
Transformations Techniques for extracting Parallelism in Non-Uniform

Nested Loops

FAWZY A. TORKEY
1
, AFAF A. SALAH

2
, NAHED M. EL DESOUKY

2
 and SAHAR A.

GOMAA
2

1)
Kaferelsheikh University, Kaferelsheikh, EGYPT

2)
Mathematics Department, Faculty of Science, Al Azhar University, Nasr City, EGYPT

nahedmgd@yahoo.com

Abstract: - Executing a program in parallel machines needs not only to find sufficient parallelism in a program,

but it is also important that we minimize the synchronization and communication overheads in the parallelized

program. This yields to improve the performance by reducing the time needed for executing the program.

Parallelizing and partitioning of nested loops requires efficient iteration dependence analysis. Although many

loop transformations techniques exist for nested loop partitioning, most of these transformation techniques

perform poorly when parallelizing nested loops with non-uniform (irregular) dependences. In this paper the

affine and unimodular transformations are applied to solve the problem of parallelism in nested loops with non-

uniform dependence vectors. To solve these problem few researchers converted the non-uniform nested loops

to uniform nested loops and then find the parallelism. We propose applying directly the two approaches affine

and unimodular transformations to extract and improve the parallelism in nested loops with non-uniform

dependences. The study shows that unimodular transformation is better than affine transformation when the

dependences in nested loops exist only in one statement. While affine transformation is more effective when

the nested loops have a sequence of statements and the dependence exists between these different statements.

Keywords: - Unimodular transformation, Affine transformation, Parallelism, Uniform dependence, Non-

uniform dependence, Distance vector, Distance matrix.

1 Introduction
To get high performance on a multiprocessor, it is

important to find parallelism that does not incur

high synchronization cost between the processors.

Loop transformations have been shown to be useful

for extracting parallelism from nested loops for a

large class of machines.

A loop transformation of nested loops is a

mechanism that changes the (sequential) execution

order of the statement instances without changing

the set of statement instances. Before the loop

transformation can be performed, the data

dependence between the individual statements must

be determined. There are several well-known data

dependence algorithms that have been developed to

test data dependence, for example [16], [20], [21],

[24], [28], [29], [31], [33-35] and [36].

Loops with data dependences can be divided into

two groups; loops with regular (uniform)

dependences and loops with irregular (non-uniform)

dependences. The dependences are uniform only

when the dependence vectors are uniform. In other

words, the dependence vectors can be expressed by

constants, distance vectors. Figure 1 shows an

example of nested loop with uniform dependences.

Dependence vectors in Figure 1 are (0,1) and (1,0)

for all iterations in the given loops. In the same

fashion, we call some dependences non-uniform

when dependence vectors are in irregular patterns

which cannot be expressed by constants, distance

vectors. Figure 2 shows an example of nested loop

with non-uniform dependences.

Figure 1 An example of nested loop with

 uniform dependences.

For I1= 1, 5

 For I2 = 1, 5

 S1: A[I1,I2]=A[I1,I2-1]+A[I1-1,I2]

I2

I1

1 2 4 3

1

2

3

4

5

5

WSEAS TRANSACTIONS on COMPUTERS
FAWZY A. TORKEY, AFAF A. SALAH, NAHED
M. EL DESOUKY and SAHAR A. GOMAA

ISSN: 1109-2750 1395 Issue 9, Volume 7, September 2008

Many loop transformations have been developed

to improve parallelism and data locality in nested

loops with uniform dependences [7-9], [14], [18],

[23], [25]. Examples that include unimodular

transformations can be found at [19], [13], [29],

[30], [12], [15] and affine partitioning at [2-5], [22],

[32]. But few techniques have been developed for

nested loops with non-uniform dependences [10],

[11], [26], [27].

This paper presents two techniques for loop

transformations, which can be used to extract and

improve parallelism in nested loops with non-

uniform dependences. These two techniques are the

unimodular transformation and the affine

transformation. The study shows that the

unimodular transformation requires synchronization

between the processors, while in the affine

transformation no synchronization is needed

between the processors.

The reset of this paper is organized as follows. In

section 2 the legality and properties of the

unimodular transformation are introduced.

Definitions and algorithms about the affine

transformation are described in section 3. A case

study for double nested loop with non-uniform

dependence is explained in section 4. Finally,

conclusion is given in section 5.

2 Unimodular Transformation
The Whole idea of transforming the nested loop L is

to find a suitable new execution order for its

iterations such that independent iterations can be

executed in parallel. After determining all

dependence information in a given nested loop, the

independent iterations can be executed in parallel.

So, a given nested loop needs to be rewritten in a

form that allows parallel execution of independent

iterations. The loop parallelization algorithms are

based on the approach of translation of sequential

nested loop into semantically equivalent sequential

nested loop. The translation of the nested loop into

an equivalent another form which can be

parallelized needs to loop transformation. Many

loop transformations have been developed to

improve parallelism in programs, for instance a

unimodular transformation.

A unimodular transformation is a loop

transformation defined by unimodular matrix (A

square integer matrix, which may be unimodular if

its determinant is equal to ±1). The unimodular

transformation can be applied to programs with

perfect (sequence) nested loops. The dependences in

the loop are abstracted by a set of distance and

direction vectors. By applying a unimodular

transformation to the original iteration space to

produce a new iteration space, a sequential loop is

transformed into another loop. A transformation is

legal as long as the dependence vectors in the

original iteration space remains lexicographically

positive in the transformed space.

Consider a model program is a perfect nested

loop L of m FOR loops:

 L1: FOR I1 = p1,q1

 L2: FOR I2 = p2(I1), q2(I1)

 M M
 Lm: FOR Im = pm(I1, I2,…, Im-1), qm(I1, I2,…, Im-1)

 H(I1, I2, L, Im)

It is a perfect nested loop, which has no

statements between loops. The perfect nested loop L

may be expressed by the formula L=(L1, L2,…, Lm),

where m is the number of FOR loops inside the

nested loop L. When m has the value 1, 2, or 3, the

perfect nested loop is a single, double, or triple loop,

respectively. The index variables of the individual

loops are I1, I2,…, Im, and they form the index vector

I = (I1, I2,…, Im) of the nested loop L. The lower and

upper limits of the FOR loop Lr are the integers pr

and qr, 1 ≤ r ≤ m, respectively. The stride of each

index variable is 1.

The set of all index variables is called the index

space of L; it can be expressed as a set of integer m-

vectors I = (I1,I2,…,Im) such that













−≤≤−

≤≤

≤≤

).
1

,...,
2

,
1

()
1

,...,
2

,
1

(

)
1

(
22

)
1

(
2

111

m
IIImqmIm

IIImp

IqIIp

qIp

M

,

For I1= 1, 5

 For I2 = 1, 5

 S1: A[I1+I2,3I1+I2+3]=A[I1+I2+1,I1+2I2+4]

Figure 2 An example of nested loop with

non- uniform dependences

I2

I1

1 2 4 3

1

2

3

4

5

5

WSEAS TRANSACTIONS on COMPUTERS
FAWZY A. TORKEY, AFAF A. SALAH, NAHED
M. EL DESOUKY and SAHAR A. GOMAA

ISSN: 1109-2750 1396 Issue 9, Volume 7, September 2008

where pr(I1,I2,…, Ir-1) and qr(I1,I2,…, Ir-1), 1 ≤ r ≤ m

are the lower and upper limits of L, respectively.

Consider a given perfect nested loop L=(L1,

L2,…, Lm) with a distance matrix D (each row is a

dependence vector in nested loop L), we want to

find a valid unimodular transformation La LU such

that one or more innermost loops of LU can be

executed in parallel. This means that finding an

m×m unimodular matrix U such that all elements of

the first column in DU are positive. If this satisfied,

then the loops LU2, LU3, …, LUm of the transformed

nested loop can be executed in parallel. Note that,

the notation xa y is a function that maps an

element x of its domain to an element y of its range.
The algorithm, which uses to find the matrix U, is

described in [30]. Also it presents the theorems of

necessary and sufficient conditions, which make a

loop LU executed in parallel.

After determining the form of a unimodular

transformation by using the distance matrix of a

given nested loop, the limits of index variables must

be determined. Let us consider the transformation of

L into the nested loop LU with an m × m unimodular

matrix U, the index vectors I=(I1, I2,…, Im) of L and

K=(K1, K2,…, Km) of LU. The index vectors I and K

are connected by the equation

K = IU,

so that

I = KU
-1

.

To find the limits of new loops K1, K2,…, Km the

Fourier’s elimination method is used [29]. The new

limits of loops are described by the set of

inequalities:













−≤≤−

≤≤

≤≤

).1,...,2,1()1,...,2,1(

)1(22)1(2

111

mKKKmβmKmKKKmα

KβKKα

βKα

M

3 Affine Transformation
The basic concept of the affine transformation is to

separate the program into as many independent

partitions as possible and then these independent

partitions can be executed in parallel. The affine

transformation can be applied to programs with

perfect and arbitrary nested loops. The dependences

in the program are abstracted by a set of affine

functions, which contains all pairs of data dependent

access functions in this program.

Consider a program P = < ,,,,, ωηδ FDsS >,

where

- S is an ordered list of statements.

- sδ is the depth of statement s, defined to be the

number of loops surrounding statement s.

- ss ′,η is the number of loops surrounding both

statements s and s′

- 0)(
rr

≥isD is a system of linear constraints that

describes the valid loop iterations for statement s

-)(isrz

r
F is the affine array access function for the r

th array reference to array z in statement s .

- srzω is a Boolean value describing whether the r

th array reference to array z in statement s is a

write operation.

The data dependence set of a program P = <

 ,,,,, ωηδ FDsS > is



























≥′∧≥

∧=′−∧

′∈′∈∃

∧∨

><ℜ

′

′′

′

′′

′′

′

))0)(0)((

)0)()((

)(,(

)(

,=

rrrr

rrr

r
p

rrr

ii

ii

iiZiZi

ss

rzsszr

ss

rzsszr

rzsszr

ss

DD

FF

FF

δδ

ωω

 (1)

where p is the “lexicographically less than” operator

such that ii ss

r
p

r
′′ if and only if iteration i

r
 of statement

s is executed before iteration i
r
′ of s′ in the program P.

The space partition constraint, as defined below,

captures the necessary and sufficient constraint for

an affine mapping to divide the computation into

independent partitions.

Definition 1 (space partition constraints) Let ℜ be

the data dependence set for program P = <

 ,,,,, ωηδ FDsS >. An affine space partition mapping

Φ for P is independent if and only if

.0)()(

,0)()(0)(0)(

 s.t ,,,

=Φ−′
′Φ

=′
′′−∧≥′

′∧≥

′∈′∈ℜ>∈′′<∀

isi
s

i
rzs

iszri
s

is

sZisZi
rzsszr

rr

rrrrrrr

rr

FF

FF

DD

δδ

 (2)

This constraint simply states that data dependent

instances must be placed in the same partition. That

is if iteration i
r

of statement s and iteration i
r
′ of

statement s′ access the same data, then their

mappings sΦ and s′Φ are constrained to assign these

iterations to the same space partition, i.e.

.0)()(=Φ−′Φ ′ ii ss

rr

WSEAS TRANSACTIONS on COMPUTERS
FAWZY A. TORKEY, AFAF A. SALAH, NAHED
M. EL DESOUKY and SAHAR A. GOMAA

ISSN: 1109-2750 1397 Issue 9, Volume 7, September 2008

Let
sss diDi
rrr

+=)(D ,
szrszrszr fiFi
rrr

+=)(F and)(is

r
Φ =

.ss ciC +
r

 Each data dependence, ℜ>∈′′<
rzsszr FF , ,

imposes the following constraints on each row of an

independent mapping for statements s and s′ , X =

[])(ssss ccCC −− ′′ :

0
1

X ,0
1

0
1

 t.s. =







=








∧≥








∀

yyy
Gy

r
r

r
r

r
r

HHHH (3)

where










′
=

i

i
y r

r
r

,











=

′′ ss

ss

dD

dD
G r

r

0

0
,

HHHH =




 − ′′′′)(rzsszrrzsszr ffFF

r)r

In the space partition constraints, the coefficients of

the affine mappings (X) and the loop index values

correspond to the data dependent instances)(y
r

are

both unknowns. Since X and y
r

 are coupled in (3),

the constraints are non-linear.

We can find the affine partition that maximizes

the degree of independent partitions in a program by

simply finding the maximal set of independent

solutions to the corresponding space partition

constraint. The algorithms which solve the

constraints and find a partition mapping have been

described in [4] and [5]. The algorithm of solving

the constraints used the affine form of the Farkas

lemma [6], [17] to transform the non-linear

constraints into system linear inequalities. The

algorithm of the affine partition mapping based on

Fourier–Motzkin elimination [1] that can be used to

generate the desired SPMD (Single Program

Multiple Data) code.

4 Case Study
The following case study is introduced to show how

the affine transformation and the unimodular

transformation can be used to extract the parallelism

from nested loops which have non-uniform

dependences. If we have the following code

L1: For I1 = 1 to N1

L2: For I2 = 1 to N2

 S1[I1, I2]: A[I1+I2, 3I1+I2+3] = B[I1, I2]

 S2[I1, I2]: C[I1, I2] = A[I1+I2+1, I1+2I2+4]

Figure 3 shows the iteration space and

hierarchical program structure for the above code.

The figure shows a subset of the dynamic instances,

4 iterations in the I1 loop and 6 iterations in the I2

loop. Data dependences between the instances are

shown as arrows in the iteration space

representation.

Notice that, the number of iterations for the outer

loop I1=N1–1+1=N1, and for the inner loop I2=N2–

1+1= N2. So, the number of all iterations is N1*N2,

and the number of all instances is 2*N1*N2, where 2

is the number of statements.

4.1 Parallelism with Affine Transformation
We will show how the affine transformation can be

used to find the independent partitions. The above code is

represented as P = < ,,,,, ωηδ FDsS >, where

- },{ 21 ssS = , is an ordered list containing the two

statements in the code..

- 1δ = 2 is the number of loops surrounding

statement 1s .

- 2δ = 2 is the number of loops surrounding

statement 2s .

- 2,1η = 2 is the number of loops surrounding both

statements 1s and 2s .

- 0)(
rr

≥isD is a system of linear constraints that

describes the valid loop iterations for statement s .

So from the loop bounds of the loops surrounding

Figure 3 iteration space, hierarchical

program structure and data dependence.

I2

I1

1 2 4 3

1

2

3

4

5 6

I2

I1

 Start

S2 S1

S1
S2

(0,1)

(1,0)

S1 dependence on S2 at level 2

S1 dependence on S2 at level 1
(1,-2)

S2 dependence on S1 at level 1
(2,-3)

S2 dependence on S1 at level 1
(2,-1)

S1 dependence on S2 at level 1

S2 dependence on S1 at level 1
(3,-4)

WSEAS TRANSACTIONS on COMPUTERS
FAWZY A. TORKEY, AFAF A. SALAH, NAHED
M. EL DESOUKY and SAHAR A. GOMAA

ISSN: 1109-2750 1398 Issue 9, Volume 7, September 2008

1s and 2s we can find)(1 i
r

D and)(2 i
r

D . They will

have the following same form

),(211 IID =),(212 IID = .
1

1

10

10

01

01

2

1

2

1



















−

−

+


























−

−

N

N

I

I

-)(isrz

r
F is the affine array access function for the r

th array reference to array z in statement s . There

are four F and four ω in the representation. They

correspond to the four access functions in the code,

one write and one read in each statement.

,
3

0

13

11
),(

2

1
2111 








+
















=

I

I
IIAF

,
10

01
),(

2

1

2111 















=

I

I
IIBF

,
10

01
),(

2

1

2112 















=

I

I
IICF

.
4

1

21

11
),(

2

1
2112 








+















=

I

I
IIAF

- srzω is a Boolean value describing whether the r th

array reference to array z in statement s is a write

operation.

11Aω = true,
11B

ω = false,
12C

ω = true,
12 A

ω = false.

The data dependence set for the above code is

the 1-element set { }>< 1211 , AA FF . From this set the

dependences are between the different statements S1

and S2, but not at the same statement. Figure 3

shows that the dependence vectors are non-uniform.

After using the algorithm in [4], we get the space

partition mapping Φ = [1Φ , 2Φ] with 211 II +=Φ

and 1212 ++=Φ II . The SPMD code for the previous

code after the space partition mapping Φ will be

 For I1 = 1 to N1

 For I2 = 1 to N2

 If (Φ = I1 + I2) then

 S1[I1, I2]: A[I1+I2, 3I1+I2+3] = B[I1, I2]

 If (Φ = I1 + I2+1) then

 S2[I1,I2]: C[I1, I2] = A[I1+I2+1, I1+2I2+4]

Now the new loop bounds are computed for the

two statements S1 and S2 separately. The Fourier’s

elimination method [29] is used to compute these

new loop bounds. The new loop bounds for

statement S1 will be as follows:

() ()1 ,min , 1 max 112 −Φ≤≤−Φ NIN (1)

 21 2 NN +≤Φ≤ (2)

The new loop bounds for statement S2 is as follows:

() ()2,min 11, max 112 −Φ≤≤−−Φ NIN (3)

 1 3 21 ++≤Φ≤ NN (4)

From (2) and (4), the range of Φ will be as follows:

 1 2 21 ++≤Φ≤ NN

The number of partitions (Φ)=N1+N2+1-

2+1=N1+N2. The table 1 shows all independent

partitions, which can be executed in parallel. In this

case N1 = 4 and N2 = 6.

The table shows that different partitions (Φ =2 to

Φ = 11) can be executed at the same time and no

synchronization is needed between the processors.

While the instances of statements in the same

partition need to be executed dependently. The time

diagram with the affine transformation will be

discussed, assuming that each statement will take 1

time clock (1 time unit).

Figure 4 give the time diagram. It shows that, if

we have number of processors = N1(the number of

Φ =2 Φ =3 Φ =4 Φ =5 Φ =6

S1(1,1) S2(1,1)

S1(1,2)

S1(2,1)

S2(1,2)

S1(1,3)

S2(2,1)

S1(2,2)

S1(3,1)

S2(1,3)

S1(1,4)

S2(2,2)

S1(2,3)

S2(3,1)

S1(3,2)

S1(4,1)

S2(1,4)

S1(1,5)

S2(2,3)

S1(2,4)

S2(3,2)

S1(3,3)

S2(4,1)

S1(4,2)

Φ =7 Φ =8 Φ =9 Φ =10 Φ =11

S2(1,5)

S1(1,6)

S2(2,4)

S1(2,5)

S2(3,3)

S1(3,4)

S2(4,2)

S1(4,3)

S2(1,6)

S2(2,5)

S1(2,6)

S2(3,4)

S1(3,5)

S2(4,3)

S1(4,4)

S2(2,6)

S2(3,5)

S1(3,6)

S2(4,4)

S1(4,5)

S2(3,6)

S2(4,5)

S1(4,6)

S2(4,6)

Table 1 Independent partitions with affine

transformation

(Cont.) Table 1

WSEAS TRANSACTIONS on COMPUTERS
FAWZY A. TORKEY, AFAF A. SALAH, NAHED
M. EL DESOUKY and SAHAR A. GOMAA

ISSN: 1109-2750 1399 Issue 9, Volume 7, September 2008

iterations in the outer loop), then each processor will

execute number of instances = number of

statements*N2(the number of iterations in the inner

loop), where in this case N1=4 and N2=6.

Notice that all processors will start at the same time

because the partitions are independent and can be

executed in parallel without need of

synchronization. The total time units equal the

number of statements * number of iterations in inner

loop.

4.2 Parallelism with Unimodular

Transformation
For the previous code we will show how we can use

the unimodular transformation to extract the

parallelism. Here the dependence exists in outer and

inner loop (at levels 1, and 2). The outer and inner

loops cannot be executed in parallel. The

unimodular transformation cannot be used directly

because the data dependence is non-uniform

dependence. So the distance matrix D cannot be

performed. The dependence uniformization

technique in [27] can be used to uniformize the data

dependences. By applying the idea of the

dependence uniformization technique, a set of basic

dependences is chosen to replace all original

dependence constraints in every iteration so that the

dependence pattern becomes uniform. Then, this

uniformization helps in applying the unimodular

transformation. The distance matrix D after

uniformization is as follows:

D = 








− 21

10

The outer and inner loops still cannot be

executed in parallel. This is because of the

dependence still at level 1 and level 2. We will use

the following unimodular matrix

U = 








01

13

to transform loop L into LU whose inner loop can be

executed in parallel.

So, K = IU ⇒ (K1, K2) = (I1, I2) 








01

13
 ⇒

(K1, K2) = (3I1 + I2, I1),

and I = KU
-1

 ⇒ (I1, I2) = (K1, K2) 








− 31

10
 ⇒

(I1, I2) = (K2 ,K1 - 3K2).

The constraints on I1 and I2 give the inequalities:

1 ≤ K2 ≤ N1

1 ≤ K1 – 3K2 ≤ N2

By using Fourier’s elimination [29] we find

 4 ≤ K1 ≤ 3N1+N2

 max 














 −

3
 ,1 21 NK

 ≤ K2 ≤min 














 −

3

1
, 1

1

K
N .

The loop L becomes after transformation in the

form LU as follows, where in this case N1= 4 and

N2= 6

LU1: For K1 = 4, 18

LU2: For K2=max 














 −

3

6
 ,1 1K

,min 














 −

3

1
,4 1K

 S1(K1,K2) : A(K1- 2K2,K1+ 3)=B(K2,K1-3K2)

 S2(K1,K2) : C(K2,K1-3K2)=A(K1-2K2+1,2K1-

5K2+4)

After transformation the distance matrix has the

form

 DU = 








− 21

10









01

13
= 









11

01
.

Figure 4 Time diagram with affine transformation

Time units = 12 units

PE 1

Φ =2 Φ =6

Φ =10

PE 2

Φ =3 Φ =7

Φ =11

PE 3

Φ = 4 Φ = 8

PE 4

Φ =5 Φ = 9

WSEAS TRANSACTIONS on COMPUTERS
FAWZY A. TORKEY, AFAF A. SALAH, NAHED
M. EL DESOUKY and SAHAR A. GOMAA

ISSN: 1109-2750 1400 Issue 9, Volume 7, September 2008

After transformation the dependence exists at

level 1 but not at level 2. Thus, the inner loop can be

executed in parallel and inner loop parallelism is

performed. Table 2 shows the data array allocation

to the four processors after parallelism using the

unimodular transformation. The table shows that the

unimodular transformation requires synchronization

between the processors. The time diagram with the

unimodular transformation is discussed, assuming

that each statement will take 1 time clock (1 time

unit).

From the table we can notice that processor 2 will

remain idle till k2=2 (when min 














 −

3

1
,4 1K

= 2 i.e

K1= 7). Also processor 3 will remain idle till k2=3

(when min 














 −

3

1
,4 1K

= 3 i.e K1= 10) and processor

4 will remain idle till k2=4 (when min 














 −

3

1
,4 1K

= 4

i.e K1= 13).

Figure 5 give the time diagram. If we have

number of processors = N1 (the number of iterations

in the outer loop), then each processor will execute

number of instances = number of statements *

N2(the number of iterations in inner loop), where in

this case N1=4 and N2=6. So the time units equal to

the number of iterations at the outer loop after

transformation * number of statements which

usually greater than the number of statements *

number of iterations in the inner loop before

transformation.

Processor 1 Processor 2

S1(4,1): A(2,7)=B(1,1)

S2(4,1): C(1,1)=A(3,7)

S1(5,1): A(3,8)=B(1,2)

S2(5,1): C(1,2)=A(4,9)

S1(6,1): A(4,9)=B(1,3)

S2(6,1): C(1,3)=A(5,11)

S1(7,1): A(5,10)=B(1,4)

S2(7,1): C(1,4)=A(6,13)

S1(8,1): A(6,11)=B(1,5)

S2(8,1): C(1,5)=A(7,15)

S1(9,1): A(7,12)=B(1,6)

S2(9,1): C(1,6)=A(8,17)

Idle

Idle

Idle

Idle

Idle

Idle

S1(7,2): A(3,10)=B(2,1)

S2(7,2): C(2,1)=A(4,8)

S1(8,2): A(4,11)=B(2,2)

S2(8,2): C(2,2)=A(5,10)

S1(9,2): A(5,12)=B(2,3)

S2(9,2): C(2,3)=A(6,12)

S1(10,2): A(6,13)=B(2,4)

S2(10,2): C(2,4)=A(7,14)

S1(11,2): A(7,14)=B(2,5)

S2(11,2): C(2,5)=A(8,16)

S1(12,2): A(8,15)=B(2,6)

S2(12,2): C(2,6)=A(9,18)

Processor 3 Processor 4

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

S1(10,3): A(4,13)=B(3,1)

S2(10,3): C(3,1)=A(5,9)

S1(11,3): A(5,14)=B(3,2)

S2(11,3): C(3,2)=A(6,11)

S1(12,3): A(6,15)=B(3,3)

S2(12,3): C(3,3)=A(7,13)

S1(13,3): A(7,16)=B(3,4)

S2(13,3): C(3,4)=A(8,15)

S1(14,3): A(8,17)=B(3,5)

S2(14,3): C(3,5)=A(9,17)

S1(15,3): A(9,18)=B(3,6)

S2(15,3):C(3,6)=A(10,19)

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

Idle

S1(13,4):A(5,16)=B(4,1)

S2(13,4):C(4,1)=A(6,10)

S1(14,4):A(6,17)=B(4,2)

S2(14,4):C(4,2)=A(7,12)

S1(15,4):A(7,18)=B(4,3)

S2(15,4):C(4,3)=A(8,14)

S1(16,4):A(8,19)=B(4,4)

S2(16,4):C(4,4)=A(9,16)

S1(17,4):A(9,20)=B(4,5)

S2(17,4):C(4,5)=A(10,18)

S1(18,4):A(10,21)=B(4,6)

S2(18,4):C(4,6)=A(11,20)

Table 2 Allocation of the data to 4 processors with

unimodular transformation

(Cont.) Table 2

WSEAS TRANSACTIONS on COMPUTERS
FAWZY A. TORKEY, AFAF A. SALAH, NAHED
M. EL DESOUKY and SAHAR A. GOMAA

ISSN: 1109-2750 1401 Issue 9, Volume 7, September 2008

5 Conclusion
In this paper we apply the unimodular transformation and

the affine transformation to improve the parallelism in

nested loops with non-uniform dependences, the results

show that

- In nested loops with non-uniform dependences, the

uniformization technique must be used to get nested

loops with uniform dependences, so the unimodular

transformation can be used. But the affine transformation

can be used directly.

- In the unimodular transformation we find a valid

unimodular matrix, such that inner loop can be executed

in parallel, it requires synchronization between

processors. While in the affine transformation we divide

the instances of statements into partitions, such that

dependent instances are placed in the same partition, by

assigning each partition to a different processor, no

synchronization is needed between processors.

- Unimodular transformation can be applied when

dependence exists between the instances at the same

statement, when the dependence exists between the

instances in different statements the affine transformation

can be applied.

- Unimodular transformation needs not only to determine

the variables that have dependence but it needs to

determine the distance and direction of dependence

vectors. In affine transformation it is needed only to

determine the variables that have dependence. Time of

execution with the unimodular transformation is longer

than time of execution with the affine transformation,

when the dependence is between different statements.

References:

[1] A. Schrijver, Theory of Linear and Integer

Programming, Wiley, Chichester, 1986.

[2] A. W. Lim, G. I. Cheong, and M. S. Lam, An

Affine Partitioning Algorithm to Maximize

Parallelism and Minimize Communication, In

Proceeding of the 13th ACM SIGARCH

international Conference on Supercomputing,

Rhodes, Greece, June 1999.

[3] A. W. Lim and M. S. Lam, Cache Optimizations

with Affine Partitioning, In Proceedings of the

Tenth SIAM Conference on Parallel Processing

for Scientific Computing, March 2001.

[4] A. W. Lim and M. S. Lam, Maximizing

Parallelism and Minimizing Synchronization

with affine partitions, Parallel Computing vol.

24, no. 3-4, pp. 445-475, May 1998.

[5] A. W. Lim and M. S. Lam, Maximizing

Parallelism and Minimizing Synchronization

with Affine Transforms, In Conference Record

of the 24th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming

Languages, Paris, France, January 1997.

[6] C. Bastoul, Improving Data Locality in Static

Control Programs, PhD thesis, Univ. Paris 6,

Pierre et Marie Curie, December 2004.

[7] C. Gong, R. Melhem and R. Gupta, Loop

Transformations for Fault Detection in Regular

Loops on Massively Parallel Systems, IEEE

Transactions on Parallel and Distributed

Systems, vol. 7, no. 12, pp. 1238-1249,

December 1996.

[8] C. T. Yang, S. S. Tseng, S. H. Kao, M. H. Hsieh

and M. F. Jiang, Run-time Parallelization for

Partially Parallel Loops, Proceedings of the

1997 International Conference on Parallel and

Distributed Systems, pp. 308-313, 1997.

[9] C. Xu, Effects of Parallelism Degree on Run-

Time Parallelization of Loops, Proceedings of

the 31st Hawaii International Conference on

System Sciences (HICSS’98).

[10] D. K. Chen and P. C. Yew, On Effective

Execution of Non-Uniform DOACROSS

Loops, IEEE Transactions on Parallel and

Figure 5 Time diagram with unimodular

transformation

Time = 30 units

Idle

PE 1
K1=8, K2 =1 K1=9, K2 =1

PE 1
K1=4, K2 =1 K1=5, K2 =1 K1=6, K2 =1 K1=7, K2 =1

K1=7, K2 =2

PE 2
Idle

- - - - - - - -
K1=8, K2 =2 K1=9, K2 =2 K1=10,K2 =2

PE 2
K1=11,K2 =2

- - - - - - - -
PE 2

K1=12,K2 =2

- -

PE 3

- - - - - - - - - - -

PE 3
K1=10,K2 =3 Idle K1=11,K2 =3

- - - - - - - - - - -
K1=12,K2 =3

PE 3
K1=14,K2 =3 K1=13,K2 =3 K1=15,K2 =3

PE 4
K1=16,K2 =4 K1=17,K2 =4 K1=18,K2 =4

PE 4
Idle K1=13,K2 =4 K1=14,K2 =4 K1=15,K2 =4

PE 4
Idle

PE 4
Idle

WSEAS TRANSACTIONS on COMPUTERS
FAWZY A. TORKEY, AFAF A. SALAH, NAHED
M. EL DESOUKY and SAHAR A. GOMAA

ISSN: 1109-2750 1402 Issue 9, Volume 7, September 2008

Distributed System, vol. 7, pp. 463-476, May

1996.

[11] D. L. Pean and C. Chen, An Optimized Three

Region Partitioning Technique to Maximize

Parallelism of Nested Loops with Non-uniform

Dependences, Journal of Information Science

and Engineering, vol. 17, pp. 463-489, 2001.

[12] D. R. Chesney and B. H. Cheng, Generalizing

the Unimodular Approach, Proceedings of the

1994 International Conference on Parallel and

Distributed Systems, pp. 398-403, 1994.

[13] E. D’Hollander, Partitioning and Labeling of

Loops by Unimodular Transformations, IEEE

Transactions on Parallel and Distributed

Systems, vol. 3, no. 4, pp. 465-476, July 1992.

 [14] G. Goumas, M. Athanasaki and N. Koziris, An

Efficient Code Generation Technique for Tiled

Iteration Spaces, IEEE Tran. On Parallel and

Distrib. Syst., vol. 14, no. 10, pp. 1021-1034,

2003.

[15] J. Xue, Unimodular Transformations of Non-

Perfectly Nested Loops, Parallel Computing,

vol. 22, no. 12, pp. 1621-1645, 1997.

[16] K. Psarris, X. Kong and D. Klappholz, The

Direction Vector I Test, IEEE Transactions on

Parallel and Distributed Systems, vol. 4, no.

11, pp. 1280-1290, November 1993.

[17] L. N. Pouchet, When Iterative Optimization

Meets the Polyhedral Model: One-dimensional

Date, Master thesis (Univ. of Paris-Sud XI),

Orsay, France, October 2006.

[18] M. Rim and R. Jain, Valid Transformations: A

New Class of Loop Transformations for High-

Level Synthesis and Pipelined Scheduling

Applications, IEEE Transactions on Parallel

and Distributed Systems, vol. 7, no. 4, April

1996.

 [19] M. wolf and M. Lam, A Loop Transformation

Theory and an Algorithm to Maximize

Parallelism, IEEE Transactions on Parallel and

Distributed Systems, vol. 2, no. 4, pp. 452-471,

Oct. 1991.

[20] M. Wolfe, High Performance Compilers for

Parallel Computing, California, Addison-

Wesley publishing Company, Inc, 1996.

[21] M. wolfe and C. Tseng, The Power Test for

Data Dependence, IEEE Transactions on

Parallel and Distributed Systems, vol. 3, no. 5,

pp. 591-601, September 1992.

[22] N. Likhoded, S. Bakhanovich and A. Zherelo,

Obtaining Affine Transformations to Improve

Locality of Loop Nests, Programming and

Computer Software, vol. 31, no. 5, pp 270-281,

2005.

[23] N. Manjikian and T. S. Abdelrahman, Fusion of

Loops for Parallelism and Locality, IEEE

Transactions on Parallel and Distributed

Systems, vol. 8, no. 2, pp. 193-209, February

1997.

[24] P. M. Petersen and D. A. Padua, Static and

Dynamic Evaluation of Data Dependence

Analysis Techniques, IEEE Transactions on

Parallel and Distributed Systems, vol. 7, no.

11, pp. 1121-1132, November 1996.

[25] Q. Yi and K. Kennedy, Transforming Complex

Loop Nests for Locality, Technical Report

TR02-386, Computer Science Dep., Rice

Univ., Feb. 2002.

[26] S. Punyamurtula, V. Chaudhary, J. Ju and S.

Roy, Compile Time Partitioning of Nested

Loop Iteration Spaces with Non-uniform

Dependences, Journal of Parallel Algorithms

and Applications, vol. 12, no. 1-3, pp. 113-141,

1997.

[27] T. Tzen and Lionel M. Ni, Dependence

Uniformization: A Loop Parallelization

Technique, IEEE Transactions on Parallel and

Distributed Systems, vol. 4, no. 5, pp. 547-558,

May 1993.

[28] U. Banerjee, An Introduction to a Formal

Theory of Dependence Analysis, Journal of

Supercomputing, 2, pp. 133-149, 1988.

[29] U. Banerjee, Loop Transformations for

Restructuring Compilers: The Foundations,

Boston: Kluwer Academic Publishers, 1993.

[30] U. Banerjee, Loop Parallelization, Boston:

Kluwer Academic Publishers, 1994.

[31] U. Banerjee, Dependence Analysis, Boston:

Kluwer Academic Publishers, 1997.

[32] U. Bondhugula, M. Baskaran, S.

Krishnamoorthy, J. Ramanujam, A. Rountev

and P. Sadayappan, Affine Transformations for

Communication Minimal Parallelization and

Locality Optimization of Arbitrarily Nested

Loop Sequences, Technical Report OSU-

CISRC-5/07-TR43, Computer Science and

Engineering Dep., Ohio State Univ., May 2007.

[33] V. Maslov, Lazy array data flow dependence

analysis, Conference record of the annual ACM

symposium on principles of programming

languages, pp. 311-325 1994.

[34] W. Pugh, A Practical Algorithm for Exact

Array Dependence Analysis, Communications

of The ACM, vol. 35, no. 8, pp. 102-114,

August 1992.

WSEAS TRANSACTIONS on COMPUTERS
FAWZY A. TORKEY, AFAF A. SALAH, NAHED
M. EL DESOUKY and SAHAR A. GOMAA

ISSN: 1109-2750 1403 Issue 9, Volume 7, September 2008

[35] X. Kong, D. Klappholz and K. Psarris, The I

Test: An Improved Dependence Test for

Automatic Parallelization and Vectorization,

IEEE Transactions on Parallel and Distributed

Systems, vol. 2, no. 3, pp. 342-349, July 1991.

[36] Z. Li, P. Yew and C. Zhu, An Efficient Data

Dependence Analysis for Parallelizing

Compilers, IEEE Transactions on Parallel and

Distributed Systems, vol. 1, no. 1, pp. 26-34,

January 1990.

WSEAS TRANSACTIONS on COMPUTERS
FAWZY A. TORKEY, AFAF A. SALAH, NAHED
M. EL DESOUKY and SAHAR A. GOMAA

ISSN: 1109-2750 1404 Issue 9, Volume 7, September 2008

