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Abstract: During the past about thirty-five years, many automata on a two- or three-dimensional input tape have
been proposed and a lot of properties of such automata have been obtained. On the other hand, we think that
recently, due to the advances in computer animation, motion image processing, and so forth, it is very useful for
analyzing computational complexity of multi-dimensional information processing to explicate the properties of
four-dimensional automata, i.e., three-dimensional automata with the time axis. In this paper, we propose a four-
dimensional multi-inkdot finite automaton and mainly investigate its recognizability of four-dimensional connected
pictures. Moreover, we briefly investigate some basic accepting powers of four-dimensional multi-inkdot finite
automata.
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1 Introduction

Related to the historical open problem of whether
deterministic and nondeterministic space (especially
lower-level) complexity classes are separated, inkdot
Turing machines were introduced in [43]. An inkdot
machine is a conventional Turing machine capable
of dropping an inkdot on a given input tape for a
landmark, but unable to further pick it up. Against
an earlier expectation, it was proved that nondeter-
ministic inkdot Turing machines are more power-
full than nondeterministic ordinary Turing machines
for sublogarithmic space bounds [5,11,20,23-26,39].
As is well-known in the theory of automata on a
two-dimensional input tape [2,3,6,7,9,22,34], there is
a set of square tapes accepted by a nonderministic
finite automaton but not by any deterministic Tur-
ing machine with sublogarithmic space bounds[15-
19]. Thus, it makes no sense to ask the question

∗TakaoIto is a visiting research professor of School of Man-
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29, 2008 to March 28, 2009.

of whether the separation exists between determin-
istic and nondeterministic complexity classes for the
two-dimensional Turing machines with sublogarith-
mic space bounds[33,56-59,63]. On the other hand,
there is another important aspect in the inkdot mecha-
nism : we can consider a two-dimensional finite au-
tomaton with inkdots as a weak recognizer of the
inherent properties of digital pictures[35-37,46,62].
By this motivation, in [27], two-dimensional finite
automaton with inkdots was introduced as a weak
recognizer of the inherent properties of digital pic-
tures, rather than a two-dimensional Turing machine
supplied with a one-dimensional working type. In
[27], it is proved that two-dimensional deterministic
multi-inkdot automata are eqivalent to ordinary two-
dimensional finite automata, i.e., there exists no hi-
erarchy based on the number of inkdots for the two-
dimensional deterministic case[32]. The basic proper-
ties of two-dimensional versions of nondeterministic
inkdot automata, alternating inkdot automata which
have only universal states, and general alternating
inkdot automata were also investigated in [27]. By
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the way, the question of whether processing three-
dimensional digital patterns is much difficult than
two-dimensional ones is of great interest from the
theoretical and practical standpoints[60,64-66]. From
this point of view, we introduced a three-dimensional
finite automaton with inkdots as a weak recognizer
of the inherent properties of three-dimensional digital
pictures, rather than a three-dimensional Turing ma-
chine supplied with a one-dimensional working type
[50]. We also emphasize the point that inkdot au-
tomaton is a restricted version of “marker (or peb-
ble) automaton”, which can pick up the marker put
down previously on the input tape [39]. In recent
years, due to the rapid development of modern tech-
nologies such as computer animation, motion im-
age processing, virtual reality systems and so on,
it has become increasingly apparent that the study
of multi-dimensional pattern processing has started
to play a crucial role in our society [1,4,42,54,55].
Thus, we think that it is very useful for analyzing
computation of multi-dimensional pattern process-
ing to explicate the properties of four-dimensional
automata, i.e., three-dimensional automata with the
time axis [28,51]. In this paper, we introduce a
four-dimensional multi-inkdot finite automaton, and
mainly investigate its ability to recognize the topolog-
ical properties of four-dimensional binary connected
pictures in Section 4 [16]. Moreover, in Section 3,
we briefly investigate some basic properties of four-
dimensional multi-inkdot finite automata.

2 Preliminaries
Definition 2.1. Let Σ be a finite set of sym-
bols. A four-dimensional tape over Σ is a
four-dimensional rectangular array of elements ofΣ
[44,47]. The set of all four-dimensional tapes overΣ
is denoted byΣ(4). Given a tapex ∈ Σ(4), for each
j(1≤j≤4), we letlj(x) be the length ofx along the
jth axis. When 1≤ij≤lj(x) for eachj(1≤ j≤4), let
x(i1, i2, i3, i4) denote the symbol inx with coordi-
nates(i1, i2, i3, i4), as shown in Fig. 1.

Furthermore, we define

x[(i1, i2, i3, i4), (i′1, i
′
2, i

′
3, i

′
4)],

when 1≤ij≤i′j≤lj(x) for each integerj(1≤j≤4), as
the four-dimensional tapey satisfying the following:

(i) for eachj(1≤j≤4), lj(y)=i′j − ij + 1;

(ii) for each r1, r2, r3, r4 (1≤r1≤l1(y),
1≤r2≤l2(y), 1≤r3≤l3(y), 1≤r4≤l4(y)),
y(r1, r2, r3, r4)=x(r1 + i1− 1, r2 + i2− 1, r3 +
i3 − 1, r4 + i4 − 1).
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Fig. 1: Four-Dimensional Input Tape.

Now, we introduce four-dimensional multi-inkdot fi-
nite automaton.

Definition 2.2. Let k be a non-negative inte-
ger. A four-dimensional alternating k-inkdot
automaton (4-AIk) is a septuple

M = (Q,U, q0, F,Σ, {0, 1}, δ),

where

(1) Q is a finite set ofstates,

(2) U⊆Q is a set ofuniversal states,

(3) q0∈Q is theinitial state,

(4) F⊆Q is the set ofaccepting states,

(5) Σ is a finiteinput alphabet,

(6) {0,1} is the presence and absence signs of
inkdots,

(7) δ⊆((Q×{0,1}k)×((Σ∪{]})×{0,1}k))× ((Q×
{0,1}k)×((Σ∪{]})×{0,1}k)×∆) is the next
move relation satisfying the following (where
]/∈Σ is the boundary symbol and∆={east, west,
sounth, north, up, down, future, past, no move}
is the direction set of input head) :

For anyq, q′∈Q, a, a′∈Σ, u=(u1,...,uk), u0=(
u′1,...,u′k), v=(v1,...,vk), v0=(v′1,...,v′k) ∈{0, 1}k

and d∈δ, if ((q′,u0), (a′,v0), d)∈((q,u),
(a,v)) then (i) a=a′ and (ii) for each i
(1≤i≤k), (ui, vi, u0i, v0i)∈{(1,0,1,0),(1,0,0,1)
(0,0,0,0),(0,1,0,1)}.
That is, a 4-AIk M is a four-dimensional al-

ternating finite automaton (4-AFA) withk dots of
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ink, as shown in Fig. 2. Thus a 4-AIk is a four-
dimensional alternating finite automaton [49,51] ca-
pable of dropping an inkdot on at mostk tape-cells
of the input for a landmark, once on each cell, but
incapable of picking it up or erasing it. A stateq
in Q-U is said to beexistential. The machineM
has a read-only rectangular input tape with boundary
symbols “]”’s. If the input head falls off the bound-
aries of the input tape, then the machineM can make
no further move. An element ofQ×{0,1}k is called
an extended state. An element ofΣ×{0, 1}k is
called anextended input symbol, (Σ×{0, 1}k itself
is called anextended input alphabet). An extended
state(q,u) represents the situation thatM is in state
q andM holds or does not hold theith inkdot in the
finite control, according to the value ofui which is
equal to 1 whenM holds the inkdot. An extended in-
put symbol(a,v) represents the situation that the input
symbol on the current cell isa and theith inkdot ex-
ists in the same cell, according to the valuevi which
is equal to 1 when the inkdot exists. Astep of M
consists of reading one symbol from the input tape,
moving the input head in specified directiond ∈ {
east,west,south,north,up,down,future,past,no move},
and extering a new state, in accordance with the next
move relation. In this paper, we assume that reader
is familiar with the concept ofalternation [8,29-
31,40,41,48]. In necessary, see [3].

Fig. 2: Four-Dimensional Multi-Inkdot Finite Au-
tomaton.

Definition 2.3. Let M=(Q,U ,q0,F ,Σ,{0,1},δ) be
a 4-AIk. An extended input tape x̃ of M is a

four-dimensional tape obtained from the original tape
x such that (1)x̃∈(Σ×{0,1}k)(4), (2) l1(x̃)=l1(x),
l2(x̃)=l2(x), l3(x̃)=l3(x) and l4(x̃)=l4(x),
and (3) for each i1, i2, i3, i4 (1≤i1≤l1(x̃),
1≤i2≤l2(x̃), 1≤i3≤l3(x̃), 1≤i4≤l4(x̃)), x̃(i1,
i2, i3, i4)=(x(i1,i2,i3,i4), v), wherev∈{0,1}k. The
initial input tape x0 of M is an extended input
tapex̃ such that for eachi1, i2, i3, i4 (1≤i1≤l1(x̃),
1≤i2≤l2(x̃), 1≤i3≤l3(x̃), 1≤i4≤l4(x̃)), x̃(i1, i2, i3,
i4)=(x(i1, i2, i3, i4), 0), where0=(0,0,...,0).

Definition 2.4. Let M=(Q,U,q0,F ,Σ,{0,1},δ) be a 4-
AIk. A configuration ofM onx is an element of

(Σ×{0,1}k)(4)×(Q×{0,1}k)×N4,

whereN is the set of all natural numbers. The first
componenet of configurationc=(x̃,(q,u),(i1, i2, i3,
i4)) is an extended input tape ofM . The second com-
ponent ofc is an extended state ofM . The third
component ofc is the input head position ofM . If
q is the state associated with configurationc, thenc
is said to be theuniversal (existential, accepting)
configuration if q is a universal (existential, accept-
ing) state. Theinitial configuration of M on x is
IM (x)=(x0,(q0,1),(1,1,1,1)), where1=(1,1,...,1).

Definition 2.5. GivenM=(Q,U ,q0,F ,Σ,{0,1},δ), we
write

c `M c′

and sayc′ is asuccessor of c if configurationc′ fol-
lows from configurationc in one step ofM , accord-
ing to the transition rulesδ. `∗M denotes the reflexive
transitive closure of̀ . A computation path of M on
x is a sequence

c0 `M c1 `M · · · `M cn (n≥1).

A computation tree of M is a nonempty labeled tree
with the properties,

(1) each nodeπ of the tree is labeled tree with a con-
figurationl(π),

(2) if π is an internal node (a nonleaf) of the tree,
l(π) is universal and

{c | l(π) `M c}={c1,...,ck},

thenπ has exactlyk childrenρ1,...,ρk such that
l(ρi)=ci,

(3) if π is an internal node of the tree andl(π) is
existential, thenπ has exactly one childρ such
that

l(π) `M l(ρ).
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An accepting computation tree of M onx is a finite
computation tree whose root is labeled withIM (x)
and whose leaves are all labeled with accepting con-
figurations. We say thatM accepts x if there is an
accepting computation tree ofM on inputx.

Definition 2.6. Let M be a 4-NIk andx be an in-
put tape forM . Suppose thatM acceptsx and uses
up all of thek inks. Then, there exists an accepting
computation pathPM (x)=c0 `M c1 `M · · · `M cf

(f≥0), wherec0 is the initial configuration andcf is
the accepting configuration ofM onx. FromPM (x),
we can extract a sequence ofk different extended in-
put tapesx0,x1,...,xk, wherex0 is the initial extended
input tape ofM .

By “4-DIk” (“4-NIk”, “4-UIk”) we denote a four-
dimensional deterministick-inkdot finite automaton
(a four-dimensional nondeterministick-inkdot finite
automaton, a four-dimensional alternatingk-inkdot fi-
nite automaton with only universal states). A four-
dimensional alternating finite automaton is a special
case of four-dimensional alternating multi-inkdot au-
tomaton, i.e. it is equivalent to 4-AI0. By “4-AF”(“4-
DF”,“4-NF”, “4-UF”) we denote a four-dimensional
alternating finite automaton (a four-dimensional de-
terministic finite automaton, a four-dimensional non-
deterministic finite automaton, a four-dimensional al-
ternating finite automaton with only univesal states).
Let T [M ] be the set of four-dimensional tapes ac-
cepted by a machineM , and the class of sets accepted
by 4-AIk’s is defined as follows:

£[4-AIk]={T | T=T (M) for some 4-AIkM}.
£[4-DIk], £[4-NIk] , £[4-UIk] , £[4-AF] , £[4-DF] ,
£[4-NF] , £[4-UF] and etc. are defined in the same
way as£[4-AIk].

At the end of this section, we give set-theoritic
notations involved in our discussion. For as setT of
four-dimensional tapes, the complement ofT is de-
noted byT̄ . Define co-£ ={T̄ | T∈ £}.

3 Basic Properties
In this section, we briefly deal with some basic ac-
cepting powers of four-dimensional multi-inkdot fi-
nite automata. We first investigate the properties of
deterministic version of inkdot automata, and show
that deterministic inkdot automata are equivalent to
ordinary deterministic finite automata. That is, no hi-
erarchy exists based on the number of inkdots for de-
terministic case.

Theorem 3.1.£[4-DF ] = Uk≥1£[4-DIk].

Proof: The simulation method of Ref.[43], which
only treats one-ink machines, is also valid in our four-
dimensional case. We recall this technique for the be-
ginning:4-DF M ′ behaves in the same way as4-DI1

M until it uses its own ink. WhenM will drop its ink,
M ′ memorizes the input symbol on the current cell
without ink drop. After that,M ′ continue to simu-
late M , except whenM ′ encounters the same input
symbol as in the finite control. When this happens,
M ′ memorizes the current state ofM and performs
depth-first backward search[43] of the computation
of M toward the initial configuration to test whether
the encountered cell was the place of ink drop. If
M ′ reaches the initial configuration ofM , it then per-
forms forward simulationof M until it will drop the
ink. After that,M ′ continue to simulateM from the
memorized state as if there is an ink at this position.
Based on the idea above, we will prove the theorem by
induction on the number of inkdots. That is, assum-
ing that4-DF ’s can simulate4- DIk’s, we will show
that a4-DIk M ′ can simulate the given4-DI(k + 1)
M . BeforeM drops thek + 1st ink, when each time
M ′ encounters any of the previously dropped inks, it
memorize the pair of the ink name and the current
state to use just like the initial configuration in the
case ofk = 1 described above. IfM would drop the
k + 1st ink, M ′ memorizes the current input symbol
in the finite control. After that,M ′ continues to sim-
ulateM , except whenM ′ encounters the same input
symbol as the recorded symbol in the finite control.
In this case,M ′ performs depth-first backward search
and forward simulation ofM between the current con-
figuration and the most recent configuration that en-
countered the inkdots represented by the newest pain
in the finite control. □

Next, we investigate the properties of nondeter-
ministic version of inkdot automata, and show that
nondeterministic 1-inkdot automata are more power-
ful than ordinary nondeterministic finite automata.

Lemma 3.1. Let T1 = {x ∈ {0, 1}(4) | ∃m ≥
1 [l1(x) = l2(x) = l3(x) = l4(x) = 2m
＆ ∀i1,∀i2, ∀i3,∀i4 (1 ≤ i1 ≤ 2m, 1 ≤ i2 ≤
2m, 1 ≤ i3 ≤ 2m, 1 ≤ i4 ≤ m)[x(i1, i2, i3, i4) =
x(i1, i2, i3, i4 + m)]]}. Then (1) T̄1 ∈ £[4-NI1], (2)
T̄1 /∈ £[4-AF ].

Proof: (1) a3-NI1 M acceptingT1 acts as follows.
Given an input tapex with l1(x) = l2(x) = l3(x) =
l4(x) = 2m, M firstly scans thei4th cubic array from
the top plane to the bottom plane in a cubic array, from
the northmost row to the southmost row in a plane,
and from the westmost cell to the eastmost cell in a
row. This sequence of moves is called asystematic
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scan. M guessessome position(i1, i2, i3, i4) such
thatx(i1, i2, i3, i4) 6= x(i1, i2, i3, i4 + m) in the sys-
tematic scan. Then, it drops the ink at(i1, i2, i3, i4)
and goes to the southeastmost boundary of thei4

th cu-
bic array, i.e. the position(2m+1, 2m+1, 2m+1, i4)
in the systematic scan. Next,M moves its input
head down by using information of number ‘m’ un-
til M reaches the northwestmost boundary of the top
plane of the(k + m)th cubic array, i.e. the position
(0, 0, 0, k + m). Then, while going to the southeast-
most boundary of the(k+m)th cubic array in the sys-
tematic scan, it existentially branches two machines,
one of which continues to go to the southeastmost
boundary, and the other of which memorizes the in-
put symbol8b′ on the current position and goes up-
ward to check the inequalityb 6= (i1, i2, i3, i4). If this
check succeeds, then it enters an accepting state. Oth-
erwise, it halts in a non-accepting state. It is clear that
T (M) = T1. (2) By using the same idea in the proof
of part (2) of Lemma 5.1 in [43], we can easily show
thatT̂1 is not in£[4-AF ]. □

From Lemma 3.1 and the trivial fact£[4-NF ] ⊆
£[4-AF ], we can get

Theorem 3.2.£[4-NF ] ( £[4-NI1].

We next investigate the properties of alternating
inkdot automata which have only universal states.

Theorem 3.3.£[4-UF c] ( £[4-UI1].

Proof: In the proof of Part (1) of Lemma 3.1, the con-
structed4-NI1 M acceptingT̄1 always halts, i.e., it
never enters a loop for any time for any input. Based
on this fact and by exchanging the existential states of
M to universal states, non-accepting states to accept-
ing states, and accepting states to non-accepting halt-
ing states, we can obtain a4-UI1 acceptingT1. On
the other hand, from the trivial fact£[4-UF ] ⊆ £[4-
AF ] and Part (2) of Lemma 3.1, we get the desired
resultT1 /∈ £[4-UF c]. □

Theorem 3.4. co-£[4-UIk] ⊆ £[4-NI(k + 1)], for
eachk ≥ 0.

Proof: Without loss of generality, we assume that,
when a4-UIk M wants to reject a given inputx, it
always enters a loop. From this assumption, we can
say thatM does not acceptx iff there exists a compu-
tation pathPM (x) such thatc0 `M c1 `M · · · c `M

· · · `M c, wherec0 is the initial configuration and the
cyclec `M · · · `M c represents a loop. (Given aM ,
we writec `M c′ and sayc′ is asuccessor of c if con-

figurationc′ follows from configurationc in one step
of M , according to thetransaction rules.) To simu-
late the complement ofM , a 4-NI(k + 1) guesses
PM (x) by using its existential states and halts in a
non-accepting state whenM will enter an accepting
state.M ′ usesk inks for the trace of the prefix sub-
pathc0 `M · · · `M c in whichM consumes at mostk
inks. Thek+1st ink ofM ′ is used for the detection of
the loopc `M · · · `M c. Note thatM ′ never enters an
accepting state if any computation ofM has no loop.

□

Corollary 3.1. co-£[4-UF ] ⊆ £[4-NI1].

Finally, we investigate the properties of alternat-
ing inkdot automata which can use both universal
states and existential states of finite control. We have

Theorem 3.5. co-£[4-AIk] ⊆ £[4-AI(k + 1)], for
eachk ≥ 0.

Proof: Without loss of generality, we assume that,
when a4-AIk M rejects the given inputx, it always
enters a loop. From this, we can say thatM does
not acceptx iff there exists a non-accepting compu-
tation tree which has no leaf, i.e. any path descendant
from the root of which enters an infinite loop. At each
step ofM , a 4-AI(k + 1) M ′ existentially branches
into two machines, one of which drops an ink for de-
tecting a loop starting from the current configuration
of M . Both machines then continue further simula-
tion of M under the conditions such that the universal
and existential states ofM are exchanged with each
other inM ′. Of course, whenM halts in an accepting
state,M ′ halts in a non-accepting state. If there ex-
ists a non-accepting (infinite) computation tree ofM ,
then there exists an accepting finite computation tree
of M ′. Conversely, if there exists an accepting com-
putation (finite) tree ofM , then there exists a non-
accepting finite computation tree ofM ′. Note thatM ′
usesk inks until M enters a loop and uses one ink to
verify the existence of a loop. □

Corollary 3.2. co-£[4-NF ] ∪ co-£[4-UF ] ⊆ £[4-
AI1].

4 Recognizability

Before proceeding to the main subject, we need the
following definition.

Definition 4.1. Let x be a four-dimensional tape over
{0,1}(4). A 1−component of x is the maximal subset
P of N×N×N×N satisfying the following :
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(i) for each(i1, i2, i3, i4)∈P , 1≤i1≤l1(x), 1≤i2≤
l2(x) , 1≤i3≤l3(x), 1≤i4≤l4(x) andx(i1, i2, i3
, i4)=1;

(ii) for any (i1, i2, i3, i4), (i′1, i′2, i′3, i′4)∈P , there
exists a sequence(i1.0, i2.0, i3.0, i4.0), (i1.1, i2.1,
i3.1, i4.1),..., (i1.n, i2.n, i3.n, i4.n) of elements in
P such that(i1.0, i2.0, i3.0, i4.0)=(i1, i2, i3, i4),
(i1.n, i2.n, i3.n, i4.n)=(i′1, i′2, i′3, i′4) and|i1.j −
i1.j−1|+ |i2.j − i2.j−1|+ |i3.j − i3.j−1|+ |i4.j −
i4.j−1| ≤1 (1≤j≤n).

A tapex∈{0, 1}(4) is calledconnected if there
exists exactly one 1-component ofx. We denote the
set of all the four-dimensional connected tapes byTc

[49].

Lemma 4.1. Let M be a 4-NIk andQ be the set of
states ofM . Let x be an input tape forM . Sup-
pose thatM acceptsx and uses up all of thek inks.
For any accepting computation pathPM (x) of M on
x, the number of visits to the position (i1, i2, i3, i4)
on xl of PM (x) is at most|Q| for any l(0≤l≤k) and
for any (i1, i2, i3, i4) [0≤i1≤l1(x)+1, 0≤i2≤l2(x)+1,
0≤i3≤l3(x)+1, 0≤i4≤l4(x)+1].

Proof : Suppose that, on somexl of PM (x)=c0,c1,
...,cf , M visits some position (i1, i2, i3, i4) more
than |Q| times. Then, there exists a configurationc
in PM (x) such thatc0 `M · · · c `M · · · c `M · · · `M

cf . By removing the subpath (a cycle) fromc, up to
c, we get another valid accepting computation pathc0

`M · · · c `M · · · `M cf which has no repetition ofc.
¤

In the Lemma below, we will show that the four-
dimensional inkdot finite automata can be simulated
by “four-dimensional nondeterministic on-line
tessellation acceptors (4-NOTA)”. The 4-NOTA is
a restricted type of cellular automaton in which cells
do not make transitions at every time step : rather, a
transition “wave” passes once diagonally across the
array. We say that a 4-NOTAM accepts an input
x if the resulting state of the southmost and east-
most bottom automaton (accepting cell) of the cel-
lular space is a predetermined accepting state [12].
To simplify the proof, we adopt “four-dimensional
nondeterministic multipass on-line tessellation
acceptor (4-NMPOTA)” instead of 4-NOTA itself
[13]. A 4-NMPOTA is a multi-wave version of 4-
NOTA. In each pass, the 4-NMPOTA outputs a four-
dimensional tape consisting of the states of the finite
state machines resulting from the current transition
wave on the cellular space and regards it as the input
in the next pass. The 4-NMPOTA repeats such passes
until its accepting cell enters an accepting state. In this

paper, we will use cellular automata such as 4-NOTA
and 4-NMPOTA, but omit their rigorous definitions.
If necessary, see [12,13].

It is known that two-dimensional nondetermin-
istic multipass on-line tessellation acceptors whose
number of passes are restricted to some con-
stant k have the same power as ordinary two-
dimensional nondeterministic on-line tessellation ac-
ceptors [10,13,14,21,61]. This result can be extended
to the four-dimensional case as following lemma,
where let 4-NMPOTA(k) be a four-dimensional non-
deterministic multipass on-line tessellation acceptors
whose number of passes are restricted to some con-
stantk.

Lemma 4.2.£[4-NOTA]=∪k≥1£[4-NMPOTA(k)].

Lemma 4.3.∪k≥0£[4-NIk] ⊆£[4-NOTA].

Proof : Let M be a 4-NIk andx be an input for
M . From Lemma 3.1, we can assume that for any
l(1≤l≤k), the number of visits ofM to any position
(i1, i2, i3, i4) of x′ is bounded by a constant. We con-
struct a 4-NMPOTAM ′ with k+1 passes accepting
T (M ) as follows : At the first passM ′ simulatesM
from the initial configuration to the configuration in
which M drops the first ink (of course, the position
of the drop must be guessed simultaneously). In gen-
eral, at thelth pass,M ′ simulatesM from the con-
figuration in whichM drops the (l−1)st ink to the
cinfiguration in whichM drops thelth ink. At the
last (k+1)st pass,M ′ simulatesM from the configu-
ration in whichM drops thekth ink to an accepting
configuration (if any). In each pass, the simulation
is done by the same method as in the proof of the fact
that two-dimensional nondeterministic finite automata
can be simulated by two-dimensional nondeterminis-
tic on-line tesellation acceptors described in [12]. It is
clear thatT (M ′)=T (M ). From this and Lemma 4.2,
the lemma follows. ¤

Theorem 4.1.Tc /∈∪k≥1£[4-NIk].

Proof : It is shown in [38] thatTc is not recognizable
by three-dimensional nondeterministic on-line tessel-
lation acceptors. By using the same technique, we can
get the fact thatTc /∈£[4-NOTA]. It is obvious from
the fact and Lemma 4.3 that the theorem holds.¤

Note 4.1. From Theorem 4.1 and the fact thatTc is
recognizable by a three-dimensional alternating finite
automaton [49], it follows that£[4-NIk] (£[4-AIk]
for any integerk.

We then show that the setTc is recognizable by a
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4-UI1.

Theorem 4.2.Tc ∈£[4-UI1].

Proof : We can get the desired result by parallelizing
the raster-scan method of deterministic one marker
automaton described in [43]. Roughly speaking, A 4-
UI1 M checks whether the symbols “1”’s in each row
on each plane of a given inputx∈{0,1}(4) are all con-
nected : To this end, it must be checked whether any
two consecutiveruns of “1”’s in each row on each
plane are connected to each other. LetP andQ be
the last (eastmost) point of a run and the first (west-
most) point of the next run, respectively. WhenM
reachesP , it universally branches into two machines,
one of which goes on to check the connectedness of
the next two consecutive runs, and the other of which
acts as follows. It first drops the ink there (pointP )
and then follows the borderβ defined byP and the
symbol “0” immediately succeeding it. At each move
aroundβ, if M is at a pointQ′ that has a “0” on its
west, it scans to the west until it hits a symbol “1” (or
reaches a boundary symbol “]”). If this position has
the ink on it, thenM knows thatQ′ is Q, so thatQ is
connected toP , and thus it enters an accepting state.
Otherwise, it returns toQ′ and resumes the border fol-
lowing. If the border following is completed and it
reaches the ink atP again, it knows thatQ is not con-
nected toP , so that the “1”’s inx is not connected,
then it halts in a non-accepting state. The remaining
task that “1”’s in two consecutive rows on each plane
and two censecutive planes in a given input are con-
nected each other is done in the same way as the veri-
fication described above of the connectedness of pairs
of consecutive runs of each row. ¤

Finally, we show that the set̄Tc is recognizable by
a 4-NI1.

Theorem 4.3.T̄c ∈£[4-NI1].

Proof : In the previous theorem, the constructed 4-
UI1 M acceptingTc always halts, i.e., it never enters
a loop for any time for any input. Based on this and
by exchanging the universal states ofM for existential
states, non-accepting states for accepting states and
accepting states for non-accepting halting states, we
can obtain a 4-NI1 acceptinḡTc. ¤

Corollary 4.1. T̄c ∈£[4-NOTA].

5 Conclusions
In this paper, we mainly investigated the recognizabil-
ity of four-dimensional connected pictures by alter-
nating multi-inkdot finite automata, and showed some
properties of them. In Section 3, we briefly showed
some basic accepting powrers of four-dimensional
multi-inkdot finite automata. In Section 4, we show
some abilities to recognize the topological proper-
ties of four-dimensional connected pictures. It will
be interesting to investigate how much space is nec-
essary and sufficient for four-dimensional alternating
(nondeterministic, deterministic) Turing machines to
simulate four-dimensional alternating (nondetermin-
istic, deterministic) multi-inkdot finite automata, and
the recognizability about the topological properties of
digital pictures such as the interlocking component
which is a chainlike connectivity. We would like to
hope that some unsolved open problems concering
this paper will be explicated in the near future.
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