
A General Approach to Off-line Signature Verification 
 

BENCE KOVARI, ISTVAN ALBERT, HASSAN CHARAF 

Department of Automation and Applied Informatics 

Budapest University of Technology and Economics 

1111. Budapest, Goldman Gyorgy ter 3. 

HUNGARY 

beny@aut.bme.hu    http://www.aut.bme.hu/signature 
 

 

Abstract: - Although automatic off-line signature verification has been extensively studied in the last three 

decades, there are still a huge number of open questions and even the best systems are still struggling to get 

better error rates than 5%. This paper targets some of the weak spots of the research area, which are 

comparability, measurability and interoperability of different signature verification systems. After delivering an 

overview of some of the main research directions, this paper proposes a generic representation of signature 

verifiers. In the first part of the paper it is shown how existing verification systems compare to the generic 

model, detailing the differences and their resolutions. In the second part a signature verification framework is 

introduced, which was created based on the generic model. It is demonstrated how existing algorithms and even 

an existing signature verifier can be modularized and modified to allow an execution through the framework. 

Finally the benefits of the model are outlined including the unified benchmarking, comparability of different 

systems and the support for distributed software architectures like SOA. 

 

 

Key-Words: - signature verification; off-line; unified model; component based; loose coupling 

 

1 Introduction 
Signature recognition is probably the oldest 

biometrical identification method, with a high legal 

acceptance. Even if handwritten signature 

verification has been extensively studied in the past 

decades, and even with the best methodologies 

functioning at high accuracy rates, there are a lot of 

open questions. The most accurate systems almost 

always take advantage of dynamic features like 

acceleration, velocity and the difference between up 

and down strokes. This class of solutions is called 

on-line signature verification. However in the most 

common real-world scenarios, this information is 

not available, because it requires the observation 

and recording off the signing process. This is the 

main reason, why static signature analysis is still in 

focus of many researchers. Off-line methods do not 

require special acquisition hardware, just a pen and 

a paper, they are therefore less invasive and more 

user friendly. In the past decade a bunch of solutions 

has been introduced, to overcome the limitations of 

off-line signature verification and to compensate for 

the loss of accuracy. Most of these methods have 

one in common: they deliver acceptable results 

(error rates around 5-10%) but they have problems 

improving them. This paper presents a solution to 

address the problem of improvement and thereby 

possibly break the 5% barrier. First an overview is 

given of different architectures used for the purpose 

of signature verification. It is shown that to isolate 

the weaknesses of the different approaches a 

comparison of the verification methods would be 

necessary. However this is almost impossible, due 

to the architectural differences between signature 

verification systems. By combing the beneficial 

aspects of the different systems a new, component 

based architecture is presented allowing a better 

comparison and partial benchmarking of the 

employed algorithms. Finally, some applications for 

the model are demonstrated. 

 

 

2 Architecture of Signature Verifiers 
Since the first survey paper [1] (dating back to 

1989) several surveys like [2] [3] [4] and journal 

special issues like [5] have been dedicated to the 

comparison and evaluation of signature verification 

methods. While trying to give a balanced overview 

of the field they all face the same problem. Namely 

that the evaluation of signature verification 

algorithms, as for many pattern recognition 

problems, raises several difficulties, making any 

objective comparison between different methods 

rather delicate and in many cases impossible [3]. It 

is behind the scope of this paper, to discuss the 

technical details and flaws of the unique methods. 

WSEAS TRANSACTIONS on COMPUTERS
 

Bence Kovari, Istvan Albert 
 and Hassan Charaf

ISSN: 1109-2750 1648 Issue 10, Volume 7, October 2008



But as an alternative, the architecture of some main 

verification systems is examined in the following 

subsections. 

The majority of signature verification methods 

can be divided into five main phases: acquisition, 

preprocessing and feature extraction, processing and 

classification (although these steps are not always 

separable).  In the off-line case data acquisition 

means simply the scanning of a signature.  This is 

followed by preprocessing whereby the images of 

signatures are altered (cropped, stretched, resized, 

normalized etc.) to create a suitable input for the 

next phase.  The next step is feature extraction, the 

process of identifying characteristics, which are 

inherent to the particular person. The processing 

phase is mainly based on a single comparison 

algorithm, which is able to calculate the distance 

function between signature pairs. Using these 

results, the classification phase is able to make a 

decision, whether to accept or reject the tested 

signature. This coarse separation of processing 

phases is already an extension to [6] which does not 

separate feature extraction from processing and 

classification. In our model even further extensions 

will be necessary to allow a better control of the 

dataflow. In the following subsections these 5 steps 

will be explained in detail and matched to the steps 

of several other signature verifiers ( [7] [8] [9] [10] 

[11] [12] [13]). 

 

 

2.1 Acquisition 
In general, the acquisition step converts a number of 

paper sheets to a set of digital images, each of them 

containing one or more signatures. It is essential to 

note, that scanning paper sheets with written 

signatures is not the only way to acquire the digital 

images. As noted in [14] samples can also be 

generated from on-line databases or by altering 

Fig.1. A typical off-line verifier with a simple threshold classifier (source: [7]) 

         
 

Fig. 3. Multiple features are used to allow a refined decision (sources: [8] left [9] right) 

    
 

Fig. 2. Despite of the different employes algorithms and the various grouping of functions, the basic 

structure of a signature verifier is the same (sources: [13] left [12] middle [11] right) 

WSEAS TRANSACTIONS on COMPUTERS
Bence Kovari, Istvan Albert 
 and Hassan Charaf

ISSN: 1109-2750 1649 Issue 10, Volume 7, October 2008



existing signatures [15]. Of course these later 

methods cannot be used to validate the whole 

signature verification system; however they usually 

contain valuable additional information (like the 

correct order, direction and position of strokes) 

which can be used to benchmark separate parts of 

the system. In most of the observed systems the 

digitalized images of the signatures are assumed to 

be already present, therefore the acquisition phase is 

usually not a part of the system diagrams (Fig. 1-4) 

though they are always explained in the 

corresponding papers. 

 

 

2.2 Preprocessing 
The preprocessing phase is a sequence of image 

transformations creating the best possible input for 

the feature extraction algorithms. In on-line 

signature verifiers the acquired data is usually 

already in an optimal form for further processing, 

therefore this phase is superfluous [16] [17] (see 

also Fig. 4). In the off-line preprocessing it is 

usually necessary to eliminate the noise introduced 

during the acquisition phase. Some of the 

preprocessing steps, like noise filtering, rotation 

normalization, position normalization induce 

minimal information loss, while others, like 

binarization, morphological closing or size 

normalization can cause the loss of valuable 

information. Thus the second class of preprocessing 

steps is only applied where the feature extraction 

algorithm can gain direct advantages from them. 

Although preprocessing is used in all examined off-

line verifiers, only three of them ( [7] [12] [13]) 

display it on their system diagram. 

 

 

2.3 Feature extraction 
Feature extraction is with great certainty the most 

ambiguous processing phase. First let us make some 

definitions clear. “An image feature is a 

distinguishing primitive characteristic or attribute of 

an image. Some features are natural in the sense that 

such features are defined by the visual appearance 

of an image, while other, artificial features result 

from specific manipulations of an image […] Image 

features are of major importance in the isolation of 

regions of common property within an image 

(image segmentation) and subsequent identification 

or labeling of such regions (image classification).” 

[18]. Therefore feature extraction is the location and 

characterization of features, and generally it should 

not be confused with the later processing phases. 

Contrary to preprocessing which is defined 

sequence of transformation steps altering the 

original images, feature extraction is a set of 

(usually) independent functions returning a 

characteristic feature set for their input image. 

Several systems (Fig. 2) take advantage of multiple 

features to improve the quality of the input provided 

for distance calculations and classifiers.  

Feature extraction is correctly isolated in Fig. 1 

and Fig. 2, but the system representations shown in 

Fig. 3 are ambiguous. 

 

 

2.4 Processing 
The processing phase differs from the previous 

ones, in that it can (and has to) work with multiple 

images. First a matching is defined between the 

features of the different images, then a distance (or 

similarity) measure is calculated based on the 

corresponding features and finally this measure is 

normalized to make it a suitable input for a 

classifier. All of the three steps can be identified in 

Fig. 1 while the other systems do not mention all of 

them. This is only a side effect of the interpretation 

of phases, for example the feature extraction boxes 

usually also represent the processing phase (Fig. 3) 

and score normalization is sometimes considered to 

be part of the classification phase. 

 

Fig. 4. Global statistics can help to interperet local information (source: [10]) 

WSEAS TRANSACTIONS on COMPUTERS
Bence Kovari, Istvan Albert 
 and Hassan Charaf

ISSN: 1109-2750 1650 Issue 10, Volume 7, October 2008



 

2.5 Classification 
In the classification phase a single classifier is 

trained with a set of original signatures. Based on 

the training, the classifier can make decisions about 

the acceptance or rejection of a single test signature.  

It should be noted, that several simplifications 

were used to get a uniform view of the different 

approaches. This “single classifier” can of course 

represent a composite system consisting of different 

local (Fig. 3) and global (Fig. 4) experts allowing 

the decision to be made with a deep understanding 

of the context. In some other cases there are 

classifiers used, to improve the feature extraction or 

distance calculation phase (Fig. 4). These should not 

be confused with the classification phase which in 

that scenario is a single threshold decision. 

While it is uncommon in literature, the decision 

of the classifier is not limited to a binary decision. 

Beside the values “accept” and “reject” a third value 

“uncertain” is introduced in some works, usually 

combined with a confidence value. 

 

 

3 Proposed model 
Based on the observations of the previous section 

generalized model for off-line signature verifiers is 

proposed (See Fig. 5).  

 

TestingTraining

Acquisition Acquisition

Preprocessing Preprocessing

Feature extraction Feature extraction

Feature matching

Distance calculation

Classifier training

Feature matching

Distance calculation

Classification

 
 

Fig. 5 Generalized view of an off-line signature 

verification system 

 

The model combines the advantages of the 

previously introduced systems and their 

representations. Similarly to [11] and [13] it clearly 

isolates the path of the training set (original 

signatures) from the path of test signatures while 

traversing the same modules of the system. It 

incorporates the 5 phases of verification, where 

processing was further broken into feature matching 

and distance calculation steps to improve support 

for modularity. It is also interesting to note, that the 

two steps of the classifier were also partitioned: the 

classifier is trained during the training phase, only 

using the original signatures from the reference 

database, and classification decisions about test 

signatures will be made based on the training during 

the testing phase. 

The model allows a direct top down data flow 

without ever referencing a previous module. This 

makes a loose coupling and individual testing of the 

components possible. 

As noted in the previous section, individual 

phases can consist of multiple sequentially or 

parallel coupled subcomponents, therefore five of 

the six states are marked as composite states. 

 

 

4 Model validation 
To validate our model we created a signature 

verifier framework and implemented several 

different modules. Although some of the modules 

correspond to our main research line, many of them 

were chosen randomly, based on other signature 

verification methods. Our thesis is that all of these 

methods can be implemented by strictly using our 

pipelined architecture. The next subsections first 

describe the framework itself then some of the 

modules are explained in detail. 

 

 

4.1 Signature verification framework 
The framework itself is a direct implementation of 

the model presented in Fig. 5. It coordinates the 

training and testing phases and provides 

benchmarking capabilities. Individual modules 

interact with the framework through the 

implementation of well defined interfaces.  

8 different interfaces are provided; each of them 

corresponds to one of the levels in Fig. 5. 

 

 

4.1.1 Interfaces and architecture 

By implementing the ITransformation (Fig 6. a.) 

interface, a module can provide one directional 

WSEAS TRANSACTIONS on COMPUTERS
Bence Kovari, Istvan Albert 
 and Hassan Charaf

ISSN: 1109-2750 1651 Issue 10, Volume 7, October 2008



image transformation capabilities, required by the 

preprocessing step of the model. Input and output 

are simple images. 

Unlike the preprocessing phase, the feature 

extraction consists of two separate interfaces. This 

allows separating the process of extracting feature 

information from a single signature 

(IFeatureExtraction, Fig. 6.b.) and to identify signer 

specific aspects, for which all signatures are 

required. This is not limited to graphical features. 

Features can also include any kind of general 

measures extracted from an image, like [19] or [20]. 

This is called the “model” of a signer, modules 

extracting these kind of information shuld 

implement the IModelFeatureExtraction interface.  

Similarly, when examining a signature, it can be 

tested both against a single original signature, and 

against the model of the signer. Another important 

aspect is the separation of the feature matching 

phase from the distance calculation. This means that 

corresponding features, like the same accent in 

different signatures has to be identified only once, 

thereby allowing the definition and calculation of 

several different similarity measures (distance 

functions) based on the same input. These can be 

performed both on signature and model level, which 

requires the introduction of 4 new interfaces 

(IFeatureMatching, IModelFeatureMatching, 

IComparison, IModelFeatureComparison).  

The framework calculates all possible matches 

and distance measures. For example if we have 10 

original signatures and one sample to examine, the 

framework creates 10*9=90 feature matches (every 

original signature is compared to the others) and 10 

model matches (every original signature is 

compared to the model) in the training phase. In the 

testing phase the sample signature is compared with 

each of the originals (10 feature matches) and with 

the model of the signer (1 model match). Distance 

measures are calculated for all of these matches and 

used as an input for the classifier. The classifier is 

the first component which has different behaviors in 

the training and the testing phases (the functionality 

of the other components is the same in both 

scenarios). All the distance measures calculated in 

the testing phase are used as an a input for the 

IClassifier.Train() method. This allows the classifier 

to analyze the data and (for example calculate the 

weights corresponding to the different features). 

This step could be implemented by training a neural 

network or a hidden Markov model based classifier. 

After the training, the test results are feeded to the 

component by using the IClassifier.Test() method. 

The response should be a real number in the [0..1] 

interval, where 1 corresponds to a definitely valid, 

and 0 corresponds to a definitely forged signature. 

Values between the two boundaries represent the 

uncertainty of the response.  

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

 
g) 

 
h) 

Fig. 6. Main interfaces in the signature verifier 

framework 

WSEAS TRANSACTIONS on COMPUTERS
Bence Kovari, Istvan Albert 
 and Hassan Charaf

ISSN: 1109-2750 1652 Issue 10, Volume 7, October 2008



4.1.2 Evaluation of the framework 

One of the main goals of modern software design is 

to keep the cohesion (within a component) high and 

the coupling (between components) low [21]. As 

stated above, state of the art signature verifiers 

mostly lack these characteristics. Although they 

usually isolate some of the main modules (like 

preprocessing), the core is often a highly coupled 

composition of different components, often 

incorporating loops and other complex constructs in 

the information flow. Although this is not 

necessarily a design flaw, this makes the objective 

evaluation and the partial comparison of different 

systems hard and the simultaneous development of 

modules almost impossible. 

Our model reduces coupling to a minimal level. 

Only the signature files and their correspondent 

metadata information are passed between 

components (later these are replaced by the 

matching and the distance information). The input 

and output parameters of the interface functions are 

restricted to the minimum necessary level without 

limiting the functionality of the modules. 

The data flow is well defined and strictly follows 

Fig. 5. That means a straight flow, without any 

loops among the processing phases.  

This structure allows the independent 

development and testing of the different modules. 

Although dependencies are possible (e.g. a distance 

calculation module may depend on a specified 

matching module) the components implementing 

the same interfaces are mainly interchangeable. In 

addition, several components (e.g. several distance 

calculation algorithms) can be used simultaneously 

to create a more sophisticated input for the 

classification module. 

In next subsections examples are shown, how 

this model can be applied to aid the implementation 

and testing of various signature verification tasks. 

 

 

4.1.3 A signature verification system based on 

stroke end directions 

In [22] the relative direction and location of stroke 

ends are used to compare signatures. This example 

demonstrates how our framework can be applied to 

implement the system. There is no change in the 

acquisition phase. Signatures are scanned with 

600dpi resolution, resulting in an average image size 

of 1000*250 pixels. Similarly to the resolution used 

in the original system. 

Signature preprocessing is performed, by 

implementing the ITransformation interface. 4 

different modules are created and used in the system 

in a pipeline. 

1. Noise filtering: A noise filter is applied to 

remove the noise caused by the scanner. 

2. Cropping: The image is cropped, to the 

bounding rectangle of the signature. 

3. Binarization: Transformation from color to 

grayscale, and finally to black and white. 

4. Thinning: Thinning the black and white 

image results always in a huge information 

loss. Therefore it is essential to select a 

thinning algorithm which gives a good 

abstraction of the original signature, with a 

low noise level. We selected an algorithm, 

which removes pixels so that an object 

without holes shrinks to a minimally 

connected stroke, and an object with holes 

shrinks to a connected ring halfway between 

each hole and the outer boundary [23]. 

 

Once the preprocessing has finished, feature 

extraction can begin. The IFeatureExtraction 

implementation performs the identification of the 

endpoints of strokes. Because of the thinning, these 

can be defined as pixels with one single neighbor 

connected. To help improve the robustness of the 

later processing algorithms, endpoints are also 

characterized by the direction of their corresponding 

strokes. Direction vectors are calculated from the 

first 10 stroke pixels next to the attached endpoint 

(Figure 7).  

There are two side effects of the thinning 

algorithm which should be noted here.  

 Rapid changes in pen angle often result in 

falsely detected endpoints. Although this 

reduces the quality of our “abstraction” but it 

does not reduce the quality of our matching 

algorithm because such changes in angle are 

as characteristic as real stroke endpoints. 

 Connection points will always have three 

branches. This property only simplifies our 

mathematical model. 

  
Fig. 7. Endpoints are represented by their location and 

direction 

 

Next, an algorithm must be defined to identify 

the corresponding endpoints in two signatures. This 

is done through the implementation of the 

IFeatureMatching interface.  

WSEAS TRANSACTIONS on COMPUTERS
Bence Kovari, Istvan Albert 
 and Hassan Charaf

ISSN: 1109-2750 1653 Issue 10, Volume 7, October 2008



The simplest procedure for giving the 

correspondence is the Iterative Closest Point 

algorithm [24], which matches two clouds of points. 

It estimates the transformation (translation, rotation) 

between the coordinates of points on two images 

iteratively. 

 

1. Initialize: 

a. Define P  point set as 0P  and set k  

iteration variable to 0 

2. Iteration: 

a. Find the new point set kQ  as the 

closest points on the image from the 

kP  

b. Find the optimal rigid 

transformation T  from kP  to kQ  

c. Calculate kk PTP 1  

3. If the distance metric 1kk dd , then 

terminate (  is a predefined threshold 

value) 

 

As an extension of the spatial relations methods, 

the correspondence of the features can be estimated 

using the properties above. It can be done through 

the following metrics: 

 absolute distance from an appropriate 

reference point 

 orientation of the above distance vector 

 and the own properties of the features (at the 

endpoints this is an angle compared to 

horizontal axe, at junctions there are three 

angles compared to the horizontal direction, 

etc.) 

The algorithm runs cyclically (like the Iterative 

Closest Point algorithm), it calculates the weighted 

distances of above metrics and changes the 

reference point in every loop. For the first iteration, 

the appropriate reference point can be simply the 

center of gravity (COG) in both images. In the next 

loops new reference points are selected, as the pair 

of points with the smallest distance. 

 
Fig. 8. Correspondence between “a” letters 

 

  
Fig. 9. Properties of the features (the arrows represent the 

position and orientation of endpoints in a signature). 

 

A simplified version of the above algorithm can 

also be used in IFeatureComparison to calculate the 

similarity between two signatures e.g. by summing 

the distances (shown as d in Fig. 9.) of the 10 

closest points.  

To fully reconstruct the original scenario, the 

IClassification interface should be realized by a 

simple threshold classifier. The comparison and 

classification process is similar to the process 

described in [25]. 

At this point we were able to reconstruct the 

whole signature verifier only by implementing the 

appropriate modules in our verification framework. 

 

 

4.1.4 Stroke extraction 

A main research direction of signature verification 

is the extraction of the original strokes from the 

image and thereby the reconstruction of the writing 

process of the original signature, as this will 

probably increase the accuracy of the system [26]. 

Or model allows the chaining of different 

modules. This means that the stroke extraction could 

be implemented as an IFeatureExtraction step thus 

upcoming feature extraction modules in the pipeline 

could take usage of the extracted stroke information. 

Normal thinning algorithms perform poorly on 

detecting strokes in signatures; therefore a 

specialized algorithm is used. 

First, some definitions must be introduced:  

Signature point: a pixel in the image, which 

belongs to the signature. 

 Stroke point: strokes are in fact polylines 

represented by the endpoints of their segments. 

These endpoints are called here stroke points 

Constant values 

 p: the average pen width (in pixels) 

 r: the radius of the scanning circle (in pixels) 

usually r = p * 2  

d: constant value, must be smaller than r usually 

d = r – 1 

Weighted middle point: given a series of points 

P1, P2…Pn, with corresponding intensity values of i1, 

i2…in, the weighted middle point Pm is the first 

point in the series where 

WSEAS TRANSACTIONS on COMPUTERS
Bence Kovari, Istvan Albert 
 and Hassan Charaf

ISSN: 1109-2750 1654 Issue 10, Volume 7, October 2008



n

k

k

m

k

k ii
11 2

1
>          (1) 

Free point: any pixel which has a minimum 

distance of d from any previously detected stroke 

point. 

Connected points are pixels which can be 

connected with a straight path consisting only of 

signature points 

 

Using the above definitions, the algorithm is 

defined as follows: 

 

Step 1. – Locate a signature point 

Going from the bottom to the top and from the 

left to the right, locate the first free signature point 

(P). This point is going to be the starting point of 

our next stroke. S:=P  

If there is no free point, then exit. 

 

Step 2. – Find connected stroke points 

Examine all points of a circle with a center S and 

radius r. More than p/2 adjacent signature points on 

the circle which are connected with S define arcs. 

Select the weighted middle points (A1, A2…An,) of 

these arks as possible stroke points. 

Deselect all Ai where Ai is not free, or not 

connected with S. (see Fig. 10.) 

 

Step 3. – Finish the stroke (if needed) and repeat 

 

If count(selected A) is 

 

0:  Finish the current stroke and go to Step 1 

1:  Take the ark point as the next stroke point  

(S:=A) and go to Step 2 

>1: Finish the stroke and begin two (or more)  

new strokes with starting point S, and take  

A1, A2… as the second point. Now follow 

Step 2 for each of them. 

 

Fig. 11. shows this logic in a form of a flow 

chart, a sample run of the algorithm is illustrated in 

Fig 12. 

 

  
Fig. 10: Demonstration of step 2 from the stroke 

extraction algorithm. The dark circle in the middle 

represents S, the dotted line is the scanning circle around 

S with radius r, the located arcs are shown in black 

around the circle. 

Count of neighbour points = 1

Locate a free signature 

point and begin a new 

stroke

Identify neighbour points 

(connected, free stroke 

points in a radius of r)

Finish the stroke

N

Append the point to the 

current stroke

Y

Count of  neighbour points = 0

Begin new strokes starting with the 

endpoint of the previous stroke 

followed by a neighbour point

N Y

 

 Fig. 11: Flowchart of the stroke extraction algorithm 

 

 

 

 

 

 

 

 

 
Fig. 12.: Sample run of the stroke extraction algorithm. 

Strokes are numbered and marked by the dark lines. 

Scanning circles are illustrated in light gray color. 22 

strokes have been located in the signature 

WSEAS TRANSACTIONS on COMPUTERS
Bence Kovari, Istvan Albert 
 and Hassan Charaf

ISSN: 1109-2750 1655 Issue 10, Volume 7, October 2008



5 Experimental results 
Although some of the above examples served only 

demonstration purposes, a framework, taking 

advantage of the generic signature verification 

model has already been realized and has been used 

for two years. It allowed students, to join our 

signature verification research without the need, to 

implement their own full featured signature 

verification systems. All they had to do was to 

implement a predefined interface. Currently the 

system supports the addition of  

custom preprocessing steps,  

custom feature extraction functions,  

custom feature matching functions,  

custom distance calculation functions, 

custom classifiers. 

 

The architecture allowed us to create benchmarks 

for each of the implemented components and 

thereby not only measure their effects on the global 

verification results, but to compare them to each 

other. An example of such a benchmark can be seen 

on Fig. 13. Currently, we have working modules 

performing the following tasks: 

 cropping of signatures 

 removing underlines from signatures 

 removing noise from signatures 

 removing  

 skeletonization 

 stroke extraction based on original signature 

 stroke extraction based on skeleton 

 extracting intensity information from strokes 

 extracting slopes 

 extracting baseline information 

 matching strokes 

 matching baselines 

 matching slopes 

 comparing baselines 

 comparing slopes 

 threshold classifier 

 ellipsoid classifier 

 quartile classifier 

 
Fig. 13. Improvements of a stroke extraction algorithm 

[14] [27] [28] 

6 Conclusion 
Several problems have been presented related to the 

architecture of off-line signature verification 

systems. A new highly modularized model was 

introduced to overcome the identified limitations. It 

has been demonstrated, that existing signature 

verifiers can be analyzed and interpreted according 

to the generic model, and can even be used in a 

generic framework with slight modifications. 

Designed with loose coupling between the 

components the architecture is ideal for team 

development, load balancing or for application in a 

service oriented environment, which is subject to 

our ongoing researches and will be targeted in our 

future works. 

 

7 ACKNOWLEDGMENT 
This project was supported in part by the Innovation 

and Knowledge Centre of Information Technology 

BME(IT
2
), the National Office for Research and 

Technology (NKTH) and  the Agency for Research 

Fund Management and Research Exploitation (KPI) 

 

References: 

[1] R. Plamondon and G. Lorette, "Automatic 

Signature Verification and Writer 

Identification - The State of the Art," 1989, 

Pattern Recognition, Vol. 22, no. 2, pp. 

107-131. 

[2] F. Leerle and R. Palmond. "Automatic 

Signature Verification - The State of the Art 

1989-1993," 1994, Int'l Pattern Recognition 

and Artificial Intelligence, special issue 

signature verification, Vol. 8, no. 3, pp. 

643-660. 

[3] Réjean Plamondon and Srihari N. Sargur. 

"On-Line and Off-Line Handwriting 

REcognition: A Comprehensive Survey," 

2000, IEEE Transactions on Pattern 

Analysis and Machine Intelligence, Vol. 22, 

no. 1, pp. 63-80. 

[4] Bence Kovari. "The development of off-line 

signature verification methods, comparative 

study," 2007. microCAD 2007 International 

Scientific Conference. 

[5] "Pattern Recognition, special issue on 

automatic signature verification," June 

1994, Vol. 8, no. 3. 

[6] K. Anil Jain. Handwritten Signature 

Recognition. Michigan State University - 

Biometrics. http://www.cse.msu.edu/~cse89 

1/Sect601/SignatureRcg.pdf. 

[7] Julian Fierrez and Javier Ortega-Garcia. On-

Line Signature Verification. [book auth.] 

WSEAS TRANSACTIONS on COMPUTERS
Bence Kovari, Istvan Albert 
 and Hassan Charaf

ISSN: 1109-2750 1656 Issue 10, Volume 7, October 2008



Anil K. Jain, Patrick Flynn and Arun A. 

Ross. Handbook of Biometrics. s.l. : 

Springer US, 2007, pp. 189-209. 

[8] V. E. Ramesh and M. Narasimha Murty, 

"Off-line signature verification using 

genetically optimized weighted features," 

1999,Pattern Recognition,no32,pp.217-233. 

[9] Alessandra Lumini and Loris Nanni. "Over-

complete feature generation and feature 

selection for biometry," 2007, Expert 

Systems with Applications. 

[10] Julian Fierrez-Aguilar, et al. "Fusion of 

Local and Regional Approaches for On-

Line Signature Verification," 2005, IWBRS 

2005, LNCS 3781, pp. 188–196. 

[11] Kai Huang and Hong Yan. "Off-line 

signature verification using structural 

feature correspondence," 2002, Pattern 

Recognition, no. 35, pp. 2467 – 2477. 

[12] Se-Hoon Kim, Kie-Sung Oh and Hyung-Il 

Choi. "Off-line Verification System of the 

Handwrite, Signature or Text using a 

Dynamic Programming," 2007, ICCSA 

2007, LNCS 4705, no. 1, pp. 1014-1023. 

[13] Gregory F. Russell and Alain Biem 

Jianying Hu. "Dynamic Signature 

Verification Using Discriminative 

Training," 2005. Proceedings of the 2005 

Eight International Conference on 

Document Analysis and Recognition 

(ICDAR’05). 1520-5263/05 IEEE. 

[14] Bence Kovari. "Time-Efficient Stroke 

Extraction Method for Handwritten 

Signatures," 2007. ACS07, The 7th WSEAS 

International Conference on Applied 

Computer Science. pp. 157-161. ISBN 978-

960-6766-15-2, ISSN 1790-5117. 

[15] E. Frias-Martinez, A. Sanchez and J. 

Velez. "Support vector machines versus 

multi-layer perceptrons for efficient off-line 

signature recognition," 2006, Engineering 

Applications of Artificial Intelligence,no. 19 

[16] S. Hangai, S. Yamanaka and T. 

Hamamoto. "Writer Verification using 

Altitude and Direction of Pen Movement," 

2000. IEEE, Proceedings of the 

International Conference on Pattern 

Recognition (ICPR'00). 

[17] M. E. Munich and P. Perona. "Visual 

Identification by Signature Tracking," 

February 2003, IEEE Transactions on 

Pattern Analysis and Machine Intelligence, 

Vol. 25, no. 2. 

[18] William K. Pratt. Digital Image 

Processing: PIKS Scientific Inside. s.l. : 

Wiley-Interscience, 2007. ISBN 978-0-471-

76777-0. 

[19] S. Akle, M.-E. Algorri and A. Salcedo, 

"Use of wavelet-based basis functions to 

extract rotation invariant features for 

automatic image recognition ," 2008, 

WSEAS Transactions on Information 

Science and Applications, Vol. 5, no. 5, pp. 

664-673. ISSN: 1790-0832. 

[20] X.D. Zhuang and N.E. Mastorakis. "The 

curling vector field transform of gray-scale 

images: A magneto-static inspired 

approach," 2008, WSEAS Transactions on 

Computers, Vol. 7, no. 3, pp. 147-153 . 

[21] Larman. Applying UML and Patterns : An 

Introduction to Object-Oriented Analysis 

and Design and Iterative Development. s.l. : 

Prentice-Hall, 2004. ISBN: 978-

0137488803. 

[22] Bence Kovari, Zsolt Kertesz and Attila 

Major, "Off-Line Signature Verification 

Based on Feature Matching," Budapest : 

s.n., 2007. IEEE, 11th International 

Conference on Intelligent Engineering 

Systems (INES). pp. 93-97.  

[23] L. Lam, Seong-Whan Lee and Ching Y. 

Suen. "Thinning Methodologies-A 

Comprehensive Survey," September 1992, 

IEEE Transactions on Pattern Analysis and 

Machine Intelligence, Vol. 14, no. 9, p. 879. 

[24] Z. Zhang. "Iterative point matching for 

registration of free-form curves and 

surfaces," 1994, International Journal of 

Computer Vision, vol.13, no.2, pp. 119-152. 

[25] R. Nerino. "Automatic registration of 

point-based surfaces ," 2006, WSEAS 

Transactions on Computers, Vol. 5, no. 12, 

pp. 2984-2991. 

[26] N.L. Othman, J. Shin and W.-D. Chang. 

"Chain code distance: A global feature for 

on-line signature verification ," 2006, 

WSEAS Transactions on Computers , Vol. 

5, no. 9, pp. 2037-2042. ISSSN 1109-2750 . 

[27] Csaba Illes and Bence Kovari. "Robust 

signature stroke extraction for use in off-

line signature verification," 2007. 

microCAD 2007 International Scientific 

Conference. 

[28] Bence Kovari, et al. "Off-Line Signature 

Verification - Comparison of Stroke 

Extraction Methods," Barcelona : s.n., 2007. 

ICSOFT, 2nd International Conference on 

Software and Data Technologies. pp. 270-

276. ISBN 978-989-8111-09-8. 

WSEAS TRANSACTIONS on COMPUTERS
Bence Kovari, Istvan Albert 
 and Hassan Charaf

ISSN: 1109-2750 1657 Issue 10, Volume 7, October 2008




