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1 Introduction

The theory of flows is one of the most important
parts of Combinatorial Optimization. The computa-
tion of a maximum flow in a graph has been an im-
portant and well studied problem, both in computer
science and operations research. Many efficient al-
gorithms have been developed to solve this problem,
see, e.g., [1], [13]. Sleator and Tarjan [14] devel-
oped the dynamic tree data structure and used it to
improve the worst-case complexity of Dinic’s algo-
rithm from O(n2m) to O(nm log n). Recently, we
have used this data structure to improve the perfor-
mance of a range of network flow algorithms, see for
example [8], [9] and [10]. Using the dynamic tree
data structure, Goldberg and Tarjan [11] improved the
complexity of the FIFO preflow-push algorithm from
O(n3) to O(nm log(n2/m)) and Ahuja, Orlin and
Tarjan [2] improved the complexity of the excess scal-
ing algorithm and several of its variants. Recently,
in [5] and [6] we achieved important results develop-
ing improved pre-flow algorithms for solving the min-
imum flow problem.

The computation of a minimum flow has been in-
vestigated by Ciurea and Georgescu [4] for some spe-
cific classes of directed networks and by Ciurea and
Ciupal̆a [7] for using the parallel algorithms. The
minimum flow problem and the maximum cut prob-
lem arise in a wide variety of situations and in several
forms. For example, some direct applications might
be: machine setup problem, tanker scheduling prob-
lem, airlines scheduling problem etc.

In this paper we consider an advanced topic: the
use of the dynamic trees data structure to efficiently
implement algorithms for the minimum flow problem.

The brief outline of the paper is as follows: in

Section 2 we discuss some basic notions and results
used in the rest of the paper. Section 3 deals with
the decreasing path algorithms for minimum flow with
dynamic tree implementation. In Section 4 we present
an example for this algorithm. Section 5 treats some
applications of the minimum flows and in Section 6
we present conclusions and some open problems.

2 Terminology and Preliminaries
In this section we discuss some basic minimum flow
notations and results used in the rest of the paper.

As we describe in [4] and [10], we consider a
capacitated directed networkG = (N, A, l, c, s, t)
with a nonnegative capacityc(x, y) and with a non-
negative lower boundl(x, y) associated with each arc
(x, y) ∈ A. We distinguish two special nodes in the
networkG: a source nodes and a sink nodet.

For a given pair of not necessarily disjoint subsets
X, Y of the nodes setN of a networkG we use the
notation:

(X, Y ) = {(x, y)|(x, y) ∈ A, x ∈ X, y ∈ Y }

and for a given functionf on arcs setA we use the
notation:

f(X, Y ) =
∑

(X,Y )

f(x, y)

A flow is a functionf : A → R+ satisfying the
next conditions:

f(x, N) − f(N, x) =





v, if x = s
0, if x 6= s, t

−v, if x = t
(1.a)
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l(x, y) ≤ f(x, y) ≤ c(x, y),∀(x, y) ∈ A, (1.b)

for somev ≥ 0 and we refer tov as thevalue of the
flow f.

The minimum flow problemconsists in determin-
ing a flowf for whichv is minimized.

A cut is a partition of the nodes setN into two
subsetsS and T=N-S; we represent this cut using
notation[S, T ]. We refer to an arc(x, y) ∈ A with
x ∈ S andy ∈ T as aforward arcof the cut and an
arc(x, y) ∈ A with x ∈ T andy ∈ S as abackward
arc of the cut. Let(S, T ) denote the set of forward
arcs in the cut and let(T, S) denote the set of back-
ward arcs. We refer to a cut as ans-t cut if s ∈ S and
t ∈ T .

For the minimum flow problem, we define theca-
pacity c[S, T ] of the s-t cut [S, T ] as the sum of the
forward arcs lower bounds minus the sum of the back-
ward arcs capacities. That is:

c[S, T ] = l(S, T ) − c(T, S) (2)

We refer to ans-t cut which has the maximum
capacity among alls-t cuts as amaximum cut.

An important theorem is the following [1]:

Theorem 1 If there exists a feasible flow in the net-
work, the value of the minimum flow from a source
nodes to a sink nodet in networkG equals the ca-
pacity of the maximums-t cut.

For the minimum flow problem, theresidual ca-
pacity r̂(x, y) of any arc(x, y) ∈ A, with respect to a
given flowf , is given byr̂(x, y) = c(y, x)−f(y, x)+
f(x, y) − l(x, y). By convention, if(x, y) ∈ A and
(y, x) /∈ A then we add arc(y, x) to the set of arcs
A and we setl(y, x) = 0 andc(y, x) = 0. The net-
work Ĝ(f) = (N, Â) consisting only of the arcs with
positive residual capacity is referred to as theresidual
network(with respect to the flowf ).

In the residual network̂G(f) = (N, Â), thedis-
tance functionis a functionĥ : N → N. We say that
a distance function isvalid if it satisfies the following
conditions:

ĥ(t) = 0 (3.a)

and
ĥ(x) ≤ ĥ(y) + 1,∀(x, y) ∈ Â (3.b)

We refer toĥ(x) as thedistance label of nodex
and we refer to(x, y) ∈ Â as anadmissible arcif
ĥ(x) = ĥ(y) + 1; otherwise it isinadmissible. We
refer to a path from nodes to nodet consisting en-
tirely of admissible arcs as anadmissible path. We
say that the distance labels areexactif for each node

x, ĥ(x) equals the length of the shortest directed path
from nodex to nodet in the residual network̂G(f).
We obtain the exact distance labelsĥ(x) in Ĝ(f) by
perform a revers breadth first search of the residual
networkĜ(f) from the sink nodet to source nodes.
We refer to a path inG from the source nodes to the
sink nodet as adecreasing pathif it consists only of
arcs with positive residual capacity. Clearly, there is
an one to one correspondence between set of decreas-
ing paths inG and the set of directed paths froms to
t in Ĝ(f).

A partial admissible pathis a path from some
nodex to node stoct consisting solely of admissible
arcs. In this case the nodex is namedcurrent node.

The minimum flow problem in a general directed
s-t network can be solved in two phases:

1. establish a feasible flowf , if it exists;

2. from a given feasible flowf , establish the mini-
mum flow f̂ .

The problem of determining a feasible flow con-
sists in finding a functionf : A → R+ that satis-
fies the previous conditions (1.a) and (1.b). First, we
transform this problem into a circulation problem by
adding an arc(t, s) of infinite capacity and zero lower
bound. This arc carries the flow sent from the source
nodes to the sink nodet back to the source nodes.
Clearly, the minimum flow problem admits a feasible
flow if and only if the circulation problem admits a
feasible flow. Because these two problems are equiva-
lent, we focus on finding a feasible circulation if it ex-
ists in the transformed network̃G = (N, Ã, l̃, c̃, s, t),
where

Ã = A ∪ {(t, s)},

l̃(x, y) = l(x, y), for each arc(x, y) ∈ A,

l̃(t, s) = 0,

c̃(x, y) = c(x, y), for each arc(x, y) ∈ A,

c̃(t, s) = ∞.

The feasible circulation problem is to identify a
flow f satisfying the following constraints:

f̃(x, N) − f̃(N, x) = 0, for each nodex ∈ N,

l̃(x, y) ≤ f̃(x, y) ≤ c̃(x, y), for each arc(x, y) ∈ Ã.

By replacing f̃(x, y) = f̃ ′(x, y) + l̃(x, y) and
c̃(x, y) = c̃′(x, y) + l̃(x, y) we obtain the following
supply and demand problem:

f̃ ′(x, N) − f̃ ′(N, x) = b̃′(x), for each nodex ∈ N,

WSEAS TRANSACTIONS on COMPUTERS Oana Georgescu, Eleonor Ciurea

ISSN: 1109-2750 2043 Issue 12, Volume 7, December 2008



0 ≤ f̃ ′(x, y) ≤ c̃′(x, y), for each arc(x, y) ∈ Ã,

where

b̃′(x) = l̃(N, x) − l̃(x, N), for each nodex ∈ N.

Clearly, ∑

N

b̃′(x) = 0.

We can solve this supply and demand problem by
solving a maximum flow problem defined in the net-
work G̃′ = (Ñ ′, Ã′, c̃′, s′, t′), where

Ñ ′ = Ñ ′

1 ∪ Ñ ′

2 ∪ Ñ ′

3,

Ñ ′

1 = {s′}, Ñ ′

2 = N, Ñ ′

3 = {t′},

Ã′ = Ã′

1 ∪ Ã′

2 ∪ Ã′

3,

Ã′

1 = {(s′, y)|y ∈ N, b̃′(y) > 0},

Ã′

2 = A,

Ã′

3 = {(x, t′)|x ∈ N, b̃′(x) < 0},

c̃′(s′, y) = b̃′(y) with (s′, y) ∈ Ã′

1,

c̃′(x, y) = c̃(x, y) with (x, y) ∈ Ã′

2,

c̃′(y, t′) = −b̃′(x) with (x, t′) ∈ Ã′

3.

Then we solve a maximum flow problem in net-
work G̃′ = (Ñ ′, Ã′, c̃′, s′, t′). If the maximum flow
saturates all(s′, y) arcs (̃f ′(s′, y) = b̃′(y)) and all
(x, t′) arcs (̃f ′(x, t′) = −b̃′(x)) then the initial prob-
lem has a feasible solution (which is the restriction
of the maximum flow that saturates all the source and
sink arcs to the initial set of arcsA); otherwise, it is
infeasible.

There are three approaches for solving the mini-
mum flow problem (see [1] or [3]):(1) using the de-
creasing path algorithms from source nodes to sink
nodet in residual networkĜ(f); (2) using preflow-
pull algorithms from sink nodet to source nodes in
residual network̂G(f); (3) using the augmenting path
algorithms from sink nodet to source nodes or using
preflow-push algorithms starting from sink nodet in
residual network̃G(f) (residual network for maximal
flow).

In this paper we present the decreasing path al-
gorithms from source nodes to sink nodet with dy-
namic tree implementations for solving the minimum
flow problem.

All the algorithms from the next table are decreas-
ing path algorithms, i.e. algorithms which determine
decreasing path from source nodes to sink nodet

(by different rules) in residual network̂G(f) and then
augment flows along these paths. We haven = |N |,
m = |A|, c̄ = max{c(x, y)|(x, y) ∈ A}.

Decreasing path algoritms Running
time

Generic decreasing path algorithm O(nmc̄)
Ford-Fulkerson labeling algorithm O(nmc̄)
Gabow bit scaling algorithm O(nm log c̄)
Ahuja-Orlin maximum scaling al-
gorithm

O(nm log c̄)

Edmond-Karp shortest path algo-
rithm

O(nm2)

Ahuja-Orlin shortest path algorithmO(n2m)
Dinic layered networks algorithm O(n2m)
Ahuja-Orlin layered networks algo-
rithm

O(n2m)

Actually, any decreasing path algorithm termi-
nates with optimal residual capacities. From these
residual capacities we can determine a minimum
flow by following expression:f̂(x, y) = l(x, y) +
max{̂r(x, y) − c(y, x) + l(y, x), 0}.

3 Decreasing path algorithms for
minimum flow. Dynamic tree im-
plementations

Dynamic trees represent an important data structure
extensively used by researchers to improve the worst-
case complexity of several network algorithms. In
this section we describe the use of this data structure
for the shortest decreasing path algorithm. The fol-
lowing observation serves as a motivation for the dy-
namic tree structure usefulness. The shortest decreas-
ing path algorithm repeatedly identifies a path con-
sisting solely of admissible arcs and decreases flows
on these paths. Each decrease saturates some arcs
of this path and by deleting all the saturated arcs
(f(x, y) = l(x, y)) from this path we obtain a set of
path fragments. The dynamic tree data structure clev-
erly stores these path fragments and uses them later
for quickly identifying decreasing paths.

Dynamic trees represent a special type of data
structure that permits us to implicitly send flow on
paths of lenghtn in O(log n) steps on average. By
doing so we are able to reduce the computational re-
quirement of the shortest decreasing path algorithm
for minimum flows fromO(n2m) to O(nm log n).

The dynamic tree data structure maintains a col-
lectionT of node-disjoint rooted trees, each arc with
an associated value. Each rooted tree is a directed
in-tree with a unique root. Each nodex (except the
root node) has a uniquepredecessor, which is the next
node on the unique path in the tree from that node
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to the root. We store the predecessor of nodex us-
ing a predecessor index̂p(x). If y = p̂(x), we say
that nodey is the predecessor of nodex and nodex
is thesuccessorof nodey. These predecessor indices
uniquely define a rooted tree and also allow us to trace
out the unique direct path from the any node back to
root. Similarly, we define theancestorsand thede-
scendantsof a node. Thedescendantsof a nodex
consist of the node itself, its successors, successors of
its successors and so on. We say that a node is anan-
cestorof all of its descendants. Notice that, according
to our definitions, each node is its own ancestor and
descendant.

This data structure supports six operations obtain
by perform the following six procedures:

ROOT(x): find the root of the tree containing
nodex;

VALUE(x): find the value of the tree arc leaving
nodex. If nodex is a root node, the operation returns
the value∞.

ANCES(x): find the ancestoru of x with the min-
imum value ofVALUE(u). In case of a tie, chose the
nodeu closest to the tree root.

CHANGE(x,̄w): add a real number̄w to the value
of every arc along the direct path from nodex to
ROOT(x).

LINK(x,y,w): combines the trees containing tree
root x and tree containing nodey (the predecessor of
nodex) and give arc(x, y) the valuew.

DELETE(x): break the tree containing nodex
into two trees by deleting the arc joining nodex to
its predecessor; we perform this operation whenx is
not a tree root.

The following important result lies at the heart of
the efficiency of the dynamic tree data structure [1].

Theorem 2 If q is the maximum number of nodes in
any tree, a sequence ofk tree operations, starting with
an initial collection of singleton trees, requires a total
of O(k log (k + q)) time.

The dynamic tree implementation stores the val-
ues of tree arcs only implicitly. Storing the values im-
plicitly allows us to update the values in onlyO(log q)
time.

Let us use the Ahuja-Orlin shortest path algo-
rithm as an illustration. The detailed Pseudocode (1),
Pseudocode (2), Pseudocode (3) and Pseudocode (4)
give a formal statement of the algorithm.

The first two procedures,TADV and TRET, are
straightforward, but theTDEC procedure requires
some explanation. If nodeu is an ancestor of nodes
with the minimum value ofVALUE(u)thenVALUE(u)
gives residual capacity of the decreasing path. The op-
erationCHANGE(s,-w)implicitly updates the residual

(1)ALGORITHM TDP;
(2)BEGIN
(3) let f be a feasible flow in networkG;
(4) determine the residual network̂G(f);
(5) compute the exact distance labelsĥ(x) in Ĝ(f);
(6) let T be the collection of all singleton nodes;
(7) x := s;
(8) WHILE ĥ(s) < n DO
(9) BEGIN
(10) IF exist an admissible arc(x, y)
(11) THEN TADV(x)
(12) ELSETRET(x);
(13) IF x = t
(14) THEN TDEC;
(15) END;
(16)END.

Pseudocode 1: Dynamic tree implementation for
Ahuja-Orlin shortest decreasing path algorithm.

(1)PROCEDURETADV(x);
(2)BEGIN
(3) LINK(x, y, r̂(x, y));
(4) x := ROOT (y);
(5)END;

Pseudocode 2: TADV Procedure

(1)PROCEDURETRET(x);
(2)BEGIN
(3) ĥ(x) := min{ĥ(y) + 1|(x, y) ∈ A, r̂(x, y) > 0};
(4) FOR(z, x) ∈ Â DO DELETE(z);
(5) x := ROOT (s);
(6)END;

Pseudocode 3: TRET Procedure

(1) PROCEDURETDEC;
(2) BEGIN
(3) u := ANCES(s);
(4) w := V ALUE(u);
(5) CHANGE(s,−w);
(6) WHILE V ALUE(u) = 0 DO
(7) BEGIN
(8) DELETE(u);
(9) u := ANCES(s);
(10) END;
(11) x := ROOT (s);
(12) update the residual network̂G(f);
(13)END;

Pseudocode 4: TDEC Procedure
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capacities of all the arcs in the decreasing path. This
decrease might cause the capacity of more than one
arc in the path to become zero. The WHILE loop iden-
tifies all such arcs, one by one, and deletes them from
the collection of rooted trees.

Theorem 3 The TDP algorithm correctly computes a
minimum flow.

Proof: The TDP algorithm is same as the Ahuja-
Orlin shortest path algorithm except that it performs
the procedures TADV, TRET and TDEC differently,
using trees. ⊓⊔

Theorem 4 The TDP algorithm solves the minimum
flow problem inO(nm log n) time.

Proof. Using simple arguments, we can show that
the algorithm performs each of the six tree operations
in O(nm) time. It performs each tree operation on
a tree of maximum sizen. The use of Theorem (2)
establishes the result. ⊓⊔

4 Example
The networkG is represented in figure (1) and the
coresponding residual network is in figure (2), with
s=1 andt=6. Initially, the dynamic tree contains the
collection of singleton six nodes.

Figure 1: The network flow

We determine the exact distance labels for the
nodes in the network and obtain̂h = (3, 2, 2, 1, 1, 0).
We also set the current node as the source nodes.

In the first iteration the algorithm selects the
source node1 and choose(1, 2) as the admissible arc
in the residual network. We apply aTADV procedure;
consequently, we add the tree arc(1, 2) with value
4 by applying LINK(1,2,4) and we setx:=2 follow-
ing the operationx:=ROOT (2). In the next iteration

Figure 2: The initial residual network

we add the tree arc(2, 5) with value 2 and we set
x:=ROOT (5)=5. Next, we apply LINK(5,6,2). Be-
cause the current node is the sink node, we apply a
TDEC procedure on admissible path(1, 2, 5, 6). The
tree is represented in figure (3).

Figure 3: Dynamic tree

We determine value ofu in the following manner:
u:=ANCES(1)=5 with w=V ALUE(5)=2. The op-
eration CHANGE(1,-2) decreases2 units from every
tree arc. In this moment, the arcs(5, 6) and(2, 5) have
value0, so we delete these arcs from the tree (see the
DELETE(5) and DELETE(2) operations). The
dynamic tree is now represented in figure (4).

Figure 4: Dynamic tree

Next we setx:=ROOT (1)=2; the updated resid-
ual network is represented in figure (5).

We apply the LINK(2,4,1) and LINK(4,6,3) oper-
ations and decrease1 unit of flow from every arc on
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Figure 5: The intermediate residual network

path(1, 2, 4, 6). At the end of this iteration the current
node isx=6, so by start with TDEC procedure, we de-
termine the dynamic tree of figure (6) and the residual
network of figure (7).

Figure 6: Dynamic tree

The curent node is nowx:=ROOT (1)=2. In the
next iteration we don’t have an admissible arc from
node2, so we apply the TRET(2) procedure and de-
termineĥ(2)=min{ĥ(1) + 1}=4. Now, we delete the
arc (1, 2) from the tree and setx=1. Next, we ap-
ply the LINK(1,3,1) and LINK(3,5,1) operations. Be-
cause we don’t have an admissible arc from the node
5, we apply the TRET(5), TRET(3) and TRET(1) pro-
cedures, thuŝh=(4,4, 3, 1, 2, 0). We obtain the di-
rected path(1, 3, 5, 4, 6) with u=3, w=1 and apply the
CHANGE(1,-1) procedure. Now, the dynamic tree
and the residual network are represented in figures (8)
and (9), respectively.

The curent node isx=1. There is not an admis-
sible arc starting from node1, so the TRET(1) proce-
dure set̂h=(5,4, 3, 1, 2, 0). In the next iteration,(1, 2)
is an admissible arc, but there are not an admissible
arc from node2, so we apply the TRET(2) proce-
dure and determinêh=(5,6, 3, 1, 2, 0). The TRET(1)
procedure determineŝh=(7,6, 3, 1, 2, 0) and the algo-
rithm ends with the value of minimun floŵv=4. The
minimum network flow is represented in figure (10).

Figure 7: The intermediate residual network

Figure 8: Dynamic tree

5 Applications of the minimum flow

In this section we present the scheduling jobs on iden-
tical machines. This problem has many practical ap-
plications, wheremachinesmight be workers, tankers,
airplanes, truks, processors etc. Three of such exam-
ples are treated here as subsections. Another interest-
ing applications are presented in main works like [3]
or recent publications like [12].

Let X be a set of jobs which are to be processed
by a set of identical machinesY . Each jobxi ∈ X
is processed by one machineyj ∈ Y . There is a fix
schedule for the jobs, specifying that the jobxi ∈ X
must start at timeτ(xi) and finish at timeτ ′(xi). Fur-
thermore, there is a transition timeτ ′′(xi, yj) required
to set up a machine which has just performed the job
xi and will perform the jobyj . The goal is to find a
feasible schedule for the jobs which requires as few
machines as possible.

We can formulate this problem as a minimum
flow problem in a networkG. This network contains
a node for each jobxi ∈ X, i = 1, ..., k. We split
each nodexi into two nodesx′

i andx′′

i and add the arc
(x′

i, x
′′

i ). We also add a source nodes and a sink node
t. We connect the source node to the nodesx′

i ∈ X,
i = 1, ..., k and each nodex′′

i ∈ X, i = 1, ..., k to the
sink node. Ifτ ′(x′

i) + τ ′′(x′′

i , x
′

j) ≤ τ(x′

j) then we
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Figure 9: The final residual network

Figure 10: The minimum network flow

also add the arc(x′′

i , x
′

j).
Thus, we can formulate this problem as a mini-

mum flow problem in a networkG = (N, A, l, c, s, t)
where

N = N1 ∪ N2 ∪ N3 ∪ N4,

N1 = {s},

N2 = {x′

i|i = 1, ..., k},

N3 = {x′′

i |i = 1, ..., k},

N4 = {t},

A = A1 ∪ A2 ∪ A3 ∪ A4,

A1 = {(s, x′

i)|x
′

i ∈ N2},

A2 = {(x′

i, x
′′

i )|x
′

i ∈ N2, x
′′

i ∈ N3},

A3 = {(x′′

i , x
′

j)|τ
′(x′

i) + τ ′′(x′′

i , x
′

j) ≤ τ(x′

j)},

A4 = {(x′′

i , t)|x
′′

i ∈ N3},

l(s, x′

i) = 0, c(s, x′

i) = 1 for each(s, x′

i) ∈ A1,

l(x′

i, x
′′

i ) = 1, c(x′

i, x
′′

i ) = 1 for each(x′

i, x
′′

i ) ∈ A2,

l(x′′

i , x
′

j) = 0, c(x′′

i , x
′

j) = 1 for each(x′′

i , x
′

j) ∈ A3,

l(x′′

i , t) = 0, c(x′′

i , t) = 1 for each(x′′

i , t) ∈ A4.

5.1 Machine setup problem
A job shop needs to performk jobs on a particular day.
It is known the start timeτ(xi) and the end timeτ ′(xi)
for each jobxi, i = 1, ..., k. The workers must per-
form these jobs according to this schedule so that ex-
actly one worker performs each job. A worker cannot
work on two jobs at the same time. It is also known
the setup timeτ ′′(xi, xj) required for a worker to go
from job xi to job xj . We wish to find the minimum
number of workers to perform the given jobs.

In order to illustrate a modeling approach for this
problem, we consider an example with three jobs. The
next table shows the start times, the end times and the
setup times (in minutes) for the jobs.

xi τ(xi) τ ′(xi) τ ′′(xi, xj)
1 2 3

1 13.00 13.30 0 20 25
2 18.00 20.00 15 0 35
3 19.00 21.00 30 5 0

We represent in figure (11) the networkG =
(N, A, l, c, s, t) for this example.

Figure 11: The machine setup network

Figure (12) shows a minimum flowf with v = 2
in networkG.

The minimum number of workers to perform the
jobs is two. The first worker performs jobs 1 and 2
and the second worker performs job 3.

5.2 Tanker scheduling problem
A steamship company has contracted to deliver
perishable goods between several different origin-
destination pairs. Since the cargo is perishable, the
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Figure 12: The minimum flow for machine setup net-
work

customers have specified precise dates (in days) when
the shipments must reach their destinations. The
steamship company wants to determine the minimum
number of ships needed to meet the delivery dates of
the shiploads.

In order to illustrate a modeling approach for
this problem, we consider an example with four ship-
ments. Each one is a full shipload with the character-
istics shown in the next table.

Shipment Origin Destination Delivery
xi date
1 Portp1 Portp3 3
2 Portp1 Portp3 8
3 Portp2 Portp4 3
4 Portp2 Portp4 6

The next table shows the transit times for the
shipments (including the allowances for loading and
unloading the ships) and the return times (without a
cargo) between ports.

p1 p2 p3 p4

p1 0 - 3 2
p2 - 0 2 3
p3 2 1 0 -
p4 1 2 - 0

The network contains two nodesx′

i and x′′

i for
each shipmentxi and an arc(x′′

i , x
′

j) if the start time
of the shipmentxj is no earlier than the delivery time
of the shipmentxi plus the travel time from the des-
tination of shipmentxi to the origin of shipmentxj .
Figure (13) shows the resulting network for our exam-
ple.

Figure (14) shows a minimum flowf with v = 2
in the previous network.

Figure 13: The tanker scheduling network

Figure 14: The minimum flow for tanker scheduling
network

The minimum number of ships needed to meet the
delivery dates of the shiploads is 2.

5.3 Airline scheduling problem
An airline company has contracted to performk
flights between several different origin-destination
pairs. The starting time for flighti is τ(i) and the fin-
ishing time isτ ′(i). The plane requiresτ ′′(i, j) hours
to return from the point of destination of the flighti to
the point of origin of the flightj. The airline company
wants to determine the minimum number of planes
needed to perform these flights.

In order to illustrate a modeling approach for this
problem, we consider an example with four flights. A
plane requiresτ ′′(i, j) = τ ′(j) − τ(i) hours to return
from the point of destination of the flighti to the point
of origin of the flightj. Each flight has the character-
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istics shown in the next table.

Flight Origin Destination
i τ(i) τ ′(i)

1 Airport a1 Airport a3

7.00 9.00
2 Airport a1 Airport a3

10.00 12.15
3 Airport a2 Airport a4

7.30 8.30
4 Airport a2 Airport a4

9.00 12.00
5 Airport a2 Airport a5

12.00 14.15

Figure (15) shows the corresponding network
G = (N, A, l, c, s, t).

Figure 15: The airline scheduling network

Figure (16) shows a minimum flowf with v = 3
in the networkG.

The minimum number of planes to perform the
flights is three. The first plane performs flights 1 and
5, the second plane performs flights 2 and 3 and the
third plane performs flight 4.

A related problem could be a scheduling airplanes
problem. This means that an airport has a certain
number of runways that can be used for landing of
airplanes. How would you schedule airplanes to use
the minimum number of runways (in order to possi-
bly have some spare ones permanently ready for emer-
gency landings) if every use of a runway can be deter-
mined as fixed time interval? We can solve this prob-
lem in the same mode as the previous problems.

Figure 16: The minimum flow for airline scheduling
network

6 Conclusions

In this section we present conclusions and open prob-
lems.

The results explained in the previous sections
show that the dynamic tree data structure implementa-
tion solves the minimum network flow for the Ahuja-
Orlin shortest path algorithm. By doing so we are able
to essentially reduce the computational requirement of
the shortest decreasing path algorithm for minimum
flows fromO(n2m) to O(nm log n) so we obtain an
important improvement of this algorithm complexity.
The improvement is correct for any decreasing path
algorithm for minimum flow problem.

For the near future, we are interested in using the
dynamic tree data structure in order to solve the min-
imum flow problem for other classes of algorithms.
Another natural open problem is how to compute
these algorithms in parallel, starting from [7] and [12].
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