
A Survey of Automata on Three-Dimensional Input Tapes

MAKOTO SAKAMOTO, NAOKO TOMOZOE,
HIROSHI FURUTANI,and MICHIO KONO

University of Miyazaki
Faculty of Engineering

1-1, Gakuen Kibanadai Nishi, Miyazaki City
JAPAN 889-2192

sakamoto@cs.miyazaki-u.ac.jp

TAKAO ITO ∗ and YASUO UCHIDA

Ube National College of Technology
Dept. of Business Administration

2-14-1, Tokiwadai Ube City
JAPAN 755-8555

ito@ube-k.ac.jp and uchida@ube-k.ac.jp

HIDENOBU OKABE
Nittetsu Hitachi Systems Engineering, Inc.

Financial Solutions Division
8-1, Akashi-Chou, Chuou-Ku, Tokyo

JAPAN 104-6591
okabe.hidenobu@live.jp

Abstract: The question of whether processing three-dimensional digital patterns is much more difficult than two-
dimensional ones is of great interest from the theoretical and practical standpoints. Recently, due to the advances
in many application areas such as computer vision, robotics, and so forth, it has become increasingly apparent
that the study of three-dimensional pattern processing has been of crucial importance. Thus, the research of three-
dimensional automata as computational models of three-dimensional pattern processing has also been meaningful.
The main purpose of this paper is to survey the definitions and properties of various three-dimensional automata.
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1 Introduction

Blum and Hewitt first proposed two-dimensional au-
tomata as computational models of two-dimensional
pattern processing, and investigated their pattern
recognition abilities [3]. Since then, many researchers
in this field have been investigating a lot of properties
about automata on a two-dimensional tape. Recently,
due to the advances in computer vision, robotics, and
so on, the study of three-dimensional information pro-
cessing has been of great importance. For instance,
three-dimensional image is now needed in visual com-
munication, such as virtual reality systems. Even in
the Internet environment, new protocols have been
proposed for virtual reality communication on the
WWW [53]. In the medical field, we can easily get
the precise three-dimensional volumetric image of a
human body by excellent equipments such as X-ray
CT scanner and MRI scanner. Thus, the study of
three-dimensional automata has been meaningful as
the computational model of three-dimensional infor-
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mation processing. In this paper, we show a survey
of three-dimensional automata. Section 2 observes a
historical overview, and provides a background and a
motive for the study of three-dimensional automata.
Section 3 concerns deterministic, nondeterministic,
alternating with only universal states, and alternat-
ing three-dimensional Turing machines (including fi-
nite automata). In Section 4, we deal with three-
dimensionally space constructibility and space hier-
archy. In Section 5, we show some results about
recognizability of three-dimensional connected pic-
tures. In Section 6, we introduce other topics of three-
dimensional automata. Finally, in Section 7, we con-
clude this paper by summarizing the results.

2 Historical Background
Computer science has two major components : first,
the fundamental mathematics and theories underlying
computing, and second, engineering techniques for
the design of computer systems― hardware and soft-
ware.

Theoretical computer science falls under the first
area of the two major components. It had its begin-
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ningsin various field: physics, mathematics, linguis-
tics, electric and electronic engineering, physiology,
and so on. Out of these studies came important ideas
and models that are central to theoretical computer
science [1,14].

In theoretical computer science, Turing machine
has played a number of important roles in understand-
ing and exploiting basic concepts and mechanisms in
computing and information processing. It is a sim-
ple mathematical model of computers which was in-
troduced by Turing in 1936 to answer fundamental
problems of computer science― ‘What kind of log-
ical work can we effectively perform ?’ [59]. If the
restrictions in its structure and move are placed on
Turing machine, the restricted Turing machine is less
powerful than the original one. However, it has be-
come increasingly apparent that the characterization
and classification of powers of the restricted Turing
machines should be of great importance. Such a study
was active in 1950’s and 1960’s. On the other hand,
many researchers have been making their efforts to in-
vestigate another fundamental problems of computer
science― ‘How complicated is it to perform a given
logical work?’. The concept of computational com-
plexity is a formalization of such difficulty of logical
works.

In the study of computational complexity, the
complexity measures are of great importance. In gen-
eral, it is well known that the computational complex-
ity has originated in a study of considering how the
computational powers of various types of automata
are characterized by the complexity measures such
as space complexity, time complexity, or some other
related measures. Especially, the concept of com-
plexity is very useful to characterize various types of
automata from a point of view of memory require-
ments [34]. This study was motivated by Stearns,
Hartmanis, and Lewis in 1965 [54]. They introduced
anL(m) space-bounded one-dimensional Turing ma-
chine to formalize the notion of space complexity, and
investigated its computing ability. Some results were
refined by Hopcroft and Ullman [12-14]. Moreover,
Chandra, Kozen, and Stockmeyer introduced an alter-
nating Turing machine as a theoretical model of par-
allel computation in 1981 [5]. An alternating Turing
machine, whose state set is partitioned into two dis-
joint sets, the set of universal states and the set of exis-
tential states, is a generalization of a nondeterministic
Turing machine. A nondeterministic Turing machine
is an alternating Turing machine which has only ex-
istential states. In related paper [11,15,29-31,39,40,
45,55], several investigations of these machines have
been continued.

After that, the growth of the processing of pic-
torial information by computer was rapid in those

days. Therefore, the problem of computational com-
plexity was also arisen in the two-dimensional in-
formation processing. Blum and Hewitt first pro-
posed two-dimensional automata― two-dimensional
finite automata and marker automata, and investi-
gated their abilities of pattern recognition in 1967
[3]. Since then, many researchers in this field
have been investigating a lot of properties about au-
tomata on a two-dimensional tape. For example,
Morita, Umeo, and Sugata proposed anL(m,n)
space-bounded two-dimensional Turing machine and
its variants to formalize memory limited computa-
tions in the two-dimensional information process-
ing [33]. Inoue, Takanami, and Taniguchi intro-
duced two-dimensional alternating Turing machines
as a generalization of two-dimensional nondetermin-
istic Turing machines and as a mechanism to model
parallel computation. Restricted version of two-
dimensional alternating Turing machines were inves-
tigated [24,25]. Special types of two-dimensional Tur-
ing machines (two-dimensional pushdown automata,
stack automata, multicounter automata, multihead
automata, and marker automata) were investigated
[16,21,51,52,56]. Moreover, cellular automata on a
two-dimensional tape were investigated not only in
the viewpoint of formal language theory, but also
in the viewpoint of pattern recognition. Cellular
automata on a two-dimensional tape can be classi-
fied into three types. The first type, called a two-
dimensional cellular automata, is investigated [2,6,7].
Especially, many properties of two-dimensional on-
line tessellation acceptors, which are restricted type
of two-dimensional cellular automata, are investigated
[17,18,20]. The second type of cellular automata on
a two-dimensional tape is investigated [19,42,44,58].
Two typical models of this type are parallel/ sequen-
tial array automata and one-dimensional bounded cel-
lular acceptors. The third type, called a pyramid cellu-
lar acceptor, is investigated [22]. More detailed survey
of two-dimensional automata theory is done by Inoue
and Takanami [23].

By the way, the question of whether process-
ing three-dimensional digital patters is much difficult
than two-dimensional ones is of great interest from
the theoretical and practical standpoints. In recent
years, due to the advances in many application ar-
eas such as computer graphics, computer-aided de-
sign / manufacturing, computer vision, image pro-
cessing, robotics, and so on, the study of three-
dimensional pattern processing has been of crucial
importance [9,10,41,43]. Thus, the reseach of three-
dimensional automata as the computational model of
three-dimensional pattern processing has been mean-
ingful. However, it is conjectured that the three-
dimensional pattern processing has its own difficul-
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tiesnot arising in two-dimensional case. One of these
difficulties occurs in recognizing topological proper-
ties of three-dimensional patterns because the three-
dimensional neighborhood is more complicated than
two-dimensional case. Generally speaking, a property
or relationship is topological only if it is preserved
when an arbitrary ‘rubber-sheet’ distortion is applied
to the pictures. For example, adjacency and connect-
edness are topological; area, elongatedness, convex-
ity, straightness, etc. are not.

During the past about thirty years, automata
on a three-dimensional tape have been proposed
and several properties of such automata have been
obtained. Inoue and Nakamura proposed an n-
dimensional on-line tessellation acceptor which can
determine whether an n-dimensional tape is accepted
or not by the on-line and parallel processing [17].
Blum and Sakoda investigated the capability of finite
automata in two-dimensional and three-dimensional
space [4]. Yamamoto, Morita, and Sugata intro-
duced a three-dimensional k-marker automaton, an
L(m) space-bounded three-dimensional Turing ma-
chine and anL(m) space-bounded five-way three-
dimensional Turing machine [60]. They studied
the problem of recognizing connectedness of three-
dimensional patterns by these machines. Taniguchi,
Inoue, and Takanami investigated the relationship be-
tween the accepting powers of three-dimensional fi-
nite automata and five-way three-dimensional Turing
machines [57]. They also proposed a k-neighborhood
templateA-type two-dimensional bounded cellular
acceptor which consists of a pair of a converter and
a configuration-reader, as the computational model
of three-dimensional pattern process. The converter
converts the given three-dimensional tape to the two-
dimensional configuration, and the configuration-
reader determines the acceptance or nonacceptance of
given three-dimensional tape, depending on whether
or not the derived two-dimensional configuration is
accepted [58]. Nakamura and Aizawa proposed the
interlocking component which is a chainlike connec-
tivity a new topological property of three-dimensional
digital pictures, and investigated the recognizability
of interlocking components [37]. Sakamoto proposed
multi-dimensional automata, and showed their several
properties [46,47,49,50]. Moreover, Ito et al. investi-
gated about synchronized alternation and parallelism
for three-dimensional automata [27, 28].

3 Three-Dimensional Turing Ma-
chines

This section concerns alternating, nondeterminis-
tic, and deterministic three-dimensional Turing ma-

chines, including three-dimensional finite automata
and marker automata.

3.1 Preliminaries

Definition 3.1. Let Σ be a finite set of symbols.
A three-dimensional input tapeover Σ is a three-
dimensional rectangular array of elements ofΣ. The
set of all the three-dimensional input tapes overΣ is
denoted byΣ(3).

Given an input tapex ∈ Σ(3), for each inte-
ger j(1 ≤ j ≤ 3), we let lj(x) be the length of
x along thejth axis. The set of allx ∈ Σ(3) with
l1(x) = n1, l2(x) = n2 and l3(x) = n3 is de-
noted byΣ(n1,n2,n3). When1 ≤ ij ≤ lj(x) for each
j(1 ≤ j ≤ 3), let x(i1, i2, i3) denote the symbol in
x with coordinates (i1, i2, i3). Furthermore, we define
x[(i1, i2, i3),(i′1, i

′
2, i

′
3)], when1 ≤ ij ≤ i′j ≤ lj(x)

for integerj(1 ≤ j ≤ 3), as the three-dimensional
input tapey satisfying the following conditions:

(i) for eachj (1 ≤ j ≤ 3), lj(y) = i′j − ij + 1;
(ii) for eachr1, r2, r3 (1 ≤ r1 ≤ l1(y), 1 ≤ r2 ≤
l2(y), 1 ≤ r3 ≤ l3(y)), y (r1, r2, r3) = x (r1 + i1 − 1,
r2 + i2 − 1, r3 + i3 − 1).

Definition 3.2. A three-dimensional alternating
Turing machine(3-ATM ) is a seven-tupleM =
(Q, q0, U, F,Σ, Γ, δ), where

(i) Q is a finite set ofstates;
(ii) q0 ∈ Q is theinitial state;
(iii) U ⊆ Q is the set ofuniversal states;
(iv) F ⊆ Q is the set ofaccepting states;
(v) Σ is a finiteinput alphabet(# /∈ Σ is thebound-
ary symbol);
(vi) Γ is a finitestorage tape alphabet(B ∈ Γ is the
blank symbol; and
(vii) δ ⊆ (Q × (Σ ∪ {#}) × Γ) × (Q × (Γ −
{B}) × (east,west,south,north,up,down,no move)×
(right,left,no move)is thenext move relation.

A stateq in Q − U is said to beexistential. As
shown in Fig.1, the machineM has a read-only rect-
angular input tape with boundary symbols ‘#’ and
one semi-infinite storage tape, initially blank. Of
course,M has a finite control, an input head, and a
storage-tape head. A position is assigned to each cell
of the storage tape, as shown in Fig.1.

A stepof M consists of reading one symbol from
each tape, writing a symbol on the storage tape, mov-
ing the input and storage heads in specified directions
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Fig. 1: Three-Dimensional Alternating Turing Ma-
chine.

(east, west, south, north, up, down, or no move for in-
put head, and left, right, or no move for storage head),
and entering a new state, in accordance with the next
move relationδ.

Definition 3.3. A configuration of a 3-ATM
M =(Q,q0,U ,F ,Σ,Γ,δ) is a pair of an element ofΣ(3)

and an element ofCM = (N ∪ {0})3 × SM , where
SM = Q × (Γ − {B})∗× N , andN denotes the set
of all positive integers. The first componentx of a
configurationc = (x, ((i1, i2, i3),(q,α,j))) represents
the input toM . The second component(i1, i2, i3) of
c represents the input-head position. The third com-
ponent(q, α, j) of c represents the state of the finite
control, nonblank contents of the storage tape, and the
storage-head position. An element ofCM is called
a semi-configurationof M and an element ofSM is
called a storage state ofM . If q is the state associated
with configurationc, thenc is said to be a universal
(existential, accepting) configuration ifq is auniversal
(existential, accepting)state. The initial configuration
of M on inputx is IM (x) = (x, ((1, 1, 1), (q0, λ, 1))),
whereλ is the null string.

Definition 3.4. GivenM = (Q, q0, U, F,Σ, Γ, δ), we
write c `M c′ and c′ is a successorof c if config-
uration c′ follows from configurationc in one step
of M , according to the transition rulesδ. `∗M de-
notes the reflexive transitive closure of`M . The re-
lation`M is not necessarily single-valued, becauseδ
is not. A computation pathof M on x is a sequence
c0 `M c1 `M · · · `M cn(n ≥ 0), wherec0 = IM (x).

A computation tree ofM is a finite, nonempty
labeled tree with the following properties:

(i) each nodev of the tree is labeled with a configura-
tion l(v);
(ii) if v is an internal node (a nonleaf) of the tree,
l(v) is universal andc|l(v) `M c =c1,…,ck, thenv
has exactlyk childrenv1, · · ·, vk such thatl(vi) = ci

(1 ≤ i ≤ k); and
(iii) if v is an internal node of the tree andl(v) is ex-
istential, thenv has exactly one childu such that

l(v) `M l(u).

A computational tree ofM on inputx is a com-
putation tree ofM whose root is labeled withIM (x).
An accepting computation treeof M on x is a com-
putation tree ofM onx whose leaves are labeled with
accepting configurations. We say thatM acceptsx if
there is an accepting computation tree ofM on input
x. Define

T (M) = {x ∈ Σ(3) |M accepts x}.
We next define a five-way three-dimensional al-

ternating Turing machine, which can be considered as
an alternating version of a five-way three-dimensional
Turing machine [49].

Definition 3.5. A five-way three-dimensional alter-
nating Turing machine (FV 3-ATM ) is a 3-ATM
M = (Q, q0, U, F,Σ, Γ, δ) such that

δ ⊆ (Q × (Σ ∪ {#}) × Γ) × (Q × (Γ − B)×
{east,west,south, north, down, no move} × {right,
left, no move}).

That is, anFV 3-ATM is a3-ATM whose input
head can move east, west, south, north, or down, but
not up.

The set of states of alternating automaton is par-
titioned into two nonintersecting sets, i.e., the set of
existential states and the set of universal states. A
three-dimensional nondeterministic Turing machine
(3-NTM ) (a five-way three-dimensional nondeter-
ministic Turing machine(FV 3-NTM )) is a3-ATM
(FV 3-ATM ) which has no universal state. Con-
versely, a3-ATM (FV 3-ATM ) which has no exis-
tential states is called athree-dimensional alternating
Turing machine with only universal states(3-UTM )
(a five-way three-dimensional alternating Turing ma-
chine with only universal states(FV 3-UTM )). Of
course, athree-dimensional deterministic Turing ma-
chine(3-DTM ) (a five-way three-dimensional deter-
ministic Turing machine(FV 3-DTM )) is a special
case of3-ATM (FV 3-ATM ), i.e., each of whose
configurations has at most one successor.

Definition 3.6. Let L(m) : N→ R be a function
with one variablem, where N is the set of all
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positive integers andR is the set of all nonnegative
real numbers. With a3-ATM M we associate
a space complexity functionSPACE that takes
configurations to natural numbers. That is, for
each configurationc = (x, ((i1, i2, i3), (q, α, j))),
let SPACE(c) = |α|. We say thatM is L(m)
space-boundedif for all m ≥ 1 and for eachx
with l1(x) = l2(x) = l3(x) = m, if x is accepted
by M , then there is an accepting computation tree
of M on input x such that for each nodev of the
tree, SPACE(l(v)) is smaller than or equal to the
smallest integer which is greater than or equal to
L(m). By ‘3-ATM (L(m))’ (‘ FV 3-ATM(L(m))’,
‘3-UTM(L(m))’, ‘ FV 3-UTM(L(m))’,
‘3-NTM(L(m))’, ‘ FV 3-NTM(L(m))’,
‘3-DTM(L(m))’, (‘ FV 3-DTM(L(m))’) we de-
note anL(m) space-bounded3-ATM (FV 3-ATM ,
3-UTM , FV 3-UTM , 3-NTM , FV 3-NTM ,
3-DTM , FV 3-DTM ).

A 3-ATM (0) (FV 3-ATM (0)) is called athree-
dimensional alternating finite automaton (five-way
three-dimensional alternating finite automaton), and
denoted by3-AFA (FV 3-AFA). Similarly, a
3-UTM (0) (3-NTM (0), 3-DTM (0)) is called a
three-dimensional alternating finite automaton with
only universal states (three-dimensional nondeter-
ministic finite automaton, three-dimensional deter-
ministic finite automaton), denoted by ‘3-UFA’
(‘3-NFA ’, ‘ 3-DFA’). A five-way 3-UFA (3-NFA,
3-DFA) is denoted by ‘FV 3-UFA’ (‘ FV 3-NFA’,
‘FV 3-DFA’).

Moreover, we introduce two automata for the im-
provement of picture recognizability of the finite au-
tomaton. One is a multi-marker automaton. It is a fi-
nite automaton which keeps marks as ‘pebbles’ in the
finite control, and cannot rewrite any input symbols
but can make marks on its input with the restriction
that only a bounded number of these marks can exist
at any given time [32, 49]. The other is a multi-inkdot
automaton. This automaton is a conventional finite
automaton capable of dropping an inkdot on a given
input tape for a landmark, but unable to further pick
it up. For a three-dimensionalk-marker automaton
(three-dimensionalk-inkdot automaton) is denoted by
3-XMAk (3-XIAk) for eachX ∈ {D, N, U,A},
whereD means determinism,N means nondetermin-
ism, U means alternation with only universal states,
andA means alternation.

For each X ∈ {D,N,U,A}, we denote
a 3-XTM (FV 3-XTM , 3-XTM(L(m)),
FV 3-XTM(L(m)), 3-XFA, FV 3-XFA) whose
input tapes are restricted to cubic ones by3-XTM c.
FV 3-XTM c, 3-XTM c(L(m)), etc. have the same
meaning.

For each X ∈ {D,N,U,A}, we denote

by L[3-XTM ] the class of sets of all three-
dimensional tapes accepted by3-XTM ’s . That is,
L[3-XTM ] =T |T = T (M) for some3-XTM M .
L[FV 3-XTM ], L[3-XTM(L(m))], etc. are defined
similarly.

3.2 Main Accepting Powers
This subsection states the accepting powers of three-
dimensional Turing machines [49].

Theorem 3.1. If L(m) = o(logm), then
L[3-DTM c(L(m))] ( L[3-UTM c(L(m))] (
L[3-ATM c(L(m))].

Corollary 3.1. L[3-DFAc] ( L[3-NFAc] (
L[3-AFAc].

Theorem 3.2. If (i) L(m)=o(m2),
or (ii) L(m)≥logm and L(m)=o(m3),
then L[FV 3-DTM c(L(m))] (
L[FV 3-UTM c(L(m))] ( L[FV 3-ATM c(L(m))],
and L[FV 3-UTM c(L(m))] and
L[FV 3-NTM c(L(m))] are incomparable.

Corollary 3.2. (i) L[FV 3-UFAc] (
L[FV 3-AFAc]. (ii) L[FV 3-UFAc] is in-
comparable with L[FV 3-NFAc]. (iii)
L[FV 3-DFAc] ( L[FV 3-UFAc].

Theorem 3.3. If (i) L(m) = o(m2), or (ii)
L(m) ≥ logm and L(m) = o(m3), then
L[FV 3-UTM c(L(m))] ( L[3-UTM c(L(m))].

Corollary 3.3. L[FV 3-UFAc] ( L[3-UFAc].

Theorem 3.4. L[FV 3-UFAc] (
L[FV 3-DTM c(m2)], and spacem2 is necessary and
sufficient for FV 3-DTM c’s and FV 3-NTM c’s to
simulateFV 3-UFAc’s.

Theorem 3.5.L[3-UFAc] ( L[FV 3-DTM c(m3)],
and spacem3 is necessary and sufficient for
FV 3-DTM c’s to simulate3-UFAc’s .

Remark 3.1. We conjecture thatL[3-UFAc] (
L[FV 3-NTM c(m2)], but we have not completed the
proof of this conjecture yet.

Theorem 3.6. Spacem3 is necessary and sufficient
for FV 3-DTM c’s to simulateFV 3-AFAc’s and
3-AFAc’s .

Open Problems 3.1. (i) Is L[3-NTM c(L(m))] in-
comparable withL[3-UTM c(L(m))] for anyL such
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that L(m) = o(logm)? (ii) L[3-DTM c(L(m))] (
L[3-NTM c(L(m))] ( L[3-ATM c(L(m))] for any
L(m) ≥ logm?

4 Three-Dimensionally Space Con-
structibility and Space Hierarchy

This section concerns three-dimensionally space con-
structible functions and space complexity hierarchy of
three-dimensional Turing machines whose input tapes
are restricted to cubic ones.

4.1 Main Accepting Powers

Definition 4.1. A function L(m): N → R is called
three-dimensionally space constructibleif there is a
3-DTM(L(m))c M such that for eachm ≥ 1, there
exists some input tapex with l1(x) = l2(x) =
l3(x) = m on whichM halts after its storage head
has marked off exactly the greatest integer cells which
is smaller than or equal toL(m). (In this case, we say
thatM constructs the functionL in the storage tape.)

Definition 4.2. A function L(m): N → R is called
three-dimensionally fully space constructibleif there
is a3-DTM(L(m))c M which, for eachm ≥ 1 and
for each input tapex with l1(x) = l2(x) = l3(x) =
m, makes use of exactly the greatest integer cells
which is smaller than or equal toL(m) and halts.

4.2 Three-Dimensionally Space Construtible
Functions and Complexity Results

In this subsection, we show three-dimensionally fully
space constructibility and space complexity hierar-
chies of three-dimensional Turing machines whose in-
put tapes are restricted to cubic ones [49].

Theorem 4.1. We consider the following three func-
tions :

log(0)m = m,
log(k)m = log(log(k−1)m), for k ≥ 1, and
log∗m = min{x|log(k)m ≤ 1}.

Then, the functionslog(k)m (k: any natural number)
and log∗m are three-dimensionally fully space con-
structible.

Theorem 4.2. For anyX ∈ {D,N,U,A}, for any
functionL(m): N →R, and for any constantd > 0,

L[3-XTM c(L(m))] = L[3-XTM c(L(m)+d)].

Theorem 4.3. For anyX ∈ {D, N,U,A}, for any
functionL(m): N →R, and for any constantd > 0,

L[3-XTM c(L(m))] = L[3-XTM c(dL(m))].

Theorem 4.4. Let L1(m) andL2(m) be any func-
tions such that (i)L2(m) is three-dimensionally
space constructible, (ii)limi→∞L1(mi)/L2(mi) =
0, and (iii) L2(mi)/logmi > k (i=1,2,...) for
some increasing sequence of natural numbersmi

and for some constantk > 0. Then there ex-
ists a setT in L[3-XTM c(L2(m))], but not in
L[3-XTM c(L1(m))] for anyX ∈ {D, N}.

Theorem 4.5. For any functions L1(m) and
L2(m) such that (i)L2(m) is three-dimensionally
space constructible, (ii)L1(m) = o(L2(m)), there
exists a set inL[3-DTM c(L2(m))], but not in
L[3-NTM c(L1(m))].

Open Problems 4.1. (i) Are the functionslog(k)m
(k ≥ 3) andlog∗m fully space constructible by one-
dimensional deterministic two-head Turing machines
or by two-dimensional deterministic Turing machines
with square inputs? (ii) Is there any other unbounded
function below logm which is three-dimensionally
fully space constructible? (iii) Is there an infinite
tight hierarchy for3-ATM c(L(m))’s with L(m) ≥
logm? (iv) Is there an infinite space hierarchy for
3-ATM c(L(m))′ with L(m) ≤ loglogm?

5 Recognizability of Connected Pic-
tures

The recognition of the connectedness of digital pic-
tures is one of the most fundamental problems in pic-
ture processing. There have been various results re-
lated to this problem. Especially, to recognize three-
dimensional connectedness seems to be much more
difficult than the two-dimensional case, because of
intrinsic characteristics of three-dimensional pictures.
This section mainly show the recognizability of three-
dimensional connected tapes by three-dimensional au-
tomata. LetTC be the set of all three-dimensional
connected pictures. It is interesting to investigate how
much space is required for three-dimensional Turing
machines to acceptTC . For this problem, we have

Theorem 5.1. (i) TC ∈ L[3-AFAc]. (ii) logm space
is necessary and sufficient forFV 3-ATM ’s to recog-
nizeTC .
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Theorem 5.2.TC ∈ L[3-NMA1] [60].

Theorem 5.3. (i) the necessary and sufficient
space for FV 3-DTM ’s to simulate 3-DTM1’s
(3-NTM1’s) is 2lmloglm (2k, wherek = l2m2). (ii)
the necessary and sufficient space forFV 3-NTM ’s
to simulate 3-DTM1’s (3-NTM1’s) is lmloglm
(l2m2), wherel(m) is the number of rows (columns)
on each plane of three-dimensional rectangular input
tapes.

Theorem 5.4.TC /∈ L[3-NIAk] [32].

Remark 5.1. [3-NIAk] ( L[3-AIAk] for any integer
k.

Open Problems 5.1. (i) TC /∈ L[3-DTM(L(m))]
or TC /∈ L[3-NTM(L(m))] for L(m) = o(logm)?
(ii) TC ∈ L[3-UIA1]? (iii) Is TC accepted by a
3-DTM1?

By the way,Digital geometryhas played an im-
portant role in computer image analysis and recog-
nition [43]. In particular, there is a well-developed
theory of topological properties such asconnected-
nessandholesfor two-dimensional arrays [44]. On
the other hand, three-dimensional information pro-
cessing has also become of increasing interest with the
rapid growth of computed tomography, robotics, and
so on. Thus it has become desirable to study the ge-
ometrical properties such asinterlocking components
andcavitiesfor three-dimensional arrays [37]. Inter-
locking components was proposed as a new topolog-
ical property of three-dimensional digital pictures in
[37]. Let S1 andS2 be two subsets of the same three-
dimensional digital picture.S1 and S2 are said to
be interlocked when they satisfy the following con-
ditions:

(1) S1 andS2 aretori,
(2) S1 goes through aholeof S2,
(3) S2 goes through aholeof S1.

The interlocking ofS1 and S2 is illustrated in
Fig.2. This relation may be considered as a chainlike
connectivity. Generally speaking, a property or rela-
tionship istopologicalif it is preserved when an arbi-
trary ‘rubber-sheet’distortion is applied to the pic-
tures. For example, adjacency and connectedness are
topological; area, elongatedness, convexity, straight-
ness, etc. are not.

It is proved that no one-marker automaton
can recognize interlocking components in a three-

Fig. 2: Interlocking Components.

dimensional input tape [37]. Moreover, in [35], three-
dimensional one-marker automata are investigated in
terms of the space complexities that five-way three-
dimensional Turing machines require and suffice to
recognize interlocking components.

6 Other Topics

In this section, we list up other topics and related ref-
erences about three-dimensional automata.

(i) Properties of special types of three-dimensional
Turing machines (leaf-size bounded automata, paral-
lel automata, multi-counter automata, etc. on three-
dimensional tapes) [28,48,49].
(ii) Cellular types of three-dimensional automata
[8,17,22,58].
(iii) Closure properties [14,23,49].
(iv) Recognizability of topological properties [36-38].
(v) NP-complete problems [14,26,49].

7 Conclusions

In this paper, we surveyed several aspects of three-
dimensional automata. Especially, we dealt with
three-dimensional Turing machines, including finite
automata, three-dimensionally space constructability,
recognizability of three-dimensional connected pic-
tures, and so on. We believe that there are many prob-
lems about three-dimensional automata to solve in the
future. We hope that this survey will activate the in-
vestigation of three-dimensional automata theory.
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