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Abstract: The question of whether processing three-dimensional digital patterns is much more difficult than two-
dimensional ones is of great interest from the theoretical and practical standpoints. Recently, due to the advance
in many application areas such as computer vision, robotics, and so forth, it has become increasingly apparen
that the study of three-dimensional pattern processing has been of crucial importance. Thus, the research of three
dimensional automata as computational models of three-dimensional pattern processing has also been meaningft
The main purpose of this paper is to survey the definitions and properties of various three-dimensional automata.

Key—Words: Computation, Constructibility, Finite Automaton, Inkdot, Marker, Recognizability, Three-Dimension,
Turing Machine

1 Introduction mation processing. In this paper, we show a survey
o . _ of three-dimensional automata. Section 2 observes a
Blum and Hewitt first proposed two-dimensional au- historical overview, and provides a background and a
tomata as computational models of two-dimensional motive for the study of three-dimensional automata.
pattern processing, and investigated their pattern Section 3 concerns deterministic, nondeterministic,
recognition abilities [3]. Since then, many researchers gjternating with only universal states, and alternat-
in this field have been investigating a lot of properties ing three-dimensional Turing machines (including fi-
about automata on a two-dimensional tape. Recently, pite automata). In Section 4, we deal with three-
due to the advances in Computer ViSion, rObOtiCS, and dimensiona”y space Constructib”ity and space hier-
so on, the study of three-dimensional information pro- archy. In Section 5, we show some results about
cessing has been of great importance. For instance, recognizability of three-dimensional connected pic-
three-dimensional image is now needed in visual com- tyres. In Section 6, we introduce other topics of three-

munication, such as virtual reality systems. Even in  dimensional automata. Finally, in Section 7, we con-
the Internet environment, new protocols have been cjude this paper by summarizing the results.

proposed for virtual reality communication on the
WWW [53]. In the medical field, we can easily get
the precise three-dimensional volumetric image of a 2 Historical Background
human body by excellent equipments such as X-ray
CT scanner and MRI scanner. Thus, the study of
three-dimensional automata has been meaningful as
the computational model of three-dimensional infor-

Computer science has two major components : first,

the fundamental mathematics and theories underlying

computing, and second, engineering techniques for

the design of computer systemshardware and soft-
*Takaolto is a visiting research professor of School of Man- ~ Ware.

agement, New Jersey Institute of Technology in USA from March Theoretical computer science falls under the first

29, 2008 to March 28, 2009. area of the two major components. It had its begin-
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ningsin various field: physics, mathematics, linguis-
tics, electric and electronic engineering, physiology,
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days. Therefore, the problem of computational com-
plexity was also arisen in the two-dimensional in-

and so on. Out of these studies came important ideas formation processing. Blum and Hewitt first pro-

and models that are central to theoretical computer
science [1,14].

In theoretical computer science, Turing machine
has played a number of important roles in understand-
ing and exploiting basic concepts and mechanisms in
computing and information processing. It is a sim-
ple mathematical model of computers which was in-
troduced by Turing in 1936 to answer fundamental
problems of computer scienee ‘What kind of log-
ical work can we effectively perform ?' [59]. If the
restrictions in its structure and move are placed on
Turing machine, the restricted Turing machine is less
powerful than the original one. However, it has be-
come increasingly apparent that the characterization
and classification of powers of the restricted Turing

posed two-dimensional automatatwo-dimensional
finite automata and marker automata, and investi-
gated their abilities of pattern recognition in 1967
[3]. Since then, many researchers in this field
have been investigating a lot of properties about au-
tomata on a two-dimensional tape. For example,
Morita, Umeo, and Sugata proposed &ifm,n)
space-bounded two-dimensional Turing machine and
its variants to formalize memory limited computa-
tions in the two-dimensional information process-
ing [33]. Inoue, Takanami, and Taniguchi intro-
duced two-dimensional alternating Turing machines
as a generalization of two-dimensional nondetermin-
istic Turing machines and as a mechanism to model
parallel computation. Restricted version of two-

machines should be of great importance. Such a study dimensional alternating Turing machines were inves-

was active in 1950’s and 1960’s. On the other hand,
many researchers have been making their efforts to in-
vestigate another fundamental problems of computer
science— ‘How complicated is it to perform a given
logical work?’. The concept of computational com-
plexity is a formalization of such difficulty of logical
works.

In the study of computational complexity, the
complexity measures are of great importance. In gen-
eral, it is well known that the computational complex-
ity has originated in a study of considering how the
computational powers of various types of automata
are characterized by the complexity measures such
as space complexity, time complexity, or some other
related measures. Especially, the concept of com-
plexity is very useful to characterize various types of
automata from a point of view of memory require-
ments [34]. This study was motivated by Stearns,
Hartmanis, and Lewis in 1965 [54]. They introduced
an L(m) space-bounded one-dimensional Turing ma-
chine to formalize the notion of space complexity, and
investigated its computing ability. Some results were
refined by Hopcroft and Ullman [12-14]. Moreover,
Chandra, Kozen, and Stockmeyer introduced an alter-
nating Turing machine as a theoretical model of par-
allel computation in 1981 [5]. An alternating Turing
machine, whose state set is partitioned into two dis-
joint sets, the set of universal states and the set of exis-
tential states, is a generalization of a nondeterministic
Turing machine. A nondeterministic Turing machine
is an alternating Turing machine which has only ex-
istential states. In related paper [11,15,29-31,39,40,
45,55], several investigations of these machines have
been continued.

After that, the growth of the processing of pic-
torial information by computer was rapid in those
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tigated [24,25]. Special types of two-dimensional Tur-
ing machines (two-dimensional pushdown automata,
stack automata, multicounter automata, multihead
automata, and marker automata) were investigated
[16,21,51,52,56]. Moreover, cellular automata on a
two-dimensional tape were investigated not only in
the viewpoint of formal language theory, but also
in the viewpoint of pattern recognition. Cellular
automata on a two-dimensional tape can be classi-
fied into three types. The first type, called a two-
dimensional cellular automata, is investigated [2,6,7].
Especially, many properties of two-dimensional on-
line tessellation acceptors, which are restricted type
of two-dimensional cellular automata, are investigated
[17,18,20]. The second type of cellular automata on
a two-dimensional tape is investigated [19,42,44,58].
Two typical models of this type are parallekequen-

tial array automata and one-dimensional bounded cel-
lular acceptors. The third type, called a pyramid cellu-
lar acceptor, is investigated [22]. More detailed survey
of two-dimensional automata theory is done by Inoue
and Takanami [23].

By the way, the question of whether process-
ing three-dimensional digital patters is much difficult
than two-dimensional ones is of great interest from
the theoretical and practical standpoints. In recent
years, due to the advances in many application ar-
eas such as computer graphics, computer-aided de-
sign / manufacturing, computer vision, image pro-
cessing, robotics, and so on, the study of three-
dimensional pattern processing has been of crucial
importance [9,10,41,43]. Thus, the reseach of three-
dimensional automata as the computational model of
three-dimensional pattern processing has been mean-
ingful. However, it is conjectured that the three-
dimensional pattern processing has its own difficul-
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tiesnot arising in two-dimensional case. One of these chines, including three-dimensional finite automata
difficulties occurs in recognizing topological proper- and marker automata.

ties of three-dimensional patterns because the three-

dimensional neighborhood is more complicated than

two-dimensional case. Generally speaking, a property 3.1  Preliminaries

or relationship is topological only if it is preserved  pefinition 3.1. Let & be a finite set of symbols.
when an arbitrary ‘rubber-sheet’ distortion is applied A three-dimensional input tapever ¥ is a three-
to the pictures. For example, adjacency and connect- gimensional rectangular array of elementSbfThe
edness are topological; area, elongatedness, convex-get of all the three-dimensional input tapes oXeis

ity, straightness, etc. are not.
During the past about thirty years, automata
on a three-dimensional tape have been proposed

and several properties of such automata have been

obtained. Inoue and Nakamura proposed an n-
dimensional on-line tessellation acceptor which can
determine whether an n-dimensional tape is accepted
or not by the on-line and parallel processing [17].
Blum and Sakoda investigated the capability of finite
automata in two-dimensional and three-dimensional
space [4]. Yamamoto, Morita, and Sugata intro-
duced a three-dimensional k-marker automaton, an
L(m) space-bounded three-dimensional Turing ma-
chine and anL(m) space-bounded five-way three-
dimensional Turing machine [60]. They studied
the problem of recognizing connectedness of three-
dimensional patterns by these machines. Taniguchi,
Inoue, and Takanami investigated the relationship be-
tween the accepting powers of three-dimensional fi-
nite automata and five-way three-dimensional Turing
machines [57]. They also proposed a k-neighborhood
template A-type two-dimensional bounded cellular
acceptor which consists of a pair of a converter and
a configuration-reader, as the computational model
of three-dimensional pattern process. The converter
converts the given three-dimensional tape to the two-
dimensional configuration, and the configuration-

denoted by-®).

Given an input tapec € %), for each inte-
gerj(l < j < 3), we letl;(z) be the length of
z along thejth axis. The set of al: € () with
ll(a;) = ni, lQ(SU) no and lg(I) = n3 is de-
noted byx.("1:m2m3)  When1 < 4; < I;(z) for each
Jj(1 < j < 3), letx(iy,i2,i3) denote the symbol in
x with coordinatesi, i-, i3). Furthermore, we define
x[(il,iQ,ig),(ill,ié,ié)], whenl < ’ij < ’L; < l](x)
for integerj(1 < j < 3), as the three-dimensional
input tapey satisfying the following conditions:

(i) foreachj (1 < j <3),l;(y) =i} —i; + 1

(II) for eachry, 1o, 73 (1 <r < ll(y), 1 < ry <
lb(y), 1 <r3 <I3(y)), y (ri,r2,m3) =2 (r1 +i1 — 1,
ro i — 1,73 + 13 — 1).

Definition 3.2. A three-dimensional alternating
Turing machine(3-AT' M) is a seven-tupleM
(Q,q0,U, F,%,T,9), where

() @ is a finite set oktates;
(i) go € Q is theinitial state
(i) U C Q is the set oluniversal states
(iv) F C Q is the set ofaccepting states

reader determines the acceptance or nonacceptance ofv) ¥ is a finiteinput alphabei(# ¢ X is thebound-

given three-dimensional tape, depending on whether
or not the derived two-dimensional configuration is
accepted [58]. Nakamura and Aizawa proposed the
interlocking component which is a chainlike connec-
tivity a new topological property of three-dimensional
digital pictures, and investigated the recognizability
of interlocking components [37]. Sakamoto proposed
multi-dimensional automata, and showed their several
properties [46,47,49,50]. Moreover, Ito et al. investi-
gated about synchronized alternation and parallelism
for three-dimensional automata [27, 28].

3 Three-Dimensional
chines

Turing Ma-

This section concerns alternating, nondeterminis-
tic, and deterministic three-dimensional Turing ma-
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ary symbaj;

(vi) T is a finite storage tape alphabd3 € I' is the
blank symbgland

(vii) 5 € (Q x (DU{#}) x ) x (Q x (I —
{B}) x (east,west,south,north,up,down,no moxe)
(right,left,no move)s thenext move relation

A stateq in Q — U is said to beexistential As
shown in Fig.1, the machin&/ has a read-only rect-
angular input tape with boundary symbolg’*and
one semi-infinite storage tape, initially blank. Of
course,M has a finite control, an input head, and a
storage-tape head. A position is assigned to each cell
of the storage tape, as shown in Fig.1.

A stepof M consists of reading one symbol from
each tape, writing a symbol on the storage tape, mov-
ing the input and storage heads in specified directions
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’ storage tape
A

storage tape head —

finite control

input tape head —

The 2nd axis ~

The 1st axis

The 3rd axis

three dimensional
input tape

Fig. 1: Three-Dimensional Alternating Turing Ma-
chine.

(east, west, south, north, up, down, or no move for in-

put head, and left, right, or no move for storage head),

and entering a new state, in accordance with the next
move relations.

Definition 3.3. A configuration of a 3-ATM

M =(Q,q,U,F,X,I')0) is a pair of an element a3

and an element of’y; = (IV U {0})® x Sy, where
Sy =Q x (I' = {B})*x N, andN denotes the set
of all positive integers. The first componentof a
configurationc = (z, ((i1, 42, 13),(q,cs)))) represents
the input toM. The second componefi, iz, i3) of

c represents the input-head position. The third com-
ponent(q, o, j) of ¢ represents the state of the finite
control, nonblank contents of the storage tape, and the
storage-head position. An element @j; is called

a semi-configuratiorof A and an element af,; is
called a storage state 6f. If ¢ is the state associated
with configuratione, thenc is said to be a universal
(existential, accepting) configuration;ifs auniversal
(existential, acceptinggtate. The initial configuration
of M on inputr is IM(x) = (ZE, ((17 L, 1)a (QO7 A, 1)))’
where is the null string.

Definition 3.4. Given M = (Q, qo, U, F,3,T',0), we
write ¢ Fy; ¢ and is a successowof c¢ if config-
uration ¢’ follows from configurationc in one step
of M, according to the transition rules 3, de-
notes the reflexive transitive closuretof;. The re-
lation -, is not necessarily single-valued, becatdse
is not. A computation pattof M on z is a sequence
coFmeby - Fu cn(n > 0), wherecy = IM(CC)

A computation tree of\/ is a finite, nonempty
labeled tree with the following properties:
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(i) each node of the tree is labeled with a configura-
tion [(v);

(i) if v is an internal node (a nonleaf) of the tree,
l[(v) is universal ana|l(v) Fpr ¢ =cq,...,cx, theno
has exactlyt childrenvy, - - -, vy, such that (v;) = ¢;
(1<i<k);and

(iii) if v is an internal node of the tree ah@) is ex-
istential, therv has exactly one child such that

l(v) Far U(u).

A computational tree of\/ on inputz is a com-
putation tree of\/ whose root is labeled with;(x).
An accepting computation tregf M on x is a com-
putation tree of\/ onx whose leaves are labeled with
accepting configurations. We say thidt acceptse if
there is an accepting computation treeléfon input
z. Define

T(M) = {z € XO) | M accepts z}.

We next define a five-way three-dimensional al-
ternating Turing machine, which can be considered as
an alternating version of a five-way three-dimensional
Turing machine [49].

Definition 3.5. A five-way three-dimensional alter-
nating Turing machine {V3-AT M) is a 3-ATM
M = (Q,q,U, F,%,T,6) such that

5 C(Qx (SU{#}) xT)x(Qx (I - B)x
{east,west,south, north, down, no mpve {right,
left, no move).

That is, anF'V3-AT M is a3-AT M whose input
head can move east, west, south, north, or down, but
not up.

The set of states of alternating automaton is par-
titioned into two nonintersecting sets, i.e., the set of
existential states and the set of universal states. A
three-dimensional nondeterministic Turing machine
(3-NTM) (a five-way three-dimensional nondeter-
ministic Turing machindFV3-NTM)) is a3-ATM
(FV3-AT M) which has no universal state. Con-
versely, a3-AT M (FV3-AT M) which has no exis-
tential states is calledthree-dimensional alternating
Turing machine with only universal stat€sUT M)
(afive-way three-dimensional alternating Turing ma-
chine with only universal statgg'V'3-UT M)). Of
course, ahree-dimensional deterministic Turing ma-
chine(3-DT M) (afive-way three-dimensional deter-
ministic Turing maching 'V 3-DT M)) is a special
case of3-ATM (FV3-ATM), i.e., each of whose
configurations has at most one successor.

Definition 3.6. Let L(m) : N— R be a function
with one variablem, where N is the set of all
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positive integers andR is the set of all nonnegative
real numbers. With &3-ATM M we associate
a space complexity functiorSPACE that takes

configurations to natural numbers. That is, for
each configuratione = (z, ((i1,2,13), (¢, @, 7))),
let SPACEc) lal.  We say thatM is L(m)

space-boundedf for all m > 1 and for eachz
with [;(z) = la(z) = l3(x) = m, if x is accepted
by M, then there is an accepting computation tree
of M on inputz such that for each node of the
tree, SPACE (v)) is smaller than or equal to the
smallest integer which is greater than or equal to
L(m). By ‘3-ATM (L(m))’ ( FV3-ATM (L(m)),

‘3-UTM (L(m)), ‘FV3-UTM(L(m)),
‘3-NTM(L(m))’, ‘FV3-NTM(L(m)),
‘3-DTM(L(m))’, (FV3-DTM(L(m))’) we de-

note anL(m
3-UTM, FV3-UTM,
3-DTM, FV3-DTM).
A 3-ATM(0) (FV3-ATM(0)) is called ahree-
dimensional alternating finite automaton (five-way
three-dimensional alternating finite automatpand
denoted by3-AFA (FV3-AFA). Similarly, a
3-UTM(0) 3-NTM(0), 3-DTM(0)) is called a
three-dimensional alternating finite automaton with

) space-bounde8-ATM (FV3-ATM,
3-NTM, FV3-NTM,

only universal states (three-dimensional nondeter-

ministic finite automaton, three-dimensional deter-
ministic finite automaton), denoted by-UF A’
('3-NFA','3-DFA’). Afive-way 3-UF A (3-NF A,
3-DF A) is denoted by FV3-UF A (| FV3-NF A,
‘FV3-DFA).

Moreover, we introduce two automata for the im-
provement of picture recognizability of the finite au-
tomaton. One is a multi-marker automaton. It is a fi-

nite automaton which keeps marks as ‘pebbles’ in the

finite control, and cannot rewrite any input symbols
but can make marks on its input with the restriction

that only a bounded number of these marks can exist

at any given time [32, 49]. The other is a multi-inkdot
automaton. This automaton is a conventional finite
automaton capable of dropping an inkdot on a given
input tape for a landmark, but unable to further pick
it up. For a three-dimensiona-marker automaton
(three-dimensiond-inkdot automaton) is denoted by
3-XMAy, (3-XI1Ay) for eachX € {D,N,U, A},
whereD means determinismdy means nondetermin-
ism, U means alternation with only universal states,
and A means alternation.

For each X ¢ {D,N,U, A}, we denote
a 3-XTM (FV3-XTM, 3-XTM(L(m)),
FV3-XTM(L(m)), 3-XFA, FV3-XFA) whose
input tapes are restricted to cubic ones3b)X T M€.
FV3-XTM¢, 3-XTM¢(L(m)), etc. have the same
meaning.

For each X ¢ {D,N,U, A}, we denote
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by L[3-XTM] the class of sets of all three-
dimensional tapes accepted BYXTM's. That is,

L[3-XTM| =T|T = T(M) for some3-XTM M.
LIFV3-XTM], L[3-XTM(L(m))], etc. are defined
similarly.

3.2 Main Accepting Powers

This subsection states the accepting powers of three-

dimensional Turing machines [49].

Theorem 3.1.
L[3-DTM(L(m))]
L[3-ATM(L(m))].

If L(m) = o(logm), then
CLBUTMAL(m)] C

Corollary 3.1. L[3-DFA¢] C L[3-NFA‘] C
L[3-AFA°).

Theorem 3.2 If @) L(m)=o(m?),
or (i) L(m)>logm and L(m)=o(m3),
then LIFV3-DTM(L(m))] C

LIFV3-UTM¢(L(m))] € LIFV3-ATM(L(m))]
and LIFV3-UTM¢(L(m))] an
L[FV3-NTM¢(L(m))] are incomparable.

o -

Corollary  3.2. (i) L[FV3-UFA9 C
LIFV3-AFA“). (i) L[FV3-UFA] is in-
comparable  with L[FV3-NFA€]. (iii)
L[FV3-DF A C L|FV3-UF A“).

Theorem 3.3. If (i) L(m) = o(m?), or (i)
L(m) > logm and L(m) = o(m ), then
LIFV3-UTM¢(L(m))] € L[3-UTM¢(L(m))].
Corollary 3.3. L[FV3-UF A¢] C L[3-UF A“].
Theorem  3.4. LIFV3-UF A -

=

L[FV3-DTM¢(m?)], and spacen? is necessary and
sufficient for FV3-DTM®s and FV3-NTM® s to
simulateF'V3-U F A% s.

Theorem 3.5. L[3-UF A¢| C L[FV3-DTM¢(m?)],
and spacem?® is necessary and sufficient for
FV3-DTM*® s to simulate3-U F A%s.

Remark 3.1. We conjecture thatC[3-UF A¢] C
L[FV3-NTM¢(m?)], but we have not completed the
proof of this conjecture yet.

Theorem 3.6. Spacem? is necessary and sufficient
for FV3-DTM%s to simulate FV3-AFA%s and
3-AF As.

Open Problems 3.1. (i) Is L[3-NTM¢(L(m))] in-
comparable withC[3-UT M¢(L(m))] for any L such
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that L(m) = o(logm)? (i) L[3-DTM(L(m))] <
L[3-NTM¢(L(m))] € L[3-ATM(L(m))] for any
L(m) > logm?

4 Three-Dimensionally Space Con-
structibility and Space Hierarchy

This section concerns three-dimensionally space con-
structible functions and space complexity hierarchy of

three-dimensional Turing machines whose input tapes
are restricted to cubic ones.

4.1 Main Accepting Powers

Definition 4.1. A function L(m): N — R is called
three-dimensionally space constructibiehere is a
3-DT M (L(m))¢ M such that for eacln > 1, there
exists some input tape with i;(x) = la(x) =
Is(z) = m on which M halts after its storage head
has marked off exactly the greatest integer cells which
is smaller than or equal tb(m). (In this case, we say
that M constructs the functiof in the storage tape.)

Definition 4.2. A function L(m): N — R is called
three-dimensionally fully space constructilii¢here
isa3-DTM(L(m))¢ M which, for eachmn > 1 and
for each input tape: with [;(x) = lx(z) = I3(x)
m, makes use of exactly the greatest integer cells
which is smaller than or equal #(m) and halts.

4.2 Three-Dimensionally Space Construtible
Functions and Complexity Results

In this subsection, we show three-dimensionally fully
space constructibility and space complexity hierar-
chies of three-dimensional Turing machines whose in-
put tapes are restricted to cubic ones [49].

Theorem 4.1. We consider the following three func-
tions :

log@m = m,
log*m = min{z|log®m < 1}.

Then, the functiongog®)m (k: any natural number)
andlog*m are three-dimensionally fully space con-
structible.

Theorem 4.2. For anyX € {D, N, U, A}, for any

functionL(m): N — R, and for any constant > 0,
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L[3-XTM¢(L(m))] = L[3-XTM(L(m) +d)].

Theorem 4.3. For anyX € {D,N,U, A}, for any
functionL(m): N - R, and for any constarnt > 0,
L[3-XTM¢(L(m))] = L[3-XTM¢(dL(m))].

Theorem 4.4. Let L;(m) and Ls(m) be any func-
tions such that (i)La(m) is three-dimensionally
space constructible, (i)im;—oL1(m;)/La(m;) =

0, and (i) La(m;)/logm; > k (i=1,2,...) for
some increasing sequence of natural numbess
and for some constant > 0. Then there ex-
ists a setT in L[3-XTM¢(La(m))], but not in

L[3-XTM¢(L1(m))] forany X € {D, N}.

Theorem 4.5. For any functions L;(m) and
Lo(m) such that (i) L2(m) is three-dimensionally
space constructible, (iifi(m) = o(L2(m)), there
exists a set inL[3-DT'M¢(Ly(m))], but not in
L[3-NTM¢(Ly(m))].

Open Problems 4.1. (i) Are the functionslog®*)m

(k > 3) andlog*m fully space constructible by one-
dimensional deterministic two-head Turing machines
or by two-dimensional deterministic Turing machines
with square inputs? (ii) Is there any other unbounded
function belowlogm which is three-dimensionally
fully space constructible? (iii) Is there an infinite
tight hierarchy for3-ATM¢(L(m))’s with L(m) >
logm? (iv) Is there an infinite space hierarchy for
3-ATM¢°(L(m))" with L(m) < loglogm?

5 Recognizability of Connected Pic-
tures

The recognition of the connectedness of digital pic-
tures is one of the most fundamental problems in pic-
ture processing. There have been various results re-
lated to this problem. Especially, to recognize three-
dimensional connectedness seems to be much more
difficult than the two-dimensional case, because of
intrinsic characteristics of three-dimensional pictures.
This section mainly show the recognizability of three-
dimensional connected tapes by three-dimensional au-
tomata. LetTo be the set of all three-dimensional
connected pictures. It is interesting to investigate how
much space is required for three-dimensional Turing
machines to accefic. For this problem, we have

Theorem 5.1.(i) T € L[3-AF A€|. (ii) logm space

is necessary and sufficient f611/3-AT M’s to recog-
nizeTe.
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Theorem 5.2.7¢ € L[3-N M A;] [60].

Theorem 5.3. (i) the necessary and sufficient
space for FV3-DTM's to simulate 3-DTM;'s
(3-NTM;y’s) is 2imloglm (9k "wherek = 12m?). (i)

the necessary and sufficient space far3-NT M's

to simulate 3-DT'My’s (3-NTM;'s) is Imloglm
(1?m?), wherel(m) is the number of rows (columns)
on each plane of three-dimensional rectangular input
tapes.

Theorem 5.4.7¢ ¢ L[3-N1Ay] [32].

Remark 5.1.[3-NTAy| C L[3-AI Ai] for any integer
k.

Open Problems 5.1. (i) T¢ ¢ L[3-DTM (L(m))]
orTe ¢ L[3-NTM(L(m))] for L(m) = o(logm)?
(i) Tc € L[3-UIA;])? (iii) Is T accepted by a
3-DT M;?

By the way,Digital geometryhas played an im-
portant role in computer image analysis and recog-
nition [43]. In particular, there is a well-developed
theory of topological properties such asonnected-
nessand holesfor two-dimensional arrays [44]. On
the other hand, three-dimensional information pro-

cessing has also become of increasing interest with the

rapid growth of computed tomography, robotics, and

so on. Thus it has become desirable to study the ge-

ometrical properties such agerlocking components
and cavitiesfor three-dimensional arrays [37]. Inter-

locking components was proposed as a new topolog-

ical property of three-dimensional digital pictures in
[37]. Let .Sy and S, be two subsets of the same three-
dimensional digital picture..S; and S5 are said to
be interlocked when they satisfy the following con-
ditions:

() 51 andS; aretori,
(2) S; goes through &oleof S,,
(3) S2 goes through &aoleof S;.

The interlocking ofS; and S, is illustrated in
Fig.2. This relation may be considered as a chainlike
connectivity. Generally speaking, a property or rela-
tionship istopologicalif it is preserved when an arbi-
trary ‘rubber-sheet distortion is applied to the pic-

Makoto Sakamoto, Naoko Tomozoe,
Hiroshi Furutani, Michio Kono, Takao
Ito and Yasuo Uchida

Fig. 2: Interlocking Components.

dimensional input tape [37]. Moreover, in [35], three-
dimensional one-marker automata are investigated in
terms of the space complexities that five-way three-
dimensional Turing machines require and suffice to
recognize interlocking components.

6 Other Topics

In this section, we list up other topics and related ref-
erences about three-dimensional automata.

(i) Properties of special types of three-dimensional
Turing machines (leaf-size bounded automata, paral-
lel automata, multi-counter automata, etc. on three-
dimensional tapes) [28,48,49].

(i) Cellular types of three-dimensional automata
[8,17,22,58].

(iif) Closure properties [14,23,49].

(iv) Recognizability of topological properties [36-38].
(v) NP-complete problems [14,26,49].

7 Conclusions

In this paper, we surveyed several aspects of three-
dimensional automata. Especially, we dealt with
three-dimensional Turing machines, including finite

tures. For example, adjacency and connectedness areautomata, three-dimensionally space constructability,

topological; area, elongatedness, convexity, straight-
ness, etc. are not.

It is proved that no one-marker automaton

can recognize interlocking components in a three-

ISSN: 1109-2750 1644

recognizability of three-dimensional connected pic-
tures, and so on. We believe that there are many prob-
lems about three-dimensional automata to solve in the
future. We hope that this survey will activate the in-
vestigation of three-dimensional automata theory.
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