
Counter register. Algebraic model and applications

ANCA VASILESCU
Transilvania University of Braşov

Department of Theoretical Computer Science
Str. Iuliu Maniu nr.50

ROMANIA
vasilex@unitbv.ro

Abstract: Hardware system consists of interconnected components, meaning communicating and synchronized
components. Since the number of interconnected components in a computer system is continuously increasing, it
follows that it is useful to have an alternative solution for verifying the computer operation instead of a simulation-
based verification. In this paper we consider a specific component of the modern computer systems, namely a
counter register, and we propose an algebraic approach as a solution for modelling and verifying the specification
agents. As a final part of the paper, we mention some practical applications of the counter register, both in the
everyday life and for the internal structure of the computer systems.

Key–Words:communication, counting operation, hardware system, modelling, SCCS process algebra, synchro-
nization, verification

1 Introduction
A modern approach for analyzing the computer or-
ganization is based on the study of internal structure
of interconnected components [1]. Hardware system
consists of interconnected components. In general,
computer systems are synchronous hardware struc-
tures so that internal components are synchronized to
the pulses of the CPU global clock. Since the number
of interconnected components in a computer system
is continuously increasing and the distributed systems
are widely used, it follows that the sub-systems level
of independence is also increasing while the level of
synchronization is decreasing. Hence, for this kind
of modern systems, the communication protocols be-
come very important for coordinating and unifying the
internal cooperative sub-systems. In order to model
these protocols, the hardware components are repre-
sented as agents involved in specific communications.
That is why the SCCS-based agents represent a quite
appropriate approach for analyzing the specific rela-
tions between the hardware components.

The final outcome of this paper consists in de-
veloping an algebraic model of communicating and
synchronized hardware components represented at the
digital logic level. The content of the paper is based
on the following approach: starting from the specific
hardware components operation, we have obtained
the appropriate theoretical modelling expressions, the
SCCS description files and the CWB-NC automated
verification.

In our work (see e.g. [11], [12]) we have selected

to be modelled those examples and digital circuits
which are representative for the computer architecture
structure and which are appropriate for developing a
scalable, open hardware components hierarchy. An-
other researchers are also interested in modelling the
hardware components behaviour, especially the reg-
isters as main memory structures [2], [8] in order to
have an alternative solution for verifying the computer
operation instead of a simulation-based verification.

There were at least two kind of problems we
successfully passed during the modelling process: in
[11], how to model the logical values (re)transmitted
over the feed-back wires of the sequential circuits and
in [12] and here, how to model the communication
between the same type of components or between the
different type of components.

Sometimes, in order to model the behaviour of
a certain sequential circuit it is essential to make the
difference between a stable, final state and an inter-
mediate state. For this reason, we have to be able to
identify the state changes and, moreover, to follow the
circuit operation in time. In this paper we consider as
prerequisites our results from [12] and [13]. We start
with those models and we modify them in order to
focus on the final states. It follows that we use these
new agents for modelling the communication between
distinct hardware components.

In order to obtain our models, we use the Mil-
ner’s process algebra SCCS, a synchronous calculus
derived from CCS (Calculus of Communicating Sys-
tems) [7]. We combine the process algebra and the

WSEAS TRANSACTIONS on COMPUTERS

Anca Vasilescu

ISSN: 1109-2750 1618 Issue 10, Volume 7, October 2008

automata theory by using aConcurrency WorkBench
platform, namely CWB-NC [17] for automatic verifi-
cation of the target models. Using together SCCS and
CWB-NC we have many advantages, such as: CWB-
NC recognizes the SCCS specification files, CWB-
NC can simulate the behaviour of the system specified
in SCCS and, moreover, the CWB platform can auto-
matically verify many types of equivalences between
models, including bisimilarity as the most appropriate
equivalence between SCCS specifications of the target
system behaviour.

In terms of practical dimension, the main idea of
this paper is to use the algebra-based calculus SCCS
for a specific class of practical logic circuits. There-
fore, this work can be viewed as a result of formal
methods applied to the modelling of hardware com-
ponents of computers. Because SCCS could scale up
easily, starting with the model of the flip-flops ob-
tained in [11] we may continue with specifying the
behaviour of any memory component, especially reg-
isters, and we may finally obtain an algebraic-based
model for the computer system behaviour, each hard-
ware component being modelled as an agent. Hav-
ing an algebraic model like this, we have the main ad-
vantage of automatic verification of the specifications
of the computer system behaviour for precisely inputs
and at certain clock signals.

This paper is structured as follows. Section 2
presents the preliminaries about sequential circuits
(flip-flops, registers and counter register) and the al-
gebraic SCCS language. Based on these notions, in
Section 3 we could develop the target algebraic model
for the counter register two-step operation with final
states. The most important part of the paper consists
in defining the correct specification agents for the first
step, the changing step and the second step of opera-
tion, but the core is the model for the changing-step
transition. As a practical dimension, we consider in
Section 4 some specific applications for the counter
register as a basic component of digital computers.
We have chosen the appropriate applications both in
order to prove the usefulness of the counting opera-
tion in the everyday life and to mention the near future
direction for our work: to develop an algebraic model
for the entire computer operation. The final section is
providing some conclusions and open problems.

2 Preliminaries

2.1 Flip-flops. Registers. Counter register

A flip-flop is a sequential circuit, a binary cell capable
of storing one bit of information. It has two outputs,
one for the normal value and one for the complement

value of the bit stored in it. A flip-flop maintains a bi-
nary state until it is directed by a clock pulse to change
that state. The difference among various types of flip-
flops is the number of inputs and the manner in which
the inputs affect the binary state. The most common
types of flip-flops are:SR flip-flop, D flip-flop, JK
flip-flop andT flip-flop.

For the interest of this paper we note that, by def-
inition, aT (Toggle) flip-flop has one input, namelyT
and it operates as follows: whenT = 0 a clock transi-
tion does not change the state of the flip-flop and when
T = 1 a clock transition complements the state of the
flip-flop.

A register is a group of flip-flops with each flip-
flop capable of storing one bit of information. In this
paper we refer to atwo-bit registerthat has a group of
two T flip-flops and consequently it is capable of stor-
ing any binary information of two bits. In addition to
the flip-flops, a register may have combinational gates
that perform certain data-processing tasks. The flip-
flops hold the binary information and the gates control
when and how new information is transferred into the
register.

A register that goes through a predetermined se-
quence of states upon the application of the clock
pulses is called acounter register. Counters are found
in almost all equipment containing digital logic. They
are used for counting the number of occurrences of
an event and they are useful for generating timing
signals to control the sequence of operations in dig-
ital computers. Atwo-bit binary counterfollows a
sequence of states according to the binary count of
two bits, from 0 to 22-1. The design of binary coun-
ters can be carried out from a direct inspection of the
sequence of states that the register must undergo to
achieve a straight binary count or a reverse binary
count. Synchronous binary countershave a regular
pattern, namely the clock inputs of all flip-flops re-
ceive the common clock.

2.2 Process algebra SCCS
The process algebra SCCS, namelySynchronous Cal-
culus of Communicating Systemsis derived from CCS
[7] especially for achieving the synchronous interac-
tion in the framework of modelling the concurrent
communicating processes. Both in CCS and in SCCS,
processes are built from a set of atomic actionsA.
Denoting the set of labels for these actions byΛ, a
CCS action is either (1) anameor an input ona ∈ Λ
denoted bya, (2) a conameor an output ona ∈ Λ
denoted bya or ˜a or (3) an internal ona ∈ Λ de-
noted byτ . In SCCS thenamestogether with the
conamesare called theparticulate actions, while an
actionα ∈ Λ∗ can be expressed uniquely (up to order)

WSEAS TRANSACTIONS on COMPUTERS Anca Vasilescu

ISSN: 1109-2750 1619 Issue 10, Volume 7, October 2008

as a finite productaz1

1
az2

2
... (with zi 6= 0) of powers of

names. Note the usual convention thata−n = an and
that the action1 in SCCS is the actionτ from CCS
and it is identified in SCCS with the empty product.
An SCCSprocessP is defined with the syntax:

P ::= nil termination
| α:P prefixing
| P+P external choice
| P× P product, synchronous composition
| P\L restriction,L ⊆ A ∪A
| P[f] relabelling with the morphism

f : A ∪A→ A ∪A

Model 1: Syntax of a SCCS process

In this grammar, the restriction is inherited from
CCS. There is also an SCCS specific restriction de-
noted by the↾ operator and structural related with the
CCS operator by

P\L= P↾ E

whereE = (A-L)* is the submonoid ofA generated
by the set differenceA-L. By definition, the P↾ E
agent is forced to execute only the actions from the set
E as the external actions and the agent P\Lis forced
to not execute the actions from the setL, except as the
internal actions.

The operational semantics for SCCS is given via
inference rules that define the transition available to
SCSS processes. Combining the product and the
restriction, SCCS calculus defines the synchronous
interaction as a multi-way synchronization among
processes.

3 Modelling two steps of operation
with final states

In [12] we have considered a specific structure of a
hardware component, namely a counter register based
on a combination of interconnected digital compo-
nents represented in Figure 1.

Figure 1: Two-bit synchronous binary counter

This circuit consists of an input combinational
level and a sequential level, the latter based on two
synchronizedT flip-flops.

Remark 1 The above counter register operates as
follows. If the count enableE is 0, both theTA and
TB inputs are maintained at 0 and the output of the
counter does not change. When the counter is enabled
and the clock goes through a positive transition, the
operation of the counter depends on the value of the
input x, as follows: whilex = 0 the register oper-
ates like a counting-down counter and whilex = 1
the register operates like a counting-up counter.

In this model, the bitB is the less significant bit
and the bitA is the most significant bit. Hence, the
predeterminated sequence of states for the contentAB
of the register is 00→ 11→ 10→ 01→ 00, and so
on, for the counting-down operation and it is 00→
01→ 10→ 11→ 00, and so on, for the counting-up
operation.

In this paper we are concerned about the mod-
elling of two steps of operation, namely two state
changes for the counter register starting from the ini-
tial state 00. For representing this sequential behav-
iour, the involved agents have to simulate one step of
operation starting from the initial state 00 followed by
another one step of operation with initial state iden-
tical with the final state of the first step. For this
reason, it is important to assure that the agents are
emphasizing the final state of the flip-flops, so that
the rendez-vous (data exchange and synchronization)
compulsory takes place between the first and the sec-
ond step, meaning after the register has achieved the
final (stable) state of the first step.

We consider as prerequisites of this work our re-
sults from [12] concerning the agentSpecCR(A,B, c)
for specifying one step of operation of the counter
register. For the interest of this paper, we modify
the expression of the agentSpecCR(A,B, c) so that
the resulted one-step agentSpecCRfs(A,B, c) has to
be able to execute a special, specific action, denoted
by endCountStep only if the register has achieved
the final state of the first step. Further, we use
the agentsSpecCRfs(A,B, c) for defining two factor
agents, namelyStep1(A,B) andStep2(A,B), and the
final product agent

SpecCRTwoSteps(0, 0, A∗, B∗) = (1)

= (Step1(0, 0)× Step2(A∗, B∗))\ComMeetAB

for specific, correct binary combinations of values
A∗B∗ according to the possible changes of the counter
register content starting from the initial state(0, 0) and
for a specific setComMeetAB of external communicat-
ing actions.

WSEAS TRANSACTIONS on COMPUTERS Anca Vasilescu

ISSN: 1109-2750 1620 Issue 10, Volume 7, October 2008

3.1 Modelling the first step
In order to model the first step of the counter regis-
ter operation with final states, we shall define the ap-
propriate agents for specifying both the entrance com-
binational level (consisting of basic logic gates) and
the sequential level (consisting of two synchronized
T flip-flops).

Let DELTA be a delaying agent defined by

DELTA = 1 : DELTA (2)

As we have seen in the previous section 2.2 the
action1 is defined by the SCCS language as the delay-
ing action. It follows that the previous agentDELTA
can only delay (it is anidle agent).

Let also define the specification for the combina-
tional entrance level by the agents

SpecIn(A,B) = (3)

=
∑

E,x∈{0,1}

ǫEζxαAβBandoutpEdq : DELTA

wherep = E AND (B NXOR x) andq = E.
Using these definitions, for each pair(A,B) ∈

{(0, 0), (0, 1), (1, 0), (1, 1)} the specification of the
combinational level behaviour is given by the agents

SpecCLC(A,B) = SpecIn(A,B)[ΦCLC] (4)

where the morphismΦCLC is defined by the rela-
belling pairs:andoutp 7→ comTAInpTAp andEdq 7→

comTBInqTBq.
For the specific case ofA=0 andB=0, the CWB-

NC automaton assigned to the agentSpecCLC(0, 0) is
represented in Model 2. It has two states, namely0:
and1:, and five transitions.

0:‘E0.x0.A0.B0.∼comTAIn0.∼TA0.∼comTBIn0.∼TB0’ {1}
‘E0.A0.B0.x1.∼comTAIn0.∼TA0.∼comTBIn0.∼TB0’ {1}
‘x0.A0.B0.E1.∼comTAIn1.∼TA1.∼comTBIn1.∼TB1’ {1}
‘A0.B0.x1.E1.∼comTAIn0.∼TA0.∼comTBIn1.∼TB1’ {1}

1:‘’ {1}

Model 2: The SpecCLC(0,0) CWB-NC automaton

As we have already proved in [11] and [13] theT
flip-flop operation with final states might be specified
by the agents:

InTfs(T) = ξT αJβK : InTfs(T)+endInT InTfs(T) (5)

where the evaluations areJ = T andK = T and the
agents:

SpecTfs(m,n, c) =

=
∑

T∈{0,1}

(InTfs(T)[endInT/final]× (6)

× SpecJKfs(m,n, c)[endJKmn/final endTmn])\

\{α, β, final}

for (m, n) ∈ {(0, 1), (1, 0)}.
For eachi ∈ {0, 1} we define the setRestrTIni

= {CLK, ξi, γ, δ, endT} of restricted actions involved
in the next specification agents for the twoT flip-
flops behaviour with final states. Here, the first agent
SpecT(A, c) represents theT flip-flop associated with
A – the most significant bit of the counter register
and the second agentSpecT(B, c) represents theT flip-
flop associated withB – the less significant bit of the
counter register.

SpecT(A, c) = (7)

= (
∑

i∈{0,1}

comTAIni(SpecTfs(NOT A,A, c) ↾

↾ RestrTIni))[ΦAc]

and

SpecT(B, c) = (8)

= (
∑

i∈{0,1}

comTBIni(SpecTfs(NOT B,B, c) ↾

↾ RestrTIni))[ΦBc]

where the morphismΦAc is defined by the relabelling
pairs ξT 7→ TAT , CLKc 7→ CLKAc, γm 7→ nil,
δn 7→ αn and endTmn 7→ αnNewαnendTA and the
morphism ΦBc is defined by the relabelling pairs
ξT 7→ TBT , CLKc 7→ CLKBc, γm 7→ nil, δn 7→ αn

andendTmn 7→ βnNewβnendTB.
We are now able to give the specification for the

behaviour of the counter register sequential level by
the agents:

SpecCLST(A,B, c) = SpecT(A, c)× SpecT(B, c) (9)

for each current binary content(A,B) ∈

{(0, 0), (0, 1), (1, 0), (1, 1)} of the register and the
clock signalc ∈ {0, 1}.

For the specific case ofA = 0, B = 0 andc = 1,
the CWB-NC automaton assigned to the agentSpec-
CLCS T(0, 0, 1) is represented in Model 3.

In order to obtain the announced one-step agent
SpecCRfs(A,B, c) we have to make these two level
agents SpecCLC(A,B) and SpecCLST(A,B, c) to
communicate and synchronize in an appropriate man-
ner following the definition:

SpecCRfs(A,B, c) = (10)

= (SpecCLC(A,B)× SpecCLST(A,B, c)[Ψ])\

\{comTAIn, comTBIn}

where the morphismΨ is defined by the rela-
belling pairsendTA 7→ halfStable and endTB 7→
halfStable endCountStep.

Proposition 2 For each current binary content
(A,B) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} of the register and

WSEAS TRANSACTIONS on COMPUTERS Anca Vasilescu

ISSN: 1109-2750 1621 Issue 10, Volume 7, October 2008

0: ‘comTAIn0.comTBIn0’ {1}
‘ comTAIn0.comTBIn1’ {2}
‘comTAIn1.comTBIn0’ {3}
‘comTAIn1.comTBIn1’ {4}

1: ‘∼A0.∼B0.TA0.TB0.CLKA1.CLKB1’ {5}
2: ‘∼A0.∼B0.TA0.TB1.CLKA1.CLKB1’ {6}
3: ‘∼A0.∼B0.TA1.TB0.CLKA1.CLKB1’ {7}
4: ‘∼A0.∼B0.TA1.TB1.CLKA1.CLKB1’ {8}
5: ‘∼endTA.∼NewA0.∼endTB.∼NewB0’ {5}
6: ‘∼B0.TB1.∼endTA.∼NewA0.CLKB1’ {9}
7: ‘∼A0.TA1.∼endTB.∼NewB0.CLKA1’ {10}
8: ‘∼A0.∼B0.TA1.TB1.CLKA1.CLKB1’ {11}
9: ‘∼B1.TB1.∼endTA.∼NewA0.CLKB1’ {12}
10: ‘∼A1.TA1.∼endTB.∼NewB0.CLKA1 {13}
11: ‘∼B1.∼A1.TA1.TB1.CLKA1.CLKB1’ {14}
12: ‘∼endTA.∼NewA0.∼NewB1.∼endTB’ {12}
13: ‘∼NewA1.∼endTA.∼endTB.∼NewB0’ {13}
14: ‘∼NewA1.∼endTA.∼NewB1.∼endTB’ {14}

Model 3: The SpecCLST(0,0,1) CWB-NC automa-
ton

the clock signalc ∈ {0, 1}, the agentSpecCRfs(A,B, c)

defined in (10) specifies one step of counter register
operation.

Proof: Considering all the previous defined agents
involved in the SpecCRfs(A,B, c) agent expression,
we have that the product agentSpecCRfs(A,B, c)

assures that the agentsSpecCLC(A,B) and Spec-
CLS T(A,B, c) meet each other on thechannels
comTAIn or comTBIn. It yields that the agent
SpecCRfs(A,B, c) specifies one step of counter regis-
ter operation. ⊓⊔

As any other sequential circuit, this counter reg-
ister operation is synchronized with the clock signal
transmitted on theClock physical wire. That is why,
as a practical dimension of this work, we are inter-
ested in the case ofc = 1 and the natural initial state
given byA = 0 andB = 0. These certain values pro-
vides the specific agentSpecCRfs(0, 0, 1).

Following the previous theoretical expressions
(10), we have developed the SCCS models for all of
the involved agents and we have used the CWB-NC
platform for an automated verification of the proposed
models. Out of these results, we present in Model 4
the CWB-NC finite state automaton assigned to the
agentSpecCRfs(0, 0, 1).

Proposition 3 The finite state automaton represented
in Model 4 recognizes one step of counter register op-
eration starting from the initial state00.

Proof: The diagrammatic representation of this au-
tomaton is illustrated in Figure 2. We mention that:
the squared numbers represent the states, the nodes

0: ‘E0.x0.A0.B0.∼TA0.∼TB0’{1}
‘E0.A0.B0.x1.∼TA0.∼TB0’{1}
‘x0.A0.B0.E1.∼TA1.∼TB1’{2}
‘A0.B0.x1.E1.∼TA0.∼TB1’{3}

1: ‘∼A0.∼B0.TA0.TB0.CLKA1.CLKB1’ {4}
2: ‘∼A0.∼B0.TA1.TB1.CLKA1.CLKB1’ {5}
3: ‘∼A0.∼B0.TA0.TB1.CLKA1.CLKB1’ {6}
4: ‘∼NewA0.∼NewB0.∼endCountStep’ {4}
5: ‘∼A0.∼B0.TA1.TB1.CLKA1.CLKB1’ {7}
6: ‘∼B0.TB1.∼NewA0.CLKB1.∼halfStable’{8}
7: ‘∼B1.∼A1.TA1.TB1.CLKA1.CLKB1’ {9}
8: ‘∼B1.TB1.∼NewA0.CLKB1.∼halfStable’{10}
9: ‘∼NewA1.∼NewB1.∼endCountStep’ {9}
10: ‘∼NewA0.∼NewB1.∼endCountStep’ {10}

Model 4: The SpecCRfs(0, 0, 1) CWB-NC automaton

labels represent the current configuration of the regis-
ter contentAB, the first level transitions labels repre-
sent the entrance pairs of (E, x) values and the other
arcs labels represent the pairs of entrance values (TA,
TB) of the flip-flops. The initial state is0: and the
final states are double-circle marked.

Based on this automaton, if the initial register
contentAB is 00 then the final contentAB might be:
00, 01 or 11. Considering the corresponding transi-
tions labels, one may easily conclude that this au-
tomaton represents the counter register operation as
we have defined in the previous Remark 1. It means
that after one step of operation, the current state of the
register is: 00 - if it operated with no state change, 01
- if it counted-up or 11 - if it counted-down. ⊓⊔

Figure 2: The SpecCRfs(0, 0, 1) diagrammatic repre-
sentation

WSEAS TRANSACTIONS on COMPUTERS Anca Vasilescu

ISSN: 1109-2750 1622 Issue 10, Volume 7, October 2008

(L0) ALGORITHM
(L1) InitialA ← 0; InitialB← 0
(L2) // Step1
(L3) doSpecCRfs (InitialA, InitialB, 1)
(L4) while NOT FinalState
(L5) NewA← FinalStateA; NewB← FinalStateB
(L6) // Step2
(L7) doSpecCRfs (NewA, NewB, 1)
(L8) while NOT FinalState
(L9) write (FinalStateA, FinalStateB)
(L10) END

Model 5: Step-transition algorithm

3.2 Modelling the changing-step transition
The counter register operation in two steps is follow-
ing the next algorithm:

The translation of this algorithm into the SCCS
language was not at all an easy job considering the
difficulty of modelling the state change. In order to
obtain the SCCS representation of this algorithm, we
have defined specific agents for modelling the sequen-
tial operation as follows: on the one hand these agents
have to assume the final state of the first step and,
on the other hand, they have to guide the second step
starting from the final state of the first step.

Let Meet(A,B) be some internal agents and let
EndStep1be the agent which is capable of operating
in two manners: either it is delaying while the first
step is not finished or, when the first step is finished, it
outputs the final state(NewA, NewB) by performing
the specific actionend. The definitions of these agents
are:

Meet(A,B) = (11)

= NewαANewβB endCountStep : Meet(A,B)

and

EndStep1= 1 : EndStep1+ (12)

+
∑

A,B∈{0,1}

(NewαANewβB endCountStep endAB :

: Meet(A,B))

In this way, the first step specification model
consists in the product of the agentsSpecCRfsand
EndStep1, for each initial configuration(A,B) ∈
{(0, 0), (0, 1), (1, 0), (1, 1)}. The expression is:

Step1(A,B) = (13)

= (SpecCRfs(A,B, 1)× EndStep1)\ComStep1

where the set of communicating actions isComStep1 =
{Newα1 , Newβ , endCountStep}.

We present in Model 6 the CWB-NC finite state
automaton assigned to the agentStep1(0, 0).

0: ‘E0.x0.A0.B0.∼TA0.∼TB0’ {1}
‘E0.A0.B0.x1.∼TA0.∼TB0’ {1}
‘x0.A0.B0.E1.∼TA1.∼TB1’ {2}
‘A0.B0.x1.E1.∼TA0.∼TB1’ {3}

1: ‘∼A0.∼B0.TA0.TB0.CLKA1.CLKB1’ {4}
2: ‘∼A0.∼B0.TA1.TB1.CLKA1.CLKB1’ {5}
3: ‘∼A0.∼B0.TA0.TB1.CLKA1.CLKB1’ {6}
4: ‘∼end00’ {7}
5: ‘∼A0.∼B0.TA1.TB1.CLKA1.CLKB1’ {8}
6: ‘∼B0.TB1.∼NewA0.CLKB1.∼halfStable’ {9}
7: ‘’ {7}
8: ‘∼B1.∼A1.TA1.TB1.CLKA1.CLKB1’ {10}
9: ‘∼B1.TB1.∼NewA0.CLKB1.∼halfStable’ {11}
10: ‘∼end11’ {12}
11: ‘∼end01’ {13}
12: ‘’ {12}
13: ‘’ {13}

Model 6: The Step1(0,0) CWB-NC automaton

3.3 Modelling the second step
In order to obtain the second step specification, for
the binary clock valuec = 1 and for each current con-
tent(A,B) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, we define the
agentStep2as follows: it is indefinitely performing
the actionend in order to achieve the synchronization
with the agentStep1and, after therendez-vous, it op-
erates exactly like the generic agentSpecCRfs. Its ex-
pression is:

Step2(A,B) = 1 : Step2(A,B)+ (14)

+endABendFirstStepAB : SpecCRfs(A,B, 1)

[endCountStep/endSecondStep]

For example, we present in Model 7 the CWB-NC
automaton assigned to the agentStep2(1, 1).

0: ‘’ {0}
‘end11. endFirstStepAB11’ {1}

1: ‘E0.x0.B1.A1.∼TA0.∼TB0’ {2}
‘E0.x1.B1.A1.∼TA0.∼TB0’ {2}
‘x0.E1.B1.A1.∼TA0.∼TB1’ {3}
‘x1.E1.B1.A1.∼TA1.∼TB1’ {4}

2: ‘∼B1.∼A1.TA0.TB0.CLKA1.CLKB1’ {5}
3: ‘∼B1.∼A1.TA0.TB1.CLKA1.CLKB1’ {6}
4: ‘∼B1.∼A1.TA1.TB1.CLKA1.CLKB1’ {7}
5: ‘∼NewA1.∼NewB1.∼endSecondStep’ {5}
6: ‘∼B0.TB1.∼NewA1.CLKB1.∼halfStable’ {8}
7: ‘∼A0.∼B0.TA1.TB1.CLKA1.CLKB1’ {9}
8: ‘∼B0.TB1.∼NewA1.CLKB1.∼halfStable’ {10}
9: ‘∼A0.∼B0.TA1.TB1.CLKA1.CLKB1’ {11}
10: ‘∼NewA1.∼NewB0.∼endSecondStep’ {10}
11: ‘∼NewA0.∼NewB0.∼endSecondStep’ {11}

Model 7: The Step2(1,1) CWB-NC automaton

We are now able to specify all the counter regis-
ter operations in two steps starting from a convenient

WSEAS TRANSACTIONS on COMPUTERS Anca Vasilescu

ISSN: 1109-2750 1623 Issue 10, Volume 7, October 2008

initial state and emphasizing the step change on a cer-
tain configuration. These specifications use the previ-
ous agentsStep1andStep2for specific combinations
of parameters which represent the right chosen states
of the register. We select as an appropriate example
the elementary two-steps operation starting from the
initial state(0, 0) and changing the step on the infered
state(A∗, B∗) ∈ {(0, 0), (0, 1), (1, 1)} provided by the
possible final states of the first step represented in Fig-
ure 2. This operation is specified by the agent:

SpecCRTwoSteps(0, 0, A∗, B∗) = (15)

= ((Step1(0, 0)× Step2(A∗, B∗))\{endA∗B∗})

[ΦA∗B∗]

where the morphismΦA∗B∗ is defined by the rela-
belling pairsendij 7→ endFirstStepij, for each combi-
nation(i, j) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}\{(A∗, B∗)}.

For all of these agents and all of the possible
input binary combinations, we have developed the
SCCS models and we have used the CWB-NC plat-
form for an automated verification of the proposed
models. Particularly, forA∗=1 andB∗=1, the CWB-
NC finite state automaton assigned to the target agent
SpecCRTwoSteps(0, 0, 1, 1) is represented in Model 8.

0: ‘E0.x0.A0.B0.∼TA0.∼TB0’ {1}
‘E0.A0.B0.x1.∼TA0.∼TB0’ {1}
‘x0.A0.B0.E1.∼TA1.∼TB1’ {2}
‘A0.B0.x1.E1.∼TA0.∼TB1’ {3}

1: ‘∼A0.∼B0.TA0.TB0.CLKA1.CLKB1’ {4}
2: ‘∼A0.∼B0.TA1.TB1.CLKA1.CLKB1’ {5}
3: ‘∼A0.∼B0.TA0.TB1.CLKA1.CLKB1’ {6}
4: ‘∼endFirstStepAB00’ {7}
5: ‘∼A0.∼B0.TA1.TB1.CLKA1.CLKB1’ {8}
6: ‘∼B0.TB1.∼NewA0.CLKB1.∼halfStable’{9}
7: ‘’ {7}
8: ‘∼B1.∼A1.TA1.TB1.CLKA1.CLKB1’ {10}
9: ‘∼B1.TB1.∼NewA0.CLKB1.∼halfStable’{11}
10: ‘∼endFirstStepAB11’ {12}
11: ‘∼endFirstStepAB01’ {13}
12: ‘E0.x0.B1.A1.∼TA0.∼TB0’ {14}

‘E0.x1.B1.A1.∼TA0.∼TB0’ {14}
‘x0.E1.B1.A1.∼TA0.∼TB1’ {15}
‘x1.E1.B1.A1.∼TA1.∼TB1’ {16}

13: ‘’ {13}
14: ‘∼B1.∼A1.TA0.TB0.CLKA1.CLKB1’ {17}
15: ‘∼B1.∼A1.TA0.TB1.CLKA1.CLKB1’ {18}
16: ‘∼B1.∼A1.TA1.TB1.CLKA1.CLKB1’ {19}
17: ‘∼NewA1.∼NewB1.∼endSecondStep’ {17}
18: ‘∼B0.TB1.∼NewA1.CLKB1.∼halfStable’{20}
19: ‘∼A0.∼B0.TA1.TB1.CLKA1.CLKB1’ {21}
20: ‘∼B0.TB1.∼NewA1.CLKB1.∼halfStable’{22}
21: ‘∼A0.∼B0.TA1.TB1.CLKA1.CLKB1’ {23}
22: ‘∼NewA1.∼NewB0.∼endSecondStep’ {22}
23: ‘∼NewA0.∼NewB0.∼endSecondStep’ {23}

Model 8: The SpecCRTwoSteps(0,0,1,1) CWB-NC
automaton

Proposition 4 The finite state automaton represented
in Model 8 recognizes two steps of counter register op-
eration starting from the initial state00 and changing
the step on the state11.

Proof: Following the previous expressions (15), the
generic agentSpecCRTwoSteps(0, 0, A∗, B∗) is defined
as a combination of morphism, product and restric-
tion. This combination is successfully used to model
the channeling of data, here along the hardware wires.

We can split the automaton definition into three
parts: (1) a first part which respects the behav-
iour of the automaton described in Model 6 for the
first step of operation, (2) the changing-step tran-
sition from state10: to state12: and (3) a third
part which respects the behaviour of the automa-
ton from the Model 7 for the second step of oper-
ation. Even if the first step of operation is finish-
ing either with the action∼ endFirstStepAB00, or
∼ endFirstStepAB11, or∼ endFirstStepAB01, only
the action∼ endFirstStepAB11 starts a new step of
operation (see the changing-step transition) while the
other two actions guide the automaton to achieve a fi-
nal state by indefinitely performing the empty action.
In its final states, meaning the states17:, 22: and23:,
the automaton indefinitely performs the specific ac-
tionsNewA andNewB for the final configuration of
the register content after two steps of operation.⊓⊔

4 Specific applications
In this section we will consider two different applica-
tions of a counter register. The first application arises
from a minimal components adding into the internal
structure of the previous counter register, with use-
ful implications for the utility of the arised structure.
The second application represents an extension of the
counter register, namely we consider a new sequential
hardware component in which the counter register is
integrated as a module.

4.1 Producer-consumer buffer
We start from the internal structure of the counter reg-
ister already considered in Figure 1. We add an extra
sequential component, namely aD flip-flop synchro-
nized with the twoT flip-flops on the same clock sig-
nal like in the Figure 3 [5].

Besides the output lines storing the binary con-
tent of the register, this circuit provides an extra output
value,y which is given by the stored value in theD
flip-flop. There is only one clock signal in the circuit
and this follows that the three flip-flops are entirely
synchronized. Because the clock entrance for theD
flip-flop is provided by an AND gate betweenE and

WSEAS TRANSACTIONS on COMPUTERS Anca Vasilescu

ISSN: 1109-2750 1624 Issue 10, Volume 7, October 2008

1

Figure 3: Register as producer-consumer buffer

Clock, it yields that the value of inputx is stored on
the outputy only whenE=1, and otherwise the value
on they output line is not modified (practically, theD
flip-flop does not operate).

Here, we are interested in a practical interpreta-
tion of this circuit operation, namely in connecting the
counter variable values stored by the internal counter
register with the wordY of succesive symbols sent on
the output liney of the circuit.

In [5] this register behaviour is modelled using
different approaches, including an algebraic model
and a transition model based on a FSM (Finite State
Machine). The automatum writes a0 symbol on the
outputy as the result of each clock-controled occur-
rence of the input combinationE=1 andx=0 and it
writes an1 symbol as the result of each occurrence
of the combinationE=1 andx=1. Moreover, these
two events have opposing significance: the occurrence
of an event11 corresponding forE=1 andx=1 is in-
creasing the counter variable value and an event10
corresponding forE=1 andx=0 is decreasing it. It
follows that the length of the wordY is depending on
the numbers of occurrences of the events10 and11.
Formally, the languageL = L(FSM) generated by the
FSM machine is

L = {Y ∈ {0, 1, λ}∗|N0(Y) + N1(Y) = |Y |}.

whereλ represents the empty string. The output sym-
bol λ is corresponding toE=0. The length condition
for the wordsY has to assure that each occurrence of
a counted event adds a symbol on the output wordY .

We consider now the classical example of the
producer-consumer buffer. Letn be the number of
items in the buffer at the given initial timet0=0. Con-
sider also the recursive functionft : L → Z with
f0(λ) = n, f1(0) = n-1,f1(1) = n+1 and for each suc-
cesorx of the current wordY the function definition
is

ft+1(Y x) =





ft(Y)− 1, if x = 0
ft(Y), if x = λ

ft(Y) + 1, if x = 1.
(16)

Proposition 5 The number of items in the buffer at a
given timet is depending on the output wordY with
respect to the relationft(Y) = n + N1(Y) - N0(Y).

Proof: We shall prove this relation by induction int,
the counting variable.
Fort = 0 we haveL = {λ} andf0(λ) = n by definition.
The right side of the required relation is n + N1(λ) -
N0(λ) = n + 0 - 0 = n =f0(λ).
Supposeft(Y) = n + N1(Y) - N0(Y) and we prove that
ft+1(Y x) = n + N1(Y x) - N0(Y x) for eachx ∈ {0, 1}.
For x = 0 we haveft+1(Y 0) = ft(Y) - 1 = n + N1(Y)
- N0(Y) - 1 = n + N1(Y) - (N0(Y) + 1) = n + N1(Y x)
- N0(Y x), as required.
Forx = 1 we haveft+1(Y 1) = ft(Y) + 1 = n + N1(Y)
- N0(Y) +1 = n + (N1(Y) + 1) - N0(Y) = n + N1(Y x)
- N0(Y x), as required. ⊓⊔

In accordance with this relation, the occurrence
of the eventE=1 andx=1 might be recognized as a
producerevent and the occurrence of the eventE=1
andx=0 might be recognized as aconsumerevent.

4.2 Serial-parallel converter
In this section we consider a specific sequential cir-
cuit in order to integrate the two-bit counter register
structure. Figure 4 represents this circuit.

Figure 4: Serial-parallel Converter

This circuit consists of one demultiplexer 1x4
DMUX, one four-bit LOAD Register and the an-
nounced two-bit COUNTER Register. The circuit is
entirely synchronized because all the sequential com-
ponents are using the same clock signal.

The circuit operates as follows. We constantly
keep1 logic value on the Count Enable input line so
that the COUNTER Register operates continuously.
The current value stored by the counter register repre-
sents the selecting input for the demultiplexer so that
the demultiplexer successively outputs the value from
the Input line to the LOAD register. An important part

WSEAS TRANSACTIONS on COMPUTERS Anca Vasilescu

ISSN: 1109-2750 1625 Issue 10, Volume 7, October 2008

of the circuit operation consists in the role of the AND
gate. This gate transfers1 logic value to the Load
enable input of the LOAD Register in only one con-
figuration, namely the value11 stored by the counter
register and it transfers0 logic value for all the other
configurations. It follows that after each counting-up
cycle (from00 to 11) and only in thisfinal configu-
ration11, the LOAD Register effectively loads on the
output lines of the circuit its input values, namely the
input values successively sent by the demultiplexer.
For all the others configurations, the AND gate sends
0 logic value and the LOAD Register doesn’t operates,
only gathers the values on its input lines.

Hence, while the COUNTER Register counts, we
successively charge specific input values on the en-
trance Input line of the circuit and the circuit outputs
on theY0, Y1, Y2, Y3 lines the entrance values, not suc-
cessively but all together. That means that this circuits
operates as a serial-parallel converter.

From the algebraic modelling point of view, we
already have the algebraic models for the demulti-
plexer [10] and the counter register and it follows that
one possible direction of our future work is to model
the load register behaviour and after that the complete
circuit considered here. Having these algebraic mod-
els for the hardware components behaviour we may
put all of them together in order to obtain a global al-
gebraic model for the entire computer operation.

5 Conclusions

From the theoretical point of view, this paper uses
the algebraic theory of processes as a formal method
applied to model the behaviour of hardware compo-
nents. Many other researchers are interested in this
subject, for example: in [3] and [6] the authors use
a computer-based approach for designing a specific
class of circuits, in [9] the authors interest is for mod-
elling even the asynchronous circuits, in [4] the in-
terest is for modelling the general circuits behaviour
in CCS, in [16] there is a model of the flip-flops be-
haviour in VHDL. Besides, [15] is a very recent book
concerned about constructing a mathematical theory
of modelling the asynchronous circuits behaviour. Be-
yond these natural models, in this paper we had to
adjust a pure algebraic language like SCCS to model
a specific type of hardware component, namely the
counter register.

From the practical point of view, a counter reg-
ister is used for counting the number of occurrences
of a certain event. Based on an algebraic approach,
this paper results refer to a counter register for two
steps of operation, meaning the possibility of count-
ing two occurrences of the event. It follows that our

work will progress in the direction of modelling the
global counter register operation in many steps. And,
moreover, the next level of our modelling interest is
to develop the corresponding implementation agents
and to integrate these counter register models in more
complex computer architecture structures.

The original contributions of the author in this pa-
per consists both in modelling the counter register be-
haviour with final states and in modelling two steps of
operation based on communication and synchroniza-
tion.

References:

[1] E. Alaer, A. Tangel and M. Yakut, ”MIB-16”
FPGA Based Design and Implementation of
a 16-Bit Microprocessor for Educational Use,
WSEAS Transactions on Advances in Engineer-
ing Education, 5(5), May 2008, pp: 326–330.

[2] N.–G. Bardis, A.–P. Markovskyy and D.–V. An-
drikou, Method for Designing Pseudorandom
Binary Sequences Generators on Nonlinear
Feedback Shift Register (NFSR),WSEAS Trans-
actions on Communications, 3(2), April 2004,
pp: 758–763.

[3] D. Batas and H. Fiedler, Computer-Based De-
sign of Analog Integrated CMOS-Circuits,Proc.
of the 11th WSEAS International Conference on
CIRCUITS, Ag. Nikolaos, Greece, vol.1, 2007,
pp: 31–36.

[4] G. Clark and G. Taylor, The Verification of
Asynchronous Circuits using CCS,Technical
Report as ECS-LFCS-97-369, 1997

[5] O. Georgescu, Problem Solving with Different
Models,Proc. of SEEFM05 2nd South-East Eu-
ropean Workshop on Formal Methods, Ohrid,
FYROM, 2005, pp. 247–255.

[6] M. Kamran and S. Feng, Digital Circuit Design
and Implementation with Efficient Task Parti-
tioning Algorithm,WSEAS Transactions on Cir-
cuits and Systems, 5(4), April 2006, pp: 511–
517.

[7] R. Milner, Calculi for synchrony and asyn-
chrony,Theoretical Computer Science25, 1983,
pp. 267–310.

[8] C.–M. Ou, W.–J. Hwang and M.–K. Chen, A
Novel VLSI Architecture For Block Matching
Using Shift-Register Based Memory Modules,
WSEAS Transactions on Circuits and Systems,
3(9), November 2004, pp: 1876–1882.

[9] A. Razafindraibe, M. Robert and P. Maurine,
Compact and secured primitives for the design
of asynchronous circuits,Journal of Low Power
ElectronicsVol.1, 2005, pp: 20–26.

WSEAS TRANSACTIONS on COMPUTERS Anca Vasilescu

ISSN: 1109-2750 1626 Issue 10, Volume 7, October 2008

[10] A. Vasilescu, Recursive Rules For Demulti-
plexers Expanding,Studia Universitatis Babeş-
Bolyai, Informatica, XLVI(1), 2001, pp. :67–74.

[11] A. Vasilescu, Algebraic model for the JK flip-
flop behaviour,Proc. of SEEFM05 2nd South-
East European Workshop on Formal Methods,
Ohrid, FYROM, 2005, pp. 209–223.

[12] A. Vasilescu and O. Georgescu, Algebraic
Model for the Counter Register Behaviour,
IJCCC - Supplem. Issue as Proc. of ICCCC2006,
Oradea, Romania, Vol. I, 2006, pp: 459–464.

[13] A. Vasilescu, Formal models for non-sequential
processes,PhD Thesis, Babeş-Bolyai University
of Cluj-Napoca, 2006

[14] A. Vasilescu, Algebraic Model for the Intercom-
municating Hardware Components,Proceedings
of the12th WSEAS International Conference on
Computers, Crete, Greece, 2008, pp. 241–246.

[15] S.–E. Vlad, Asynchronous Systems Theory,
WSEAS Press 2007

[16] R.–D. Wittig, OneChip: An FPGA Processor
With Reconfigurable Logic,IEEE Symposium
on FPGAs for Custom Computing Machines,
1995

[17] ***, The CWB-NC homepage on
http://www.cs.sunysb.edu/∼cwb

WSEAS TRANSACTIONS on COMPUTERS Anca Vasilescu

ISSN: 1109-2750 1627 Issue 10, Volume 7, October 2008

