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Abstract: - Executing a program in parallel machines needs not only to find sufficient parallelism in a program, 

but it is also important that we minimize the synchronization and communication overheads in the parallelized 

program. This yields to improve the performance by reducing the time needed for executing the program. 

Parallelizing and partitioning of nested loops requires efficient iteration dependence analysis. Although many 

loop transformations techniques exist for nested loop partitioning, most of these transformation techniques 

perform poorly when parallelizing nested loops with non-uniform (irregular) dependences. In this paper the 

affine and unimodular transformations are applied to solve the problem of parallelism in nested loops with non-

uniform dependence vectors. To solve these problem few researchers converted the non-uniform nested loops 

to uniform nested loops and then find the parallelism. We propose applying directly the two approaches affine 

and unimodular transformations to extract and improve the parallelism in nested loops with non-uniform 

dependences. The study shows that unimodular transformation is better than affine transformation when the 

dependences in nested loops exist only in one statement. While affine transformation is more effective when 

the nested loops have a sequence of statements and the dependence exists between these different statements.  

 

 

Keywords: - Unimodular transformation, Affine transformation, Parallelism, Uniform dependence, Non-

uniform dependence, Distance vector, Distance matrix.   
 

1 Introduction 
To get high performance on a multiprocessor, it is 

important to find parallelism that does not incur 

high synchronization cost between the processors. 

Loop transformations have been shown to be useful 

for extracting parallelism from nested loops for a 

large class of machines.  

A loop transformation of nested loops is a 

mechanism that changes the (sequential) execution 

order of the statement instances without changing 

the set of statement instances. Before the loop 

transformation can be performed, the data 

dependence between the individual statements must 

be determined. There are several well-known data 

dependence algorithms that have been developed to 

test data dependence, for example [16], [20], [21], 

[24], [28], [29], [31], [33-35] and [36]. 

Loops with data dependences can be divided into 

two groups; loops with regular (uniform) 

dependences and loops with irregular (non-uniform) 

dependences. The dependences are uniform only 

when the dependence vectors are uniform. In other 

words, the dependence vectors can be expressed by 

constants, distance vectors. Figure 1 shows an 

example of nested loop with uniform dependences. 

Dependence vectors in Figure 1 are (0,1) and (1,0) 

for all iterations in the given loops. In the same 

fashion, we call some dependences non-uniform 

when dependence vectors are in irregular patterns 

which cannot be expressed by constants, distance 

vectors. Figure 2 shows an example of nested loop 

with non-uniform dependences.  
  

    

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 1 An example of nested loop with 

                uniform dependences. 

For  I1=  1,  5 

   For  I2 =  1,  5 

     S1:  A[I1,I2]=A[I1,I2-1]+A[I1-1,I2] 

I2 

I1 

1 2 4 3 

1 

2 

3 

4 

5 

5 

WSEAS TRANSACTIONS on COMPUTERS
FAWZY A. TORKEY, AFAF A. SALAH, NAHED 
M. EL DESOUKY  and SAHAR A. GOMAA

ISSN: 1109-2750 1395 Issue 9, Volume 7, September 2008



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Many loop transformations have been developed 

to improve parallelism and data locality in nested 

loops with uniform dependences [7-9], [14], [18], 

[23], [25]. Examples that include unimodular 

transformations can be found at [19], [13], [29], 

[30], [12], [15] and affine partitioning at [2-5], [22], 

[32]. But few techniques have been developed for 

nested loops with non-uniform dependences [10], 

[11], [26], [27].  

This paper presents two techniques for loop 

transformations, which can be used to extract and 

improve parallelism in nested loops with non-

uniform dependences. These two techniques are the 

unimodular transformation and the affine 

transformation. The study shows that the 

unimodular transformation requires synchronization 

between the processors, while in the affine 

transformation no synchronization is needed 

between the processors.  

The reset of this paper is organized as follows. In 

section 2 the legality and properties of the 

unimodular transformation are introduced. 

Definitions and algorithms about the affine 

transformation are described in section 3. A case 

study for double nested loop with non-uniform 

dependence is explained in section 4. Finally, 

conclusion is given in section 5. 

 

 

2 Unimodular Transformation 
The Whole idea of transforming the nested loop L is 

to find a suitable new execution order for its 

iterations such that independent iterations can be 

executed in parallel. After determining all 

dependence information in a given nested loop, the 

independent iterations can be executed in parallel. 

So, a given nested loop needs to be rewritten in a 

form that allows parallel execution of independent 

iterations. The loop parallelization algorithms are 

based on the approach of translation of sequential 

nested loop into semantically equivalent sequential 

nested loop. The translation of the nested loop into 

an equivalent another form which can be 

parallelized needs to loop transformation. Many 

loop transformations have been developed to 

improve parallelism in programs, for instance a 

unimodular transformation.  

A unimodular transformation is a loop 

transformation defined by unimodular matrix (A 

square integer matrix, which may be unimodular if 

its determinant is equal to ±1). The unimodular 

transformation can be applied to programs with 

perfect (sequence) nested loops. The dependences in 

the loop are abstracted by a set of distance and 

direction vectors. By applying a unimodular 

transformation to the original iteration space to 

produce a new iteration space, a sequential loop is 

transformed into another loop. A transformation is 

legal as long as the dependence vectors in the 

original iteration space remains lexicographically 

positive in the transformed space.  

Consider a model program is a perfect nested 

loop L of m FOR loops: 
 

  L1:  FOR  I1 = p1,q1  

  L2:    FOR  I2 = p2(I1), q2(I1) 

   M                      M   
 Lm:      FOR Im = pm(I1, I2,…, Im-1), qm(I1, I2,…, Im-1) 

                     H( I1, I2, L, Im ) 

 

It is a perfect nested loop, which has no 

statements between loops. The perfect nested loop L 

may be expressed by the formula L=(L1, L2,…, Lm), 

where m is the number of FOR loops inside the 

nested loop L. When m has the value 1, 2, or 3, the 

perfect nested loop is a single, double, or triple loop, 

respectively. The index variables of the individual 

loops are I1, I2,…, Im, and they form the index vector 

I = (I1, I2,…, Im) of the nested loop L. The lower and 

upper limits of the FOR loop Lr are the integers pr 

and qr, 1 ≤ r ≤ m, respectively. The stride of each 

index variable is 1. 

The set of all index variables is called the index 

space of L; it can be expressed as a set of integer m-

vectors I = (I1,I2,…,Im) such that 
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For  I1=  1,  5 

  For  I2 =  1,  5 

  S1: A[I1+I2,3I1+I2+3]=A[I1+I2+1,I1+2I2+4] 

Figure 2 An example of nested loop with 

non- uniform dependences 

I2 

I1 

1 2 4 3 

1 

2 

3 

4 

5 

5 

WSEAS TRANSACTIONS on COMPUTERS
FAWZY A. TORKEY, AFAF A. SALAH, NAHED 
M. EL DESOUKY  and SAHAR A. GOMAA

ISSN: 1109-2750 1396 Issue 9, Volume 7, September 2008



 

where pr(I1,I2,…, Ir-1) and qr(I1,I2,…, Ir-1), 1 ≤ r ≤ m 

are the lower and upper limits of L, respectively. 

Consider a given perfect nested loop L=(L1, 

L2,…, Lm) with a distance matrix D (each row is a 

dependence vector in nested loop L), we want to 

find a valid unimodular transformation La LU such 

that one or more innermost loops of LU can be 

executed in parallel. This means that finding an 

m×m unimodular matrix U such that all elements of 

the first column in DU are positive. If this satisfied, 

then the loops LU2, LU3, …, LUm of the transformed 

nested loop can be executed in parallel. Note that, 

the notation xa y is a function that maps an 

element x of its domain to an element y of its range. 
The algorithm, which uses to find the matrix U, is 

described in [30]. Also it presents the theorems of 

necessary and sufficient conditions, which make a 

loop LU executed in parallel. 

After determining the form of a unimodular 

transformation by using the distance matrix of a 

given nested loop, the limits of index variables must 

be determined. Let us consider the transformation of 

L into the nested loop LU with an m × m unimodular 

matrix U, the index vectors I=(I1, I2,…, Im) of L and 

K=(K1, K2,…, Km) of LU. The index vectors I and K 

are connected by the equation  

K = IU, 

so that  

I = KU
-1

. 
 

To find the limits of new loops K1, K2,…, Km the 

Fourier’s elimination method is used [29]. The new 

limits of loops are described by the set of 

inequalities: 
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3 Affine Transformation  
The basic concept of the affine transformation is to 

separate the program into as many independent 

partitions as possible and then these independent 

partitions can be executed in parallel. The affine 

transformation can be applied to programs with 

perfect and arbitrary nested loops. The dependences 

in the program are abstracted by a set of affine 

functions, which contains all pairs of data dependent 

access functions in this program.  

Consider a program P = <  ,,,,, ωηδ FDsS >, 

where   

- S is an ordered list of statements. 

- sδ  is the depth of statement s, defined to be the 

number of loops surrounding statement s. 

- ss ′,η  is the number of loops surrounding both 

statements s  and s′  

- 0)(
rr

≥isD  is a system of linear constraints that 

describes the valid loop iterations for statement s  

- )(isrz

r
F is the affine array access function for the r  

th array reference to array z  in statement s . 

- srzω is a Boolean value describing whether the r  

th array reference to array z  in statement s  is a 

write operation. 

The data dependence set of a program P = < 

 ,,,,, ωηδ FDsS > is 
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where p  is the “lexicographically less than” operator 

such that ii ss

r
p

r
′′  if and only if iteration i

r
 of statement 

s is executed before iteration i
r
′ of s′  in the program P.   

The space partition constraint, as defined below, 

captures the necessary and sufficient constraint for 

an affine mapping to divide the computation into 

independent partitions. 

Definition 1 (space partition constraints) Let ℜ  be 

the data dependence set for program P = < 

 ,,,,, ωηδ FDsS >. An affine space partition mapping 

Φ  for P is independent if and only if  
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 (2) 

 

This constraint simply states that data dependent 

instances must be placed in the same partition. That 

is if iteration i
r

of statement s  and iteration i
r
′ of 

statement s′ access the same data, then their 

mappings sΦ and s′Φ are constrained to assign these 

iterations to the same space partition, i.e. 

.0)()( =Φ−′Φ ′ ii ss

rr
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In the space partition constraints, the coefficients of 

the affine mappings (X) and the loop index values 

correspond to the data dependent instances )( y
r

are 

both unknowns. Since X and y
r

 are coupled in (3), 

the constraints are non-linear. 

We can find the affine partition that maximizes 

the degree of independent partitions in a program by 

simply finding the maximal set of independent 

solutions to the corresponding space partition 

constraint. The algorithms which solve the 

constraints and find a partition mapping have been 

described in [4] and [5]. The algorithm of solving 

the constraints used the affine form of the Farkas 

lemma [6], [17] to transform the non-linear 

constraints into system linear inequalities. The 

algorithm of the affine partition mapping based on 

Fourier–Motzkin elimination [1] that can be used to 

generate the desired SPMD (Single Program 

Multiple Data) code. 

 

 

4 Case Study 
The following case study is introduced to show how 

the affine transformation and the unimodular 

transformation can be used to extract the parallelism 

from nested loops which have non-uniform 

dependences. If we have the following code  

      

L1:     For I1 = 1 to N1 

L2:        For I2 = 1 to N2 

       S1[I1, I2]:   A[I1+I2, 3I1+I2+3] = B[I1, I2]   

        S2[I1, I2]:   C[I1, I2 ] = A[I1+I2+1, I1+2I2+4]  
 

Figure 3 shows the iteration space and 

hierarchical program structure for the above code. 

The figure shows a subset of the dynamic instances, 

4 iterations in the I1 loop and 6 iterations in the I2 

loop. Data dependences between the instances are 

shown as arrows in the iteration space 

representation. 

Notice that, the number of iterations for the outer 

loop I1=N1–1+1=N1, and for the inner loop I2=N2–

1+1= N2. So, the number of all iterations is N1*N2, 

and the number of all instances is 2*N1*N2, where 2 

is the number of statements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

4.1 Parallelism with Affine Transformation 
We will show how the affine transformation can be 

used to find the independent partitions. The above code is 

represented as P = <  ,,,,, ωηδ FDsS >, where   

- },{ 21 ssS = , is an ordered list containing the two 

statements in the code.. 

- 1δ = 2 is the number of loops surrounding 

statement 1s . 

- 2δ = 2 is the number of loops surrounding 

statement 2s . 

- 2,1η = 2 is the number of loops surrounding both 

statements 1s  and 2s . 

- 0)(
rr

≥isD  is a system of linear constraints that 

describes the valid loop iterations for statement s . 

So from the loop bounds of the loops surrounding 

Figure 3 iteration space, hierarchical 

program structure and data dependence. 
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S2 dependence on S1 at level 1 
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1s and 2s  we can find )(1 i
r

D and )(2 i
r

D . They will 

have the following same form 
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- )(isrz

r
F is the affine array access function for the r  

th array reference to array z  in statement s . There 

are four F and four ω in the representation. They 

correspond to the four access functions in the code, 

one write and one read in each statement. 
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- srzω is a Boolean value describing whether the r  th 

array reference to array z  in statement s  is a write 

operation. 

11Aω = true, 
11B

ω = false, 
12C

ω = true, 
12 A

ω = false. 

The data dependence set for the above code is 

the 1-element set { }>< 1211 , AA FF . From this set the 

dependences are between the different statements S1 

and S2, but not at the same statement. Figure 3 

shows that the dependence vectors are non-uniform. 

After using the algorithm in [4], we get the space 

partition mapping Φ = [ 1Φ , 2Φ ] with 211 II +=Φ  

and 1212 ++=Φ II . The SPMD code for the previous 

code after the space partition mapping Φ  will be 

 For I1  = 1 to N1 

   For I2   =  1 to N2 

      If ( Φ = I1 + I2) then 

          S1[I1, I2]:  A[I1+I2, 3I1+I2+3] = B[I1, I2]  

      If ( Φ = I1 + I2+1) then 

          S2[I1,I2]: C[I1, I2 ] = A[I1+I2+1, I1+2I2+4] 

Now the new loop bounds are computed for the 

two statements S1 and S2 separately. The Fourier’s 

elimination method [29] is used to compute these 

new loop bounds. The new loop bounds for 

statement S1 will be as follows:                         

( ) ( )1   ,min     , 1  max 112 −Φ≤≤−Φ NIN            (1) 

              21                   2   NN +≤Φ≤                       (2) 

The new loop bounds for statement S2 is as follows:  

( ) ( )2,min 11, max 112 −Φ≤≤−−Φ NIN       (3) 

       1                  3 21 ++≤Φ≤ NN                    (4) 

From (2) and (4), the range of Φ  will be as follows:  

              1                 2   21 ++≤Φ≤ NN  

The number of partitions ( Φ )=N1+N2+1- 

2+1=N1+N2. The table 1 shows all independent 

partitions, which can be executed in parallel. In this 

case N1 = 4 and N2 = 6. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The table shows that different partitions ( Φ =2 to 

Φ = 11) can be executed at the same time and no 

synchronization is needed between the processors. 

While the instances of statements in the same 

partition need to be executed dependently. The time 

diagram with the affine transformation will be 

discussed, assuming that each statement will take 1 

time clock (1 time unit).  

Figure 4 give the time diagram. It shows that, if 

we have number of processors = N1(the number of 

Φ =2 Φ =3 Φ =4 Φ =5 Φ =6 

S1(1,1) S2(1,1) 

S1(1,2) 

S1(2,1) 

S2(1,2) 

S1(1,3) 

S2(2,1) 

S1(2,2) 

S1(3,1) 

S2(1,3) 

S1(1,4) 

S2(2,2) 

S1(2,3) 

S2(3,1) 

S1(3,2) 

S1(4,1) 

S2(1,4) 

S1(1,5) 

S2(2,3) 

S1(2,4) 

S2(3,2) 

S1(3,3) 

S2(4,1) 

S1(4,2) 

Φ =7 Φ =8 Φ =9 Φ =10 Φ =11 

S2(1,5) 

S1(1,6) 

S2(2,4) 

S1(2,5) 

S2(3,3) 

S1(3,4) 

S2(4,2) 

S1(4,3) 

S2(1,6) 

S2(2,5) 

S1(2,6) 

S2(3,4) 

S1(3,5) 

S2(4,3) 

S1(4,4) 

S2(2,6) 

S2(3,5) 

S1(3,6) 

S2(4,4) 

S1(4,5) 

S2(3,6) 

S2(4,5) 

S1(4,6) 

S2(4,6) 

Table 1 Independent partitions with affine 

transformation 

(Cont.)  Table 1 
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iterations in the outer loop), then each processor will 

execute number of instances = number of 

statements*N2(the number of iterations in the inner 

loop), where in this case N1=4 and N2=6. 

  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Notice that all processors will start at the same time 

because the partitions are independent and can be 

executed in parallel without need of 

synchronization. The total time units equal the 

number of statements * number of iterations in inner 

loop.  

 

 

4.2 Parallelism with Unimodular 

Transformation 
For the previous code we will show how we can use 

the unimodular transformation to extract the 

parallelism. Here the dependence exists in outer and 

inner loop (at levels 1, and 2). The outer and inner 

loops cannot be executed in parallel. The 

unimodular transformation cannot be used directly 

because the data dependence is non-uniform 

dependence. So the distance matrix D cannot be 

performed. The dependence uniformization 

technique in [27] can be used to uniformize the data 

dependences. By applying the idea of the 

dependence uniformization technique, a set of basic 

dependences is chosen to replace all original 

dependence constraints in every iteration so that the 

dependence pattern becomes uniform. Then, this 

uniformization helps in applying the unimodular 

transformation. The distance matrix D after 

uniformization is as follows:  

D = 








− 21

10
 

The outer and inner loops still cannot be 

executed in parallel. This is because of the 

dependence still at level 1 and level 2. We will use 

the following unimodular matrix  

U = 








01

13
 

to transform loop L into LU whose inner loop can be 

executed in parallel.  

So,  K = IU   ⇒   (K1, K2) = (I1, I2) 








01

13
    ⇒               

(K1, K2) = (3I1 + I2, I1), 

and  I  =  KU
-1

  ⇒  (I1, I2)  =  (K1, K2) 








− 31

10
  ⇒              

(I1, I2) = (K2 ,K1 - 3K2). 

The constraints on I1 and I2 give the inequalities: 

1 ≤  K2 ≤ N1 

1 ≤     K1 –  3K2    ≤  N2 

By using Fourier’s elimination [29] we find 

                              4   ≤  K1   ≤  3N1+N2 

       max 














 −

3
 ,1 21 NK

 ≤ K2 ≤min  














 −

3

1
, 1

1

K
N . 

The loop L becomes after transformation in the 

form LU as follows, where in this case  N1= 4 and 

N2= 6 

 

LU1:  For  K1 = 4, 18 

LU2:  For K2=max 














 −

3

6
 ,1 1K

,min  














 −

3

1
,4 1K

 

      S1(K1,K2) : A(K1- 2K2,K1+ 3)=B(K2,K1-3K2) 

      S2(K1,K2) : C(K2,K1-3K2)=A(K1-2K2+1,2K1-

5K2+4) 

 

After transformation the distance matrix has the 

form  

                  DU = 








− 21

10









01

13
= 









11

01
. 

 

 

 

 

 

Figure 4 Time diagram with affine transformation 

Time units = 12 units 

PE 1 

Φ =2 Φ =6 

 

Φ =10 
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Φ =3 Φ =7 

 

Φ =11 

PE 3 

Φ = 4 Φ = 8 

 

PE 4 

Φ =5 Φ = 9 
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After transformation the dependence exists at 

level 1 but not at level 2. Thus, the inner loop can be 

executed in parallel and inner loop parallelism is 

performed. Table 2 shows the data array allocation 

to the four processors after parallelism using the 

unimodular transformation. The table shows that the 

unimodular transformation requires synchronization 

between the processors. The time diagram with the 

unimodular transformation is discussed, assuming 

that each statement will take 1 time clock (1 time 

unit). 

From the table we can notice that processor 2 will 

remain idle till k2=2 (when min  














 −

3

1
,4 1K

= 2 i.e 

K1= 7). Also processor 3 will remain idle till k2=3 

(when min  














 −

3

1
,4 1K

= 3 i.e K1= 10) and processor 

4 will remain idle till k2=4 (when min  














 −

3

1
,4 1K

= 4 

i.e K1= 13).  

 

 

 

 

 

 

 

 

 

Figure 5 give the time diagram. If we have 

number of processors = N1 (the number of iterations 

in the outer loop), then each processor will execute 

number of instances = number of statements * 

N2(the number of iterations in inner loop),  where in 

this case N1=4 and N2=6. So the time units equal to 

the number of iterations at the outer loop after 

transformation * number of statements which 

usually greater than the number of statements * 

number of iterations in the inner loop before 

transformation. 

 

Processor 1 Processor 2 

S1(4,1): A(2,7)=B(1,1) 

S2(4,1): C(1,1)=A(3,7) 

S1(5,1): A(3,8)=B(1,2) 

S2(5,1): C(1,2)=A(4,9) 

S1(6,1): A(4,9)=B(1,3) 

S2(6,1): C(1,3)=A(5,11) 

S1(7,1): A(5,10)=B(1,4) 

S2(7,1): C(1,4)=A(6,13) 

S1(8,1): A(6,11)=B(1,5) 

S2(8,1): C(1,5)=A(7,15) 

S1(9,1): A(7,12)=B(1,6) 

S2(9,1): C(1,6)=A(8,17) 

Idle 

Idle 

Idle 

Idle 

Idle 

Idle 

S1(7,2):   A(3,10)=B(2,1) 

S2(7,2):   C(2,1)=A(4,8) 

S1(8,2):   A(4,11)=B(2,2) 

S2(8,2):   C(2,2)=A(5,10) 

S1(9,2):   A(5,12)=B(2,3) 

S2(9,2):   C(2,3)=A(6,12) 

S1(10,2): A(6,13)=B(2,4) 

S2(10,2): C(2,4)=A(7,14) 

S1(11,2): A(7,14)=B(2,5) 

S2(11,2): C(2,5)=A(8,16) 

S1(12,2): A(8,15)=B(2,6) 

S2(12,2): C(2,6)=A(9,18) 

Processor 3 Processor 4 

Idle 

Idle 

Idle 

Idle 

Idle 

Idle 

Idle 

Idle 

Idle 

Idle 

Idle 

Idle 

S1(10,3): A(4,13)=B(3,1) 

S2(10,3): C(3,1)=A(5,9) 

S1(11,3): A(5,14)=B(3,2) 

S2(11,3): C(3,2)=A(6,11) 

S1(12,3): A(6,15)=B(3,3) 

S2(12,3): C(3,3)=A(7,13) 

S1(13,3): A(7,16)=B(3,4) 

S2(13,3): C(3,4)=A(8,15) 

S1(14,3): A(8,17)=B(3,5) 

S2(14,3): C(3,5)=A(9,17) 

S1(15,3): A(9,18)=B(3,6) 

S2(15,3):C(3,6)=A(10,19) 

Idle 

Idle 

Idle 

Idle 

Idle 

Idle 

Idle 

Idle 

Idle 

Idle 

Idle 

Idle 

Idle 

Idle 

Idle 

Idle 

Idle 

Idle 

S1(13,4):A(5,16)=B(4,1) 

S2(13,4):C(4,1)=A(6,10) 

S1(14,4):A(6,17)=B(4,2) 

S2(14,4):C(4,2)=A(7,12) 

S1(15,4):A(7,18)=B(4,3) 

S2(15,4):C(4,3)=A(8,14) 

S1(16,4):A(8,19)=B(4,4) 

S2(16,4):C(4,4)=A(9,16) 

S1(17,4):A(9,20)=B(4,5) 

S2(17,4):C(4,5)=A(10,18) 

S1(18,4):A(10,21)=B(4,6) 

S2(18,4):C(4,6)=A(11,20) 

Table 2 Allocation of the data to 4 processors with 

unimodular transformation 

(Cont.)  Table 2 
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5 Conclusion 
In this paper we apply the unimodular transformation and 

the affine transformation to improve the parallelism in 

nested loops with non-uniform dependences, the results 

show that  

- In nested loops with non-uniform dependences, the 

uniformization technique must be used to get nested 

loops with uniform dependences, so the unimodular 

transformation can be used. But the affine transformation 

can be used directly.    

- In the unimodular transformation we find a valid 

unimodular matrix, such that inner loop can be executed 

in parallel, it requires synchronization between 

processors. While in the affine transformation we divide 

the instances of statements into partitions, such that 

dependent instances are placed in the same partition, by 

assigning each partition to a different processor, no 

synchronization is needed between processors. 

- Unimodular transformation can be applied when 

dependence exists between the instances at the same 

statement, when the dependence exists between the 

instances in different statements the affine transformation 

can be applied. 

- Unimodular transformation needs not only to determine 

the variables that have dependence but it needs to 

determine the distance and direction of dependence 

vectors. In affine transformation it is needed only to 

determine the variables that have dependence. Time of 

execution with the unimodular transformation is longer 

than time of execution with the affine transformation, 

when the dependence is between different statements. 
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