

A Back-End Compiler with Fast Compilation
for VLIW based Dynamic Reconfigurable processor

Ryuji HADA, Kazuya TANIGAWA, Tetsuo HIRONAKA

Department of Information Sciences
Hiroshima City University

Address 3-4-1 Ozuka-Higashi, Asa-Minami-Ku, Hiroshima, 731-3194, JAPAN
pars@csys.ce.hiroshima-cu.ac.jp

Abstract: - We have developed a compiler for dynamic reconfigurable processor based on VLIW model.
VLIW model fetches and executes one configuration data as VLIW instruction. For this model, our compiler
schedules mapping elements as operations and live variables in program, with consideration of hardware
resources. Next, place-and-route procedure places and routes the mapping elements to hardware resources for
several configuration data. However the conventional place-and-route algorithms require much compilation
time. The reason is that, for difficulty place-and-route condition, the number of place-and-route iteration is
increased to get high code quality. Thus we propose a novel compiler method, which is combining scheduling
and place-and-route with fast compilation, on keeping code quality. Our idea is that if a scheduling simplifies
the place-and-route condition, small compilation time of place-and-route can realize a reasonable code quality.
In scheduling, to balance the number of operations and live variables, and make the place-and-route condition
easy, the operations are moved to another step with a fewer operations. In place-and-route, to reduce iteration
procedures to get the reasonable result, it limits targets for replace-and-reroute. In this paper, we use PARS as
one of target processors based on VLIW model. We evaluate our method and compare it with another method
based on Simulated Annealing (SA). From the results, our method achieves that the difference of code quality
(the number of configuration data like VLIW instruction) is -3.4% - +1.2%, and compilation time is cut to
1/128 - 1/67, compared with SA base method.

Key-Words: - VLIW, Reconfigurable processor, compiler, scheduling, place and route

1 Introduction
Recently, dynamic reconfigurable processors based
on a novel computing model have been
attracted[1][2][3]. These processors dynamically
configure their circuits by using configuration data,
especially in VLIW model which fetches and
executes one configuration data as one VLIW
instruction. In these processors, since the parallelism
included in configuration data are generated by a
compiler, the compiler optimization technique is a
key for high performance. In our previous
researches, we proposed the compiler optimization
method for the processor based on VLIW model[4].
In general, to generate the optimized code, much
compilation time is required.

In this paper, we propose a novel compiler
method, which is combining scheduling and place-
and-route with fast compilation for VLIW based
dynamic reconfigurable processors. Our idea is that,
if a scheduling simplifies place-and-route condition,

small compilation time of place-and-route can
realize a required code quality.

The compiler has place-and-route procedure. The
conventional place-and-route algorithms adopt the
heuristic method[5]. In general, the heuristic method
requires much compilation time to get high quality
code. In the future, because of the following reasons
the conventional place-and-route cannot realize
reasonable compilation time.

 According to high integration of LSI,
processing elements are increased in the
processor.

 According to high difficulty of image
processing, the number of operations as
mapping element is increasing[6]. The image
processing is one of main target application of
the processor.

According to increase of processing elements and
mapping elements, the compilation time of place-
and-route iteration procedure for each configuration
data is increased. The conventional place-and-route

WSEAS TRANSACTIONS on COMPUTERS Ryuji Hada, Kazuya Tanigawa, Tetsuo Hironaka

ISSN: 1109-2750 1515 Issue 9, Volume 7, September 2008

requires much compilation time for total iterations,
on keeping high code quality.

The conventional place-and-route problem is
described in the following.

 For difficult place-and-route condition, the
number of place-and-route iteration is
increased.

 For physically impossible place-and-route
condition in one configuration data, the place-
and-route requires a certain number of iteration
to find it impossible.

 When the place-and-route finds impossible
place-and-route condition, it may use several
configuration data and replace-and-reroute. In
this case, first place-and-route time is waste.

From this problem, to reduce the compilation time,
one place-and-route iteration time and the number
of the iteration should be reduced. Thus we propose
the following two approaches.

 Scheduling reduces the difficulty of place-and-
route condition, to avoid the impossible place-
and-route condition. Scheduling estimates the
difficulty of the place-and-route condition
before place-and-route. If it finds the
impossible place-and-route condition, it
schedules mapping elements to be placed and
routed in two or more configuration data.
Besides, it adjusts the difficulty not to extend a
critical path as possible.

 Place-and-route realizes less the number of
iteration, by determining an init placement with
consideration of routing condition. Besides, it
uses several place-and-route patterns prepared.

Our approaches can be adopted for the processors
requiring place-and-route, which is based on our
VLIW model, because our approaches do not
depend on the processor implementation.

In this paper, we describe our approach and
evaluate the compilation time and the number of
generated configuration data (like VLIW
instructions) as code quality. We compare our
method with general heuristic based place-and-route
method.

The organization of this paper is the following.
In Section 2, we define our VLIW model, and
explain a target processor based on our model. Then
we explain another compiler method for dynamic
reconfigurable processor, to declare the differences
between our method and others. In Section 3, we
explain why fast compilation time is difficult, and
we propose a key idea to resolve this problem. In
Section 4, we give an overview of the proposal
method, and show the algorithms in Section 5.

After that, we evaluate our method in Section 6, and
then we conclude in Section 7.

2 Related works
In this section, we define VLIW model as target
processor model of our compiler. Then, we
introduce our target processor and various compiler
approaches which target is VLIW model.

2.1 VLIW model
In this paper, VLIW model reconfigurates and
executes configuration data in a program as VLIW
instructions. In VLIW model, reconfigurable part
has distributed registers and function units (FUs)
with B bit width. The number of registers and FUs
is N, M respectively. Each FU has two inputs and
one output, and these inputs and outputs data can be
read from and written to any registers. And the
registers in the reconfigurable part are used for data
transfer among different configuration data. Data in
any registers can be loaded from and stored to
memory by load/store unit. Memory architecture has
P memory ports. Thus, by generalizing this model
and varying the parameters N, A, M, B, P, our work
may be extended to compilers for other similar
architecture.

In this paper, we select PARS as target
processor. Because PARS has simple VLIW model,
and this detailed processor architecture is described
in [7][8][9][10]. We will describe about this
architecture in next sub section.

WSEAS TRANSACTIONS on COMPUTERS Ryuji Hada, Kazuya Tanigawa, Tetsuo Hironaka

ISSN: 1109-2750 1516 Issue 9, Volume 7, September 2008

Fig. 1: Structure of TEMPO4x5 Processor

2.2 PARS
In this paper, we use TEMPO4x5 processor which is
a prototype of PARS. Fig. 1 shows the structure of
TEMPO4x5 processor. Reconfigurable part in the
processor has 20 Reconfigurable Units (RUs). Each
RU has one Function Unit (FU) with eight-bit ALU
and four registers. Global Routing Unit (GRM)
forms data transfer among RUs. This reconfigurable
part is dynamically configured by configuration data
with fixed length. One configuration data is called
as page. In TEMPO4x5 processor, the configuration
and execution of one page, which include operations
executed at parallel, are done in one cycle. The
execution of program on TEMPO4x5 processor is
the following.
(1) Page fetch

Control unit fetches page from memory when it
receives the start signal.

(2) Reconfiguration and execution
Operations and data path are configured in
reconfigurable part by page. The input data for
operations are transferred from registers in
reconfigurable units.

Next, we explain other dynamic reconfigurable

processors based on VLIW model and their
compiler methods, to declare the differences
between our method and others.

2.3 PipeRench[11][12][13]
PipeRench at Carnegie Mellon University supports
execution of virtual pipeline. This virtual pipeline
consists of stripe which is one virtual pipeline stage,
and PipeRench is configured and executed by one
stripe after the other. If we consider one stripe as
one VLIW instruction, we can adapt PipeRench
model to our VLIW model.

However, PipeRench has one configuration
data as each stripe, and then deep pipeline stage
requires many stripes. In such case, the compilation
time increases according to the number of stripes, so
the compiler is designed with consideration of
compilation time. To achieve the fast compilation
time, their scheduling method shortens the live
range of variable allocated to registers to ease place-
and-route difficulties. In our approach, we adopt a
spill method (spills variables value out/in to/from
memory), which adds load/store to original source
code.

2.4 ADRES[14][15]
ADRES (Architecture for Dynamically
Reconfigurable Embedded System) and DRESC
(Dynamically Reconfigurable Architecture System
Compiler) were developed by IMEC. If we consider
operations in a step as one VLIW instruction, this
model is similar to our VLIW model.

In place-and-route, they introduce SA base
place-and-route. From this discussion, DRESC is
developed to focus on only getting high quality code.
There are no descriptions about saving the
compilation time in their papers.

3 Problems and solution
We describe about the mapping restriction of the
hardware resources in TEMPO4x5 processor, and
discuss the problem and our solution.

Fig. 2 shows the correspondence of application
program and pages. It is desirable that parallel
executable operations are mapped to one page.
However, if it does not meet hardware resource
restrictions of one page, these operations are
mapped to two or more sequential pages. For
example, when there are four RUs in reconfigurable
part and five parallel executable operations, these
operations are mapped to two pages. In this paper,
we call it page division.

In routing, data paths which transfer data for
operations are realized by two dimensional routing
like page 2 in Fig. 2. Routing is required to

WSEAS TRANSACTIONS on COMPUTERS Ryuji Hada, Kazuya Tanigawa, Tetsuo Hironaka

ISSN: 1109-2750 1517 Issue 9, Volume 7, September 2008

Fig. 2: Correspondence of Application Program and
page

consider register locations, because data transfers
among pages are realized by using registers.
Dimension of the solution space on place-and-route
becomes tree-dimension because of the two
dimensional page (x and y axes) and the sequence
of pages (time-axis). Thus, the following two items
need to be considered.
(a) Time scheduling decides which operations are

executed on which pages.
(b) Two-dimensional scheduling decides where

operations are placed in each page.
If the conventional place-and-route algorithms are
used for placement of each page, the compilation
time is increased by the following reasons.

 If one page has many operations and live
variables, the solution space becomes complex,
which increases the compilation time on the
page.

 There are many restrictions on place-and-route
to realize a fixed frequency in PARS
architecture. It may increase iteration
procedures to get reasonable results.

To solve the above problems, we propose new

approaches in consideration of (a) and (b).
Approach 1

To reduce difficulties caused by page which
has many operations, we propose code-

scheduling which balances the number of
operations in each page as equally as possible.
Its scheduling policy has an effect which
shortens the live range of each variable, to
reduce the number of live variables in each
page.

Approach 2
To reduce iteration procedures to get
reasonable results, the target operations for
replace-and-reroute are limited to only
operations which failed to be placed and routed.
If the operations cannot be mapped to one page,
page division is applied to these operations.

In the next section, we describe about our method
based on these approaches.

4 Overview of our compiler
We overview our method which is comprised of
code-scheduling based on the approach 1 and place
and-route based on the approach 2. At first, we
describe about the components of our compiler and
then we describe the details about each component.

4.1 Software development environment
Fig. 3 shows software development environment
for PARS. PARS compiler is comprised of the
front-end part and the back-end part. In this paper,
we describe about the back-end part. The front-end
part compiles programs described by high level
language into the intermediate code based on
quadruples. The back-end part compiles this
intermediate code into object code which has a set
of pages. This back-end part is mainly comprised of
code-scheduling and place-and-route.

4.2 Code-scheduling
Code-scheduling is executed before place-and-route.
This procedure based on approach 1 assigns
operations to page temporally. Next, we explain
code-scheduling with Fig.4.
Variable rename

To extend the flexibilities of register allocation,
this procedure resolves output dependencies and
anti-dependencies[17].

Reduction of the live range of variables
At first, all operations are scheduled as soon as
possible (ASAP), which extracts parallelism.
Then to reduce the live range of variables,
operations

WSEAS TRANSACTIONS on COMPUTERS Ryuji Hada, Kazuya Tanigawa, Tetsuo Hironaka

ISSN: 1109-2750 1518 Issue 9, Volume 7, September 2008

Fig. 3: Software Development Environment

Fig.4: Code-Scheduling Flow

which do not have parent nodes are scheduled as
late as possible. The later scheduling is executed not
to extend the live range of variables, even if
operations are moved to down steps on DFG (Data
Flow Graph) like operation 1 in Fig.4. For instance,
the number of live variables in the step 1 and the
step 2 in Fig.4 is reduced while maintaining the
length of critical path.
Temporal assignment

To reduce the number of operations to be placed,
this procedure assigns operations to each page in
consideration of the number of RUs in the
processor. At this time, it balances the number of
operations in each page as equally as possible. In
addition, it reduces the number of operations on
page 2 in Fig.4 by moving operation 7 and
operation 10.

Fig. 5: Place and Route Flow

4.3 Place and route
This procedure is based on approach 2. Place-
and-route allocates operations and live variables in
each page. We explain it by using Fig. 5.
Selection of operation

To achieve an efficient search solution to get
reasonable results, this procedure selects an
operation according to its priority. Some of
operations have to use several RUs
simultaneously, which have low flexibility on
placement. Because it is difficult to place-and-
route them, they are given high priority. It
improves the success rate of place-and-route for
them, which reduces the possibilities of re-
place and re-route. When there are no
operations to be selected in the page, this
procedure works on the next page.

Placing
This procedure places the selected operation on
RU (the operation is assigned to FU and the
destination variable is assigned to its register),
according to a given placement order. The
order balances the usage rate of resources. For
instance, operation 5 is placed on RU 1,
operation 6 will be placed on RU 2 and
operation 8 will be placed on RU 4. If there are
operations which cannot be placed on RU in
the page, they are placed on RU in another
pages by page division.

Routing
The data path, which transfers source data to
the placed operation (operation 5), is routed in
this procedure. When the data path can be
routed it is done, then this routing procedure is
finished, and it goes back to the selection of
operation step. When the data path cannot be
routed, only the placed operation (operation 5)
is re-placed on another RU, and the data path is
re-routed. Wherever the operation is re-placed,

WSEAS TRANSACTIONS on COMPUTERS Ryuji Hada, Kazuya Tanigawa, Tetsuo Hironaka

ISSN: 1109-2750 1519 Issue 9, Volume 7, September 2008

if there are no re-routing paths on the page, the
data path is routed on another new page by
page division.

Our place-and-route method has two major features.
One is the selection policy of operations according
to the priority. Operations, which placing is difficult,
are given high priority. The other is the sequential
place-and-route which places and routes operations
and live variables one by one. It is iterated until all
operations and live variables are placed and routed.

5 Algorithms

In the previous section, we mentioned about
overview of our code-scheduling and place-and-
route. In this section, we describe these algorithms
in detail.

5.1 Code-scheduling algorithm

The input code is represented by the following
quadruples:(operator, source1, source2, destination).
Fig.6 shows the pseudo-code which represents our
code-scheduling described in Subsection 4.2. Our
code-scheduling algorithm has two major features.
One is the reduced scheduling complexity. Because
operations are only moved down the DFG after the
ASAP scheduling, the scheduling complexity is
reduced. The other is the limited moving range of
operations in Temporal assignment. We define
mobility value as the number of steps which each
operation can be moved. Its initial value is 10 (in the
current version of our compiler). When the
operation is moved one step down, it consumes 1
from mobility value. If the mobility value becomes
0, the operation cannot be moved. It prevents the
live range of variables and scheduling time from
increasing too much.

5.2 Place and route algorithm
The input code is the pages where the intermediate
code is temporarily assigned, and each page has
operations and live variables. Fig.7 shows the
pseudo-code which represents our place-and-route
described in Subsection 4.3. Our place-and-route
algorithm has one major feature: less usage of
random number. Because operations are selected
and RUs are searched according to the given order,
with this algorithm it obtains higher code quality
than average in a short compilation time.

Fig.6: Pseudo-Code of Code-Scheduling Algorithm

6 Evaluation
In this section, to evaluate quality of output pages
and compilation time of our method (code-
scheduling + our place-and-route), we compare it
with another method based on Simulated Annealing
(code-scheduling + place-and-route based on SA).

6.1 Evaluation conditions
The evaluation conditions are described as the
followings.
Evaluation index

We implemented our method and the
comparative method with C language.
Evaluation index are the number of pages
which these methods output, and their
compilation time.

WSEAS TRANSACTIONS on COMPUTERS Ryuji Hada, Kazuya Tanigawa, Tetsuo Hironaka

ISSN: 1109-2750 1520 Issue 9, Volume 7, September 2008

Fig.7: Pseudo-Code of Place and Route Algorithm

Evaluation method

We measured the compilation time by using the
time() function in the C library. When the
compilation time is too small, we repeated the
compilation and use the average of their
compilation time.

Evaluation environment
We used gcc 3.3.2 with -O3 option to compile
them.

6.2 Place-and-route restrictions
In this subsection, we show the details of the place-
and-route restrictions of TEMPO4x5 processor
described in Section 2.

 Twenty eight-bit operations can be placed in
one page at the maximum.

 An operation, whose data width exceeds eight-
bit, is placed on multiple adjacent RUs.

 All operations in one page must not have any
data dependencies on each other and can be
executed in parallel.

 To transfer data in one clock, the routing
selects the shortest path in the reconfigurable
part.

Table.1: SA parameters

Parameter name Value
Initial temperature T0 10
Minimum temperature Tmin 1
Number of variation N 10
Coefficient of variation A 0.95
Number of overall iteration M 41

 One page can have only either one, a load
operation or a store operation, because
TEMPO4x5 processor has only one memory
port.

6.3 Simulated Annealing
We adopt Simulated Annealing (SA) as the
comparative method. Though SA needs a lot of time,
it can get a good result[16]. Also, SA has high
flexibility and it can be applied in many other fields.
We think it is easy to apply SA to each page in
place-and-route.

SA base place-and-route is executed after our
code-scheduling. Table.1 shows the SA parameters
used in this evaluation. We set the number of
iterations for one page, to achieve the maximum
code quality in practical compilation time. Because
SA base place-and-route uses random placement
and placement result of one page influences other
pages at random, so the code quality varies widely.
To settle the quality variation, we set the number for
overall iterations. The following are the SA base
place-and-route algorithm we have used.
1. Initialization:

This procedure initializes temperature T as T0,
and sets goal value G as the number of the
operations in the current page. Place-and-route
using random numbers generates to initial state
X, and it calculates C as the evaluation value of
X. C is the number of operations which succeed
in place-and-route.

2. Generation of the next state:
This procedure exchanges two operations and
generates the next state next, and calculates
C_next as the evaluation value of X_next.

3. State transition:
1. If C_next is equal to G, place-and-route

finishes the algorithms for the current page
and goes to the next page.

2. If C_next is improved better than C, the
next state (X_next → X, C_next → C) is
adopted.

3. If C_next is worse than C, △C is set as the
difference between C and C_next. If

WSEAS TRANSACTIONS on COMPUTERS Ryuji Hada, Kazuya Tanigawa, Tetsuo Hironaka

ISSN: 1109-2750 1521 Issue 9, Volume 7, September 2008

½e^(△C/T) ≥ R(random numbers: 0 ≤ R ≤
1), the next state is adopted.

4. Annealing for one page:
Procedures 2.Generation of the next state and
3.State transition are iterated N times.

5. Cooling:
T is multiplied by the coefficient of variation A.
1. If T is larger than the minimum

temperature T_min, the procedure goes
back to 2.Generation of the next state.

2. If T is smaller than T_min, X is the result
of the current page and the procedure
works on the next page. In this time, if
there are operations which cannot be
placed or routed, page division is done for
them.

6. Annealing for all pages:
Procedures from 1.Initialization to 5.Cooling
are done for all pages, and P[M] is stored for
the corresponding output pages.

7. Overall iteration:
Procedure 6.Annealing for all pages is iterated
M times, and the best P[M] which has the
smallest number of pages is adopted as the
result.

6.4 Benchmark applications
The following are the applications used as the
benchmark in the evaluation. The line numbers
present the number of operations in the intermediate
code, which are used as their code-size.
(1) Bubble sort (64 lines)

This algorithm sorts 32 eight-bit data.
(2) Bucket sort (141 lines)

This algorithm sorts 32 eight-bit data, and it is
used many load/store operations.

(3) Even-odd sort (352 lines)
This algorithm sorts 16 eight-bit data in parallel.
This is benchmark with high parallelism.

(4) FEAL[18] (334 lines)
This algorithm is 64 bit common key
cryptosystem. This is benchmark with low
parallelism.

(5) DCT (296 lines)
This algorithm is used in JPEG encoder etc.
This is benchmark with high parallelism. We
use one-dimension DCT for 8x8 pixel blocks.

6.5 Evaluation result
Fig. 8 shows the evaluation result by the number of
pages. From the result, compared with the
comparative method, our method achieves the code

quality very similar, the difference of the number of
output pages was -3.4% - +1.2%. The reason is that
our scheduling to balance the number of operations

Fig. 8: Result of the Number of pages

Fig. 9: Result of Compilation Time

and placement policy lead such a good quality in a
short compilation time. From this result, we can say
that our method achieves equal code quality to SA
base place-and-route which achieves the high code
quality with the long compilation time.

Fig. 9 shows the evaluation results on
compilation time. From the result, compared with
comparative method, our method cuts compilation
time to 1/128 - 1/67 (in average 1/83). This reason is
the followings.

 Our place-and-route using the priority and the
given placement order finds its solution faster
than SA base place-and-route using random
placement.

 Our sequential place-and-route can identify
operations which could not be placed and
routed. It enables to avoid unnecessary search,

WSEAS TRANSACTIONS on COMPUTERS Ryuji Hada, Kazuya Tanigawa, Tetsuo Hironaka

ISSN: 1109-2750 1522 Issue 9, Volume 7, September 2008

so it can decide to do page division earlier, if
the appropriate place-and-route are not found.

 Our place-and-route limits the search space, so
it can find solutions in a shorter compile time.

From these results, we can say that our method
achieves an efficient mapping with a short
compilation time as compared with the conventional
method based on SA.

7 Conclusion and future work
In this paper, we show a novel compiler method for
dynamic reconfigurable processor based on VLIW
model. Our approach has two features. One is code-
scheduling which reduce the difficulty place-and-
route condition. Another is place-and-route which
reduces iteration procedures to get reasonable
results. From the evaluation results, our method
achieves that the difference of the number of
generated configuration data as code quality is -
3.4% - +1.2%, and compilation time is cut to 1/128 -
1/67, compared with SA base method. From these
results, we can say that our method achieves an
efficient mapping in a short compilation time as
compared with the conventional method based on
SA.

As one of our future works, we plan to develop a
compiler for processor having larger hardware
resources.

References:
[1] By Michalis, D.Galanis,Gregory.Dimitroulakos,

Athanassios. P. Kakarountas, Costas. E.
Goutis, Partitioning Applications to
Heterogenenous Reconfigurable Hardware,
WSEAS TRANSACTIONS on COMPUTERS,
Issue 10, Volume 4, pp.1289-1296, October
2005.

[2] D.Buell, T.El-Gbazawi, K.Gai, V.Kindratenko,
High-Performance Reconfigurable Computing,
IEEE Computer, Vol.40, No.3, 2007.

[3] DAPDNA, IPFLEX, http://www.ipflex.com/en/.
[4] Ryuji HADA, Kazuya TANIGAWA, Akirra

KOJIMA, and Tetsuo HIRONAKA, An
Adaptive Compiler method for Scheduling and
Place-and-Route for VLIE-based Dynamic
Reconfigurable Processor, Proceeding of the
12th WSEAS International Conference on
COMPUTERS, Part I, pp.61-69, July 2008.

[5] Ahmad Sadegheih, Global Optimisation Using
Evolutionary Algorithms, Simulated Annealing
and Tabu Search, WSEAS TRANSACTIONS on
INFORMATION SCIENCE and

APPLICATIONS, Issue 6, Volume 1, pp. 1700-
1706, December 2004.

[6] Sheeba. V. S, Elizabeth Elias, Design of Two-
Dimensional Signal Adapted Filter Banks for
Application in Image Processing, WSEAS
TRANSACTIONS on SIGNAL PROCESSING,
Issue 9, Volume 2, pp. 1281-1286,
September 2006.

[7] Kazuya Tanigawa, Tetsuo Hironaka, Akira
Kojima, and Noriyoshi, Yoshida, A
Generalized Execution Model for Programming
on Reconfigurable Architectures and an
Architecture Supporting the Model, Conference
on Field Programmable Logic and
Applications, Vol.2438, pp.434-443, 2002.

[8] Kazuya TANIGAWA, Tomohiro INOUE,
Tetsuo HIRONAKA, Akira KOJIMA, and
Noriyoshi YOSHIDA, PARS Architecture
Reconfigurable Architecture with Generalized
Execution Model---Design and Implementation
of its Prototype Processor, IEICE Trans on
Information and System, Vol.E86-D, No.5,
pp.830-840, 2003.

[9] Kazuya TANIGAWA, Tomohiro INOUE,
Tetsuo HIRONAKA, and Noriyoshi
YOSHIDA, Implementation of the
Reconfigurable Processor with Ability of
Every-Cycle Reconfiguration and Execution,
COOL Chips V, Vol.1, pp.162, 2002.

[10] Kazuya TANIGAWA, Takashi KAWASAKI,
and Tetsuo HIRONAKA, A coarse-grained
reconfigurable architecture with low cost
configuration data compression mechanism,
Proceedings of IEEE International Conference
on Field-Programmable Technology (FPT'03),
pp.311--314, December 2003.

[11] Goldstein.S, Schmit.H, Moe.M, Budiu.M,
Cadambi.S, Taylor.R and Laufer.R,
PipeRench:A Coprocessor for Streaming
Multimedia Acceleration, Proc.26th Annual
International symposium on Computer
Architecture, pp.28-39, 1999.

[12] Budiu.M, Cadambi.S, Fast Compilation for
pipelined reconfigurable fabrics, ACM/SIGA 7th
International symposium on FPGA '99, pp.
135-143, 1999.

[13] Goldstein.S, Schmit.H, Budiu.M, Cadambi.S,
Moe.M, and Taylor.R, PipeRench:A
Reconfigurable Architecture and Compiler,
IEEE Computer, Vol.33, No.4, pp.70-77, 2000.

[14] Mei.B, Vernalde.S, Verkest.D, Man.H and
Lauwerins.R, ADRESS:An architecture with
tightly coupled VLIW processor and coarse-

WSEAS TRANSACTIONS on COMPUTERS Ryuji Hada, Kazuya Tanigawa, Tetsuo Hironaka

ISSN: 1109-2750 1523 Issue 9, Volume 7, September 2008

grained reconfigurable matrix, FPL03, pp.61-
70,2003

[15] Mei.B, Vernalde.S, Verkest.D, Lauwerins.R,
Design Methodology for a Tightly Coupled
VLIW/Reconfigurable Matrix Architecture: A
Case Study, DATE04, Vol.2, pp.1224-1229,
2004.

[16] k.Shahookar, and P.Mazumder, VLSI cell
placement techniques, ACM Computing
Surveys, Vol.23, No.2, pp.143-220, 1991.

[17] A.V.Aho, M.S.Lam, R.Sethi, J.D.Ullman,
Compilers -Principles, Techniques, & Tools-,
Addison Wesley, Second Edition, 2006.

[18] S.Miyaguchi, S.Shiraishi, S.Shimizu, Fast Data
Encipherment Algorithm FEAL -8, Review of
the Electrical Communication Laboratories,
Vol.36, No.4, 1988.

WSEAS TRANSACTIONS on COMPUTERS Ryuji Hada, Kazuya Tanigawa, Tetsuo Hironaka

ISSN: 1109-2750 1524 Issue 9, Volume 7, September 2008

