service
must be included in a web archive file, and
deployment descriptors should be generated
containing the web archive and the web service, etc.
This is done by a well defined structure, so a
template is used for every artifact of that kind.
Freemarker [17] was chosen for defining the
templates and generate the instance documents
based on the templates, which is very similar to the
well-known JSP idea and syntax. During the
automated service generation, the following steps
are performed:
1. Generate the native service client java
classes. Because the mediator service is the client of
the native service, with the stub classes, it can send
the request quite easily to the native one,
2. Extract ontology references from the
semantically enriched service descriptor and convert
ontology level classes into XSD definitions (the
algorithm was just presented above is used),

WSEAS TRANSACTIONS on COMPUTERS
Peter Martinek, Balazs
Tothfalussy and Bela Szikora

ISSN: 1109-2750 1663 Issue 10, Volume 7, October 2008

3. Generate implementation class, service
message handler and WSDL definition for the
mediator service,
4. Create web.xml and sun-jaxws.xml
deployment descriptors,
5. Compile classes and run Java annotation
processing tool (apt) to generate JAX-WS artifacts
for the mediator service,
6. Package and deploy services (a simple JAX-
WS enabled web container is enough to run the
mediator service).

Rename operation

Concat operation

Ontology level XSD Native level XSD

Fig. 3 Transformation example

4.2 Defining Transformations
The role of transformations was described in the
chapters above. As already mentioned

transformations have the task to bridge the
differences between the ontology level and native
level XSD structures. As XSD definitions can be
visualized by a tree, and properties and nested
complexTypes build up a tree quite straightforward,
we represent the transformations as converting a
tree into another. There are a lot of tools, which can
support schema to schema transformation, but at this
stage we defined some simple algorithms of our
own. Fig. 3. shows our representation for a sample
transformation. Source and target schemas (trees)
are shown on the left and the right side of the figure,
and defined transformations are placed between
them. The boxes represent transformation operations
and are connected with the corresponding input and
output nodes.

As you can see, the operations have only one
output, and (may) have multiple inputs. For a simple
case e.g. a string concatenation (shown at the
bottom of the figure), let’s imagine that the ontology
level concept defines a firstName and lastName
property, but the native level requires only a name
property. In this case, the firstName and lastName
must be concatenated. Another simple example can
be that a simple prefix “has” is used as a prefix for
concept names on the ontology level. So hasName,
hasAddress, hasType are the names for the

Fig. 4 Implemented process

CRM

Function
A

Global

SCM

M
ain

P
rocess

Schema

Semantic Service B

Up-cast
Transformation

Function
B

Down-cast
Transformation

Up-cast
Transformation

Function
C

 Down-cast
Transformation

Semantic Service C

WSEAS TRANSACTIONS on COMPUTERS
Peter Martinek, Balazs
Tothfalussy and Bela Szikora

ISSN: 1109-2750 1664 Issue 10, Volume 7, October 2008

properties of an ontology level class. It is possible,
that on the native level only name, address and type,
names are used respectively. So the value of the
element must not be changed, but the tag names
change, so that a rename transformation operation
should be applied.

Transformation operations are grouped based on
the target element for which they were defined.
Accordingly, the transformations themselves
compose a tree, where they are assigned to the
nodes of the target tree (in this case, the native level
XSD). A template-based engine (Freemarker) was
used to generate the XSLT file, which describes the
transformation for the mediator service. The
transformation usually copies everything (all nodes
and attributes) from the inbounding request, and at
certain nodes, where the transformation is defined,
injects the “transformation code”, into the
parametrized XSLT instruction, which conforms to
the actual transformation operation. (This method
can also be used for the uplifting transformations of
course.) After all, this transformation must be
referenced from the semantic description of the
service.

5 Evalutation of Results
To evaluate our results a demo example was also
implemented, see figure 4. Simulating services of an
SCM and CRM systems we have developed demo
services in JAVA, which offered standard Web
service interface to the co-operation (providing
functions A, B and C). The services providing
function B and C were analyzed and encapsulated
with our method and a composite process was
implemented over their new, semantic interface. The
performance was analyzed using a test machine
containing an 1,6 MHz Intel Centrino processor,
2GB memory and running JAVA version 1.5.0.5.

The time needed for the mediated service
generation, was around 20 seconds with the load of
the ontology from a web URL, the service
generation itself is 7-8 second and the build
(running Ant) is another 4-5 seconds. But these have
to be done only once for one version during the
design time.

The availability and the efficiency of composed
processes depend highly on their response time what
are mainly influenced by the response time of the
orchestrated mediated services. It is trivial, that we
can not avoid the time costs coming from invoking
standard services of ERP, CRM, etc. systems
because they provides the business logic of existing
information systems. However it is important to

know about the extra time costs which we have to
pay for applying semantically enriched (mediated)
services also in run-time.

There are certain tasks e.g. performing
transformations, catching and relaying messages,
etc. by invoking a mediated service which takes
some time; see in chapter 4 detailed. To analyze this
time costs in run-time several experiments were
implemented in our test environment. First the
normal (not loaded) case was evaluated: we invoked
the standard (native) and the mediated (proxy)
service in every 3 seconds and compared the
response times. The average was about 30-40
milliseconds for the native service and 200-300
milliseconds for the corresponding mediated
service. There was a higher distribution in the
measured values in the mediated case and an
initiation phase is also observable. After the
initiation phase the response time tends to 200
milliseconds. See detailed results in figure 5.

0

50

100

150

200

250

300

350

400

450

Average Nativ Response Time Current Nativ Response Time
Average Mediated Response Time Current Mediated Response Time

Fig. 5 Response times in normal (not loaded) case

For applying semantic services both in process
composition and run-time we paid an extra 160-170
milliseconds by each service invoke. This difference
is probably not disturbing for a human user of the
system and comparing it with the possible savable
time at the process composition it is a fair overhead
in the run-time.

After evaluating this simple case more realistic,
loaded cases should also be evaluated. By designing
hardware requirements and sizing systems it is
important to know how the framework responds on
greater loads of concurrent request. To simulate this
10, 20 and 30 concurrent users were posting service
request to our system. The requests were also timed
after two different strategies:
• by constant load every client invoked the service
after every 500 millisecond and
• by burst load every client invoked the service
continuously (after the services returned with the

WSEAS TRANSACTIONS on COMPUTERS
Peter Martinek, Balazs
Tothfalussy and Bela Szikora

ISSN: 1109-2750 1665 Issue 10, Volume 7, October 2008

response it was requested again immediately) for
every first 20 seconds in every minute.

To evaluate the results of our run-time
architecture the experiments were done both for
native and mediated services and the response times
of these were compared again. All tests were run for
120 seconds long. Figure. 6 (7) shows the results for
10 (20) concurrent clients by constant load.

0

100

200

300

400

500

600

700

800

900

Average Nativ Response Time Average Mediated Response Time
Fig. 6 Response times for 10 clients by constant load

0

200

400

600

800

1000

1200

1400

1600

1800

Average Nativ Response Time Average Mediated Response Time
Fig. 7 Response times for 20 clients by constant load

Figure 8 (9) shows the results for 10 (20) concurrent
clients by burst load.

0

200

400

600

800

1000

1200

Average Nativ Response Time Average Mediated Response Time
Fig. 8 Response times for 10 clients by burst load

The results of the 30 client cases follow the trends
of the 10 and 20 client cases. Thus we only present

them by the measured values without attaching the
diagrams.

0

500

1000

1500

2000

2500

Average Nativ Response Time Average Mediated Response Time
Fig. 9 Response times for 20 clients by burst load

At the constant load cases the average response time
stabilized around 15 (24, 30) milliseconds for 10
(20, 30) clients by invoking the natives service.
These values were 500 (1200, 2300) milliseconds
for the mediated service. This shows that the
mediated architecture is not as scalable as the
original. This incident can be explained by the
applied hardware infrastructure, which has reached
its physical limits only in the mediated case. This is
also proved by the results of the burst cases, where
the measured values are promising. At the burst load
cases the average response time stabilized around 30
(60, 90) milliseconds for 10 (20, 30) clients by
invoking the native service. These values were 900
(1800, 2900) milliseconds for the mediated service.
Because the response times increase proportionately
the system remains scalable also for the mediated
services. Furthermore the response times for such a
high load were not so high in spite of that the tests
were only run on a standard home computer.

6 Conclusions

The paper has presented an approach for creating
transformations and generation of invokable
semantic services for a SOA based integration
scenario. The developed tools are able to support the
IT expert by this process and makes possible to deal
with already existing services of standard enterprise
systems in a semantically enriched environment.
This results an efficient method for realizing
business collaboration via enterprise application
integration.

Although our method supports the easy creation
of transformations, it gives no promotion to this
area. Semantic relationships between the elements

WSEAS TRANSACTIONS on COMPUTERS
Peter Martinek, Balazs
Tothfalussy and Bela Szikora

ISSN: 1109-2750 1666 Issue 10, Volume 7, October 2008

of complex types will also be evaluated in future
work. This can result some proposals for creating
specific transformation rules. Furthermore we
probably can automatically generate proper
transformations in specific circumstances upon that
information.

Our method relies at several points on the
contribution of IT-experts. IT experts are
responsible for the identification of relations
between the native schema concepts and ontology
level concepts, the creation of transformation
defining by several transformation rules and the
building of composed processes or process
templates in a semi-automatic process composition
scenario. This human factor carries the possibility of
design errors which are signaled by our tools of
course. Furthermore advanced verification methods
and testing strategies could be also applied in our
framework like the one presented in [25]. Finally,
some self-adaptation abilities could help to
overcome on smaller design errors of the data-
annotations and transformations at run-time and
some self-healing property of running process
instances could result recovering from inconsistent
process-states automatically.

The performance of the process run-time
environment could also be evaluated and increased
with applying custom run-time solutions for
example similar to the approach presented in [26].
These can be some major issues of our future work.

Acknowledgement
This paper was supported by the FUSION FP6-
027385 Project.
We also wish to acknowledge our gratitude and
appreciation to all the FUSION project partners for
their contribution during the development of various
ideas and concepts presented in this paper.

References:
[1] A.-W Sherr, Business Process Engineering -

Reference Models for Industrial Enterprises,
Springer-Verlag, Berlin, 1994.

[2] Q. Ni, W. F. Lu, K.D.V. Yarlagadda, X. Ming,
A collaborative engine for enterprise
application integration, Computers in Industry,
vol. 57, 2006, pp. 640–652.

[3] D. K. Barry, Web services and service-oriented
architectures, Service-Oriented Architectures
and Web Services, 2003, pp. 17-33.

[4] P. Martinek, B Szikora, Semantic Execution of
BPEL processes, Proceedings of the 16th
International conference on Information

System Development (ISD2006), Budapest,
Hungary, 2006, pp. 361-367.

[5] Tosic, V., Erradi, A., Maheshwari, P., On
extending WS-Policy with specification of
XML Web service semantics, monitoring, and
control driven by business value, WSEAS
Transactions on Computers, vol 6, issue 5,
2007, pp. 805-812

[6] S. Arroyo, M-A. Sicilia, J-M. Dodero,
Choreography frameworks for business
integration: Addressing heterogeneous
semantics, Computers in Industry, Volume 58,
Issue 6, 2007, pp. 487-503.

[7] M-A. Barbosa, L-S. Barbosa, Configurations of
Web Services, Electronic Notes in Theoretical
Computer Science, Volume 175, Issue 2, 2007,
pp. 39-57.

[8] M. Chen, D. Zhang, L. Zhou, Empowering
collaborative commerce with Web services
enabled business process management systems,
Decision Support Systems, vol. 43, 2007, pp.
530– 546.

[9] G. Grossmann, Y. Ren, M. Schrefl, M.
Stumptner, Behavior Based Integration of
Composite Business Processes, Business
Process Management, Springer Berlin/
Heidelberg, 2005, pp. 186–204.

[10] I. Navas-Delgado, M.M. Roldán-García, J. F.
Aldana-Montes, Kreios: Towards Semantic
Interoperable Systems, Advances in
Information Systems, vol. 3261, Springer
Berlin/Heidelberg, 2004, pp. 161–171.

[11] Georgiou, L., Pyrovolakis, O.I, Designing web
services for business processes through
integrated development environments, WSEAS
Transactions on Computers, vol. 4, issue 8,
2005, pp. 908-916

[12] Yun, S.-B., Ko, H.-J., Kim, U.-M., The design
and the implementation of web service security
system for the secured distribution of digital
contents, WSEAS Transactions on Computers,
vol. 5, issue 2, 2006, pp. 348-351.

[13] Marius, C., Lucian-Ionel, C., Sabin-Corneliu,
B., Using semantic web technologies to
improve the design process in the context of
virtual production systems, WSEAS
Transactions on Computers, vol. 4, issue 12,
2005, pp. 1788-1793.

[14] Oracle Fusion Middleware, at
http://www.oracle.com/technology/
products/middleware/index.html viewed
10.07.2006.

[15] IBM Websphere at http://www-
306.ibm.com/software/websphere/ viewed
10.07.2006.

WSEAS TRANSACTIONS on COMPUTERS
Peter Martinek, Balazs
Tothfalussy and Bela Szikora

ISSN: 1109-2750 1667 Issue 10, Volume 7, October 2008

[16] Intelligent Software Agents Lab, at
http://www.cs.cmu.edu/~softagents/ viewed
10.07.2006.

[17] W3C, Web Service Description Language,
W3C Working Group Note, at
http://www.w3.org/TR/wsdl, 2001.03.15.

[18] OASIS, UDDI, Advanced Web Services
Discovery Standard at
http://www.uddi.org/specification.html, 2004

[19] Sriharee, N., Senivongse, T., On matching and
ranking of web services behaviour in process-
based service discovery, WSEAS Transactions
on Computers, vol. 5, issue 2, 2006, pp. 439-
446.

[20] Gerardo Canfora, Massimiliano Di Penta,
Raffaele Esposito, Maria Luisa Villani, A
framework for QoS-aware binding and re-
binding of composite web services, Journal of
Systems and Software, vol 81, issue 10, 2008,
pp. 1754-1769

[21] Oliver Moser, Florian Rosenberg and
Schahram Dustdar, Non-Intrusive Monitoring
and Service Adaptation for WS-BPEL,
Proceedings of the 16th International World
Wide Web Conference (WWW 2008), Beijing,
China, 2008, pp. 815-824.

[22] P. Martinek, J. Kerekes, B. Szikora,
Semantically-enriched Service-Oriented
Business Applications, Proceedings of the 29th
International Spring Seminar on Electronics
Technology (ISSE2006), Dresden, Germany,
2006, pp.

[23] P. Martinek, B. Tóthfalussy, B. Szikora,
Semantically Described Services in the
Enterprise Application Integration,
Proceedings of the 30th International Spring
Seminar on Electronics Technology (ISSE
2007), Cluj-Napoca, Romania, 2007, pp. 335-
338.

[24] Visigoth Software Society - The Freemarker
template engine at http://www.freemarker.org/,
viewed 2008.03.01.

[25] Lertphumpanya, T., Senivongse, T., Basis path
test suite and testing process for WS-BPEL,
WSEAS Transactions on Computers, vol. 7,
issue 5, 2008, pp. 483-496.

[26] Cesare Pautasso, Thomas Heinis, Gustavo
Alonso, Autonomic resource provisioning for
software business processes, Information and
Software Technology, vol. 49, 2007, pp. 65-80.

WSEAS TRANSACTIONS on COMPUTERS
Peter Martinek, Balazs
Tothfalussy and Bela Szikora

ISSN: 1109-2750 1668 Issue 10, Volume 7, October 2008

