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Abstract: -Compared to normal learning algorithms, for example backpropagation, the optimal bounded ellipsoid 
(OBE) algorithm has some better properties, such as faster convergence, since it has a similar structure as the 
Kalman filter algorithm. Optimal bounded ellipsoid algorithm has some better properties than the Kalman filter 
training, one is that the noise is not required to be Guassian. In this paper optimal bounded ellipsoid algorithm is 
applied train the weights of a feedforward neural network for nonlinear system identification. Both hidden layers 
and output layers can be updated. In order to improve robustness of the optimal of the optimal bounded ellipsoid 
algorithm, dead-zone is applied to this algorithm. From a dynamic systems point of view, such training can be 
useful for all neural network applications requiring real-time updating of the weights. Two examples where 
provided which illustrate the effectiveness of the suggested algorithm based on simulations. 
  
Key-Words: Neural Networks, Optimal Bounded Ellipsoid (OBE), Modeling, Identification. 
 
1 Introduction 
Recent results show that neural network technique seems 
to be very effective to identify a broad category of 
complex nonlinear systems when complete model 
information cannot be obtained. Neural networks can be 
classified as feedforward and recurrent ones [1]. 
Feedforward networks, for example multilayer 
perceptrons, are implemented for the approximation of 
nonlinear functions in the right hand side of dynamic 
plants. Even though backpropagation has been widely used 
as a practical training method for neural networks, there 
are some limitations such as slow convergence, local 
minima and sensitive to measurement noise. 
 
Gradient-like learning laws are relatively slow. In order to 
solve this problem, many methods in the identification and 
filter fields have been proposed to estimate the weights of 
neural networks. For example extended Kalman filter is 
applied to train neural networks in [2],[3] and [4], they can 
give least-square solutions. Most of them use static neural 
networks. In [5] the output layer must be linear and the 
hidden layer weights are chosen at randomly. A faster 
convergence with the extended Kalman filter is reached 
with decoupling structure [6], however the computational 
complexity in each interaction is increased, it require of 
large amount of memory. Decoupled Kalman filter with 
diagonal matrix P in [7] has a similar algorithm with the 
gradient algorithm. A main drawback of the Kalman filter 
training is that theory analysis requires the uncertainty of 
neural modeling satisfies Gaussian process. 
 In 1979 L.G.Khachiyan indicated how an ellipsoid method 
for linear programming can be implemented in polynomial 

time [8]. This result has caused great excitement and 
stimulated a flood of technical papers. Ellipsoidal 
technique is an advantageous and helpful tool in state 
estimation of dynamic systems with bounded disturbances 
[9]. There are many potential applications to problems 
outside of the domain of linear programming. [10] 
obtained confidence ellipsoids which are valid for a finite 
number of data points. [11] presented an ellipsoidal 
propagation such that the new ellipsoid satisfies an affine 
relation with another ellipsoid. In [12], the ellipsoid 
algorithm is used as an optimization technique that takes 
into account the constraints on cluster coefficients. [13] 
described in detail several methods that can be used to 
derive an appropriate uncertainty ellipsoid for the array 
response. In [14], the problem concerning asymptotic 
behavior of ellipsoidal estimates is considered for linear 
discrete time systems. There are few application of 
ellipsoid on neural networks. In [15] unsupervised and 
supervised learning laws in the form of ellipsoids are used 
to find and tune the fuzzy function rules. In [16] ellipsoid 
type of activation function is proposed for feedforward 
neural networks.  
 
    Optimal bounding ellipsoid (OBE) algorithms offer an 
attractive alternative to traditional least-squares methods 
for identification and filtering problems involving affine-
in-parameters signal and system models. The benefits 
include low computational efficiency, superior tracking 
ability, and selective updating that permits processor multi-
tasking. In [17] multi weight optimization for OBE 
algorithms is introduced. In [18], a simple adaptive 
algorithm is proposed that estimates the magnitude of 
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noise .To the best of our knowledge, neural networks 
training with the ellipsoid or the optimal bounded ellipsoid 
algorithm has not yet been established in the literature. 
 
    In this paper the optimal bounded ellipsoid algorithm is 
modified with dead-zone technique such that it can be used 
for training the weights of a feedforward neural network 
for nonlinear system identification. Both hidden layers and 
output layers can be updated. From a dynamic systems 
point of view, such training can be useful for all neural 
network applications requiring real-time updating of the 
weights. 
 
2 Feedforward Neural Networks 

Modeling with OBE 
 
Consider following unknown discrete-time nonlinear 
system: 
 
y(k) = f [x(k)]    (1) 
 
Where 
x(k) = [y(k −1),..., y(k − n),u(k −1,...,u(k − m)] =
x(k) = [x1(k)...xN (k)] ∈ ℜN , (N=n+m) is the input 

vector, u(k) 2 ≤ u , y(k)  is the output of the plant, 
f  is general nonlinear smooth function f ∈ C∞. 

We use the following feedforward neural network to 
identify the nonlinear plant (1) 
 

)]([)(ˆ kxWVky kkσ=     (2) 
where  represents the output of the neural 
network. The weight in output layer is V , 
the weight in hidden layer is W , σ is M-

dimension vector function . 

ˆ y (k) ∈ ℜ

k ∈ R1xM

k ∈ RMxN

σ = σ1...σ M[ ]T

 
σ [Wk x(k)] = [σ 1( w1, j x j

j=1

N

∑ ),σ 2( w2, j x j
j=1

N

∑ ),...σ M ( wM , j x j
j=1

N

∑ )]T  (3) 

 
where σ i  is a sigmoid function. Thye model given in (2) 
is a series-parallel model given in [21]. According to the 
Stone-Weierstrass theorem [19], the unknown nonlinear 
system (1) can be written in the following form 
 
y(k) = Vkσ[Wk x(k)] − η(k)   (4) 
 
where η(k)  is unmodeled dynamic. By [19] we know that 
the term η(k)  can be made arbitrarily small by simply 
selecting appropriate the number of neurons in the hidden 
layer, in this paper, it is M. In the case of two independent 
variables, a smooth function f  has the following Taylor 

series expansion near the point [ , x1
0, x2

0]
 

f =
1
k!

(x1 − x1
0 ) ∂

∂x1

+ (x2 − x2
0 ) ∂

∂x2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

k= 0

l−1

∑
0

k

f + ε   (5) 

 
where ε is the remainder of the Taylor formula. If we let 
x1 and x2  correspond Wk x(k)  and Vk , x1

0, x2
0  

correspond W1x(k)  and V , then we have 1
 
Vkσ Wk x(k)[ ]= V1σ W1x(k)[ ]+ σ T (⋅)Vk

T + Vkσ '(⋅)Wk x(k) + ε (6) 
 
where  and W1 are set of known initial constant 
weights. We define the modelling error as 

V1

 
ζ (k) = ε + V1σ[W1x(k)] − η(k)  (7) 
 
substituting (6) and (7) into (4) we have 
 

kkk
T

k
T kxWVVky ζσσ +⋅′+⋅= )]()()()(  (8) 

 
We pretend to rewrite (8) linear in parameters, but it is not 
straight, then we rewrite (8) in the following form: 
 
y(k) = BT

i,kθ i,k + ζ k     (9) 
 
where i =1⋅ ⋅ ⋅ N  ,   ,  θk = θ1(k),LθN ()[ ]T

[ ] 12
,,)( MxTT
kiki RWVk ∈=θ  and 

 Bk
T = B1,k,LBN ,k[ ],Bi,k

T = σ, x1Vkσ′[ ]∈ R1x 2M  
 
The output of the recurrent neural network (1) is 
defined as: 
 
ˆ y (k) = σ T (⋅)Vk + Vkσ′(⋅)Wk x(k)   (10) 

 
or linear in parameters: 
 
ˆ y (k) = Bi,k

T θ i,k      (11) 
 
Denote the training error as : 
 
e(k) = y(k) − ˆ y (k)     (12) 
 
Now we use N  optimal bounding ellipsoid algorithms 
(OBE) to train the feedforward neural network (10) such 
that the identification error e(k) is bounded. 
 
Definition 1 A real 2M-dimensional ellipsoid, centered on 
x *, can be described as: 

 
E(x*,P) = x ∈ R2M (x − x*)T P(x − x*) ≤ 1{ } 
 
where P ∈ R2Mx2M  is a positive-semidefinite symmetric 
matrix. 
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The orientations of the ellipsoid are presented by the 

eigenvectors of P, they are . The axes are 

given by the eigenvalues of P, 

u1,...,u2M[ T]
λ1,...,λ2M[ ]T

. Figure 1 
shows the two dimensions case. 
 

1

1
λ

2

1
λ

1u2u

1E

 
Figure 1: Ellipsoid set 
 
Definition 2 The ellipsoid intersection of two ellipsoids 
E a (x1,P1)  and Eb (x2,P2 )  is another ellipsoid defined 

as , Ec
 
E c = x ∈ R λ(x − x1)T P1(x − x1) + (1− λ)(x − x2 )T P2(x − x2 ) < 1{ }:= E a ∩ e E b

 
where 0 ≤ λ ≤ 1,  and  are positive-semidefinite 
symmetric matrices 

P1 P2

 
The normal intersection of the two ellipsoid sets 

 is not an ellipsoid set in general. The ellipsoid 
set contains the normal intersection of ellipsoid sets, 

. There exists a minimal ellipsoid set 
corresponding to 

Ea ∩ Eb
E c

Ea ∩ Eb ⊂ Ec
λ *, see [11], [20] and [22]. In this 

paper, we will not try to find λ *, we will design a 
algorithm such that the new ellipsoid intersection will 
always be smaller. Figure 2  shows this idea.  
 

ba EE ∩

bE
aE

cE

ba EE ∩

bE
aE

cE

 
Figure 2: Ellipsoid set that contains the intersection of two 
ellipsoid sets. 
 

Now we use the ellipsoid definition on neural 
identification, we define parameter error ellipsoid E k  as 
 
Ek = θ i(k) ˜ θ T i(k)Pk

−1 ˜ θ i(k) ≤ 1{ }   (13) 

 
where ˜ θ i (k) = θ i * −θ i(k), θ i * is the unknown optimal 
weight that minimize the modeling error ζ k  in (9), 
Pk = PT

k > 0. 
 
In this paper, we use the following two assumptions. 
A1 It is assumed that  belongs to an 

ellipsoidal set 
y(k) − Bi,k

T θ i *[ ]
Sk , 

 

⎭
⎬
⎫

⎩
⎨
⎧

≤−= 1)(1 2*
,2

*
, i

T
kii

T
kik BkyBS θ

ς
θ   (14) 

 
where ς > 0  is the known upper bound of the uncertainty 
ς k , ς k < ς . We can also rewrite (14) as 
 
y(k) = Bi,k

T θi
* + ς k     (15) 

 
A2 It is assumed that the initial weight errors are inside an 
ellipsoid  E1
 
E1 = θ i(1) ˜ θ i

T (1)P1
−1 ˜ θ i(1) ≤ 1{ }   (16) 

 
where P1 = P1

T > 0 , , P1 =∈ R2Mx 2M

˜ θ i(1) = θ i
* − θ i(1) , θi

* is the unknown optimal weights. 
 
Remark 1 The assumption A1 requires that y(k) − Bi,k

T θ i
*[ ] 

is bounded by ς . In this paper we are only interested in 
open-loop identification, we assume that the plant (1) is 
bounded-input and bounded-output (BIBO) stable, i.e., 
x(k) , f ⋅[ ] and in (1) are bounded all of data are 

bounded, so 
y(k)

y(k) − Bi,k
T θ i *[ ] is bounded. The assumption A2 

requires the initial weights of the neural networks are 
bounded, it can be satisfied by choosing suitable P  and 

. 
1

ˆ θ i (1)
 
We can see that the common part of the sets  S1,S2,L  is 
θi

*, so 
 

 
θ i

*{ }⊂ ς j
j=1

k

I      (17) 

 
Finding θi

*{ } is an intractable task since the amount of 
information in (17) grows linearly in k. Moreover, 
evaluating a value of θi (k)  in (17) involves the solution 
of 2k n-th order inequalities. From the definition of E k  in 
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(13), θi
* is the common center of the sets ,   is E1 E 2,L

θi
*, so 

 

  
 

θ i
*{ }⊂ E j

j=1

k

I , θi
*{ }⊂ Ek    (18) 

Thus the problem of identification is to find a set Ek  
which satisfies (18). We will construct a recursive 
identification algorithm such that E k +1 is the set  
corresponding to the set E k  and the data . 
Because the two ellipsoids satisfy (13) and (14), we 
calculate the ellipsoid intersection (1

yi(k),Bi,k[ ]

− λi,k )Ek + λi,kSk , 
it satisfies 
 
(1− λi,k ) ˜ θ i

T (k)Pk
−1 ˜ θ i(k) ≤ (1− λi,k )

1
ς 2

λi,k y(k) − Bi,k
T θ i

* 2
≤ λi,k

(1− λi,k ) ˜ θ i
T (k)Pk

−1 ˜ θ i(k) +
1

ς 2
λi,k y(k) − Bi,k

T θ i
* 2

≤ 1

(19) 

 
The next theorem shows the propagation process 
of the ellipsoids. 
 
Theorem 1 If Ek  in (13) is an ellipsoidal set, we use the 
following recursive algorithm to update Pk  and θi(k)  
 

⎪
⎪
⎩

⎪⎪
⎨

⎧

−
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−
≥

+=

+=+

⎥
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⎦

⎤
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⎢
⎣

⎡

+−
−

−
=

+

+

λ
ς

λ
ςςλ

λ

ς
λ

θθ

λςλ
λ

λ

1
)(0

1
)(

1

)()()1(

)1(1
1

2
2

2
2

,,

2

,

,12
,

,
,,,

2
,

,
,

,
1

keif

keif
BPB

keBPkk

PB
BPB

BPPP

kik
T

ki
ki

kik
ki

ii

k
T

ki
kik

T
kikiki

ki
kikk

ki
k

 (20) 
 
where  is a given diagonal positive definite matrix, P1

0 < λ < 1, 0 < λς 2 < 1, 0 < λi,k <1 and 
(1− λi,k ) > 0, then E k +1 is an ellipsoidal set and 
satisfies 
 

E k +1 = θ i(k + 1) ˜ θ T i(k + 1)Pk +1
−1 ˜ θ i(k + 1) ≤ 1 −

λi,k

ς 2
1 − λ[ ]e 2 (k) ≤ 1

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

(21) 

 
where ˜ θ i (k) = θ i * −θ i(k)  and e(k) is given in (12) 
 
Proof. First we apply matrix inversion lemma [9] to 
calculate  from (20) we have: 1

1
−
+kP

 

( )
1

,
,,,

2
,

,
,

,
1
1

)1(

1
−

−
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+−
−

∗−=

k
T

ki
kik

T
kikiki

ki
kikk

kik

PB
BPB

BPP

P

λςλ
λ

λ
 (21) 

 
the matrix inversion lemma is [27]: 
 
( ) ( ) 1111111 −−−−−−− +−=+ DACBDABAABCDA  
 
where A, B, C and D denote matrices of the correct size. It 
can be rewritten as: 
 

( )( ) BCDADACBDABAA +=+−
−

−−−−−−
1

111111  
  
Specifically, , ,  and MMA 22 ×ℜ∈ 12 ×ℜ∈ MB 11×ℜ∈C

MD 21×ℜ∈ , , 
kPA =−1

ki
ki BB ,2

,

ς
λ

= , ( )kiC ,
1 1 λ−=−  and 

; then  is: T
kiBD ,= 1

1
−
+kP

 

( )

( ) T
kiki

ki
kki

T
ki

ki
ki

ki
kkik

BBP

BBPP

,,2
,1

,

,
,

,2
,1

,
1
1

1

)1(
11

ς
λ

λ

λς
λ

λ

+−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
+−=

−

−−
+   (22) 

 
Now we calculate )1(~)1(~ 1

1 ++ −
+ kPk ik

T
i θθ  when 

λ
ς
−

≥
1

)(
2

2 ke  by (20) or )()(~)1(~
,12

, keBPkk kik
ki

ii ++=+
ς
λ

θθ  

)()()(~2

)(~)(~)1(~)1(~

2
,1,4

2
,

,2
,

1
1

1
1

keBPBkeBk

kPkkPk

kik
T

ki
ki

ki
T

i
ki

ik
T

iik
T

i

+

−
+

−
+

+

−=++

ς
λ

θ
ς
λ

θθθθ
  (23) 

 
Substituting (22) into (23), it gives 
 

( )

( )

)()()(~2

)(~)(~)(~)(~1

)()()(~2

)(~1)(~

)1(~)1(~

2
,1,4

2
,

,2
,

,,2
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,

2
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2
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,
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,1
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keBPBkeBk
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T
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T
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i
T
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i
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+

−

−
+

+
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+

−⎥
⎦

⎤
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⎡
+−

=++

ς
λ

θ
ς
λ

θθ
ς
λ
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ς
λ

θ
ς
λ

θ
ς
λ

λθ

θθ

 (24) 

 
By the intersection property (19) of the ellipsoidal sets, we 
have: 
 

( ) 2

,2
,1

, )(1)(~)(~1 ∗− −−≤− i
T

ki
ki

ik
T

iki BkykPk θ
ς
λ

θθλ  

 
Then (24) becomes 
 

WSEAS TRANSACTIONS on COMPUTERS Jose De Jesus Rubio Avila, Andres Ferreyra Ramirez 
and Carlos Aviles-Cruz

ISSN: 1109-2750 545 Issue 5, Volume 7, May 2008



⎥⎦
⎤

⎢⎣
⎡ −+−−

++≤

+

−+−−≤

++

∗

+

+

∗

−
+

)()(~2)(~)(~)(

)(1

)()()(~2

)(~)(~)(1

)1(~)1(~

,,,

2

,2
,

2
,1,4

2
,

2
,1,4

2
,

,2
,

,,2
,2

,2
,

1
1

keBkkBBkBky

keBPB

keBPBkeBk

kBBkBky

kPk

ki
T

ii
T

kiki
T

ii
T

ki
ki

kik
T

ki
ki

kik
T

ki
ki

ki
T

i
ki

i
T

kiki
T

i
ki

i
T

ki
ki

ik
T

i

θθθθ
ς
λ

ς
λ

ς
λ

θ
ς
λ

θθ
ς
λ

θ
ς
λ

θθ

  

 
Now we use )()(~ kk ii

T
i θθθ −= ∗ ;  as 

in (12), the second term can be calculated as 
)()()( , kBkyke i

T
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So  
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From (22) we know ( ) T
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1
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So 
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(21) is established. Because 1<λ  and 0, >kiλ  
 

1)1(~)1(~ 1
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+ kPk ik
T
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when 

λ
ς
−

≥
1

)(
2

2 ke  we have that )1(~)1(~ 1
1 ++ −

+ kPk ik
T

i θθ  is an 

ellipsoidal set. Now we consider 
λ

ς
−

<
1

)(
2

2 ke  , then 

0, =kiλ , substituting in (20) we have 
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=+ 0
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1
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+ = kk PP
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+ kPkkPk ik
T

iik
T

i θθθθ  
 
when 

λ
ς
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<
1

)(
2

2 ke  we have that )1(~)1(~ 1
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i θθ  is an 

ellipsoidal set. Thus  is an ellipsoidal set. 1+kE
 
Remark 2 The ellipsoid intersection of E k  and Sk  in 
(19), it is an ellipsoid also, defined as 

 
Π k = zi(k) zi(k) − θ i

*[ ]T
Σ−1 zi(k) − θ i

*[ ]≤ 1{ } 

 
where zi(k)  is an unknown variable. The ellipsoid 
intersection of E k +1 and Sk +1  with the algorithm (20) is 
defined as 

 
(1− λi,k +1) ˜ θ i

T (k + 1)Pk +1
−1 ˜ θ i(k + 1) +

1
ς 2

λi,k +1 y(k + 1) − Bi,k +1
T θ i

* 2

≤ (1− λi,k +1) 1−
1

ς 2
λi,k +1 1− λ[ ]e2 (k)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ + λi,k +1

= 1− 1
ς 2

λi,k (1− λi,k +1) 1− λ[ ]e2(k)

 
so 
 
Π k +1 = zi (k + 1) zi(k + 1) − θ i

*[ ]T
Σ−1 zi(k + 1) − θ i

*[ ]≤ 1 −
(1 − λi,k +1)λi,k (1− λ)

ς 2
e2 (k)

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 
The volume of  Πk  is defined as [21],[9]. 
 
Vol(Πk ) = det(Σ)U  
 
where U  is constant represents the volume of the unit ball 
in R. Because λi,k (1− λi,k+1)(1− λ)e2(k) > 0 , the 
volume of Πk +1 is less than the volume of Πk  when 
e(k) ≠ 0 . From (17) and (18) we know, the common part 
of Πk  and Πk +1 are θi

*{ }. Thus the set Πk  will 

convergent to the set θi
*{ } when e(k) ≠ 0 , see Figure 3. 
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Figure 3: The convergence of the intersection Πk . 
 
Remark 3 The algorithm (20) is for each subsystem. This 
method can decrease computational burden when we 
estimate the weights of the recurrent neural network, the 
similar idea can be found in [1] and [7]. By (6) we know 
the data matrix Bk  depends on the parameters Vk

T , this 
will not effect parameter updating algorithm (20), because 
the unknown parameter θi(k + 1)  is calculated by the 
known parameters θi(k)  and data Bk . For (20), we have 
 

Vk +1 = Vk +
λk

ς 2
Pk +1σ W k x(k)[ ]e(k)

W k +1 = W k +
λk

ς 2
Pk +1σ ′ W k x(k)[ ]Vk

T xT (k)e(k)
(27) 

 
 
It has the same form as the backpropagation [1], [23], 
[25], [26], [28], [29], [33], but the learning rate is not 
positive constant, it is a matrix λk

ς 2
Pk +1

 which changes 

through time. That may be the reason why OBE algorithm 
is faster. 

 
Remark 4 The OBE algorithm (20) has the similar 
structure as the extended Kalman filter training algorithm 
[6],[3] and [4]. The extended Kalman filter algorithm is 
[6], [27]: 

 
θi(k + 1) = θ i(k) + PkBi,k (R2 − Bi,k

T PkBi,k )−1e(k)

Pk +1 = R1 + Pk − PkBi,k (R2 − Bi,k
T PkBi,k )−1Bi,k

T Pk[ ]
 (28) 

 
where e(k)  is the same as in (12),  can be chosen as R1
αI , where α  is small and positive,  is the covariance 
of `process noise' . When 

R2
R1 = 0 , it becomes the least 

square algorithm [27]. If  in (23), then R1 = 0

(R2 − Bi,k
T PkBi,k )−1  corresponds to 

λi,k

(1− λi,k )ς 2 + λi,kBi,k
T PkBi,k

 in (20). There is a big 

difference, the OBE algorithm is for deterministic case and 
the extended Kalman filter is stochastic case. 
 
The following steps show how to train the weights of 
recurrent neural networks with the OBE algorithm: 
 
1. Construct a recurrent neural networks model (2) to 
identify an unknown nonlinear system (1). The matrix A is 
selected such that it is stable. 
 
2. Rewrite the neural network in linear form 
 

 

ˆ y (k) = σ T (⋅)Vk
T + Vk σ′(⋅)Wk x(k)

θk = θ1(k),Lθn (k)[ ]T , θ i(k) = Vk Wi,k
T[ ]T

Bk
T = B1,k,LBn ,k[ ], Bi,k

T = σ, xiVk σ′[ ]∈ R1x 2M

 

 
3. Train the weights as  
 

         

θ i ( k + 1) = θ i ( k ) +
λ i,k

ς 2 Pk +1B i ,k e ( k )

λ i ,k =

λ ς 2

1 + B i ,k
T Pk B i,k

if e 2 ( k ) ≥
ς 2

1 − λ

0 if e 2 ( k ) <
ς 2

1 − λ

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

 

 
4.  is changed as OBE algorithm :  
 

Pk +1 =
1

1− λi,k

Pk − PkBi,k
λi,k

(1− λi,k )ς 2 + λi,kBi,k
T PkBi,k

Bi,k
T P

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

 
With initial conditions for the weight θ i(1)  and , 
we can start the system identification with the feedforward 
neural networks. 

P1 > 0

 
3   Simulation 
 
In this section, the suggested on-line optimal bounded 
ellipsoid algorithm proposed is applied to nonlinear system 
identification. 
 
Example 1 Consider the nonlinear system given in [24] 
and [25]: 
 
y(k) = 0.52 + 0.1x1 + 0.28x2 − 0.06x1x2   (29) 

 
with x1(k) = sin 2(10

k)  and x2(k) = cos 2(10
k). We use the 

neural network given in (10) to identify the this nonlinear 
system, we use 10 nodes in the hidden layer, i.e., 
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vk ∈ ℜ1x10 , W1,k ,   . The 
initial weights  and  are chosen in random between 
(0,1) and (0,0.2) respectively. We select 

, λ=0.9, 

,W 2,k ∈ ℜ10 x 2 σ = σ1,σ 2,,L,σ10[ ]T

1W 1V

P(1) = diag(100) ∈ ℜ20x20 2ς =1x10-6 such 

that λ 2ς <1. We compare the OBE training algorithm (20) 
with the standard backpropagation algorithm [1], [28]-[29], 
the learning rate for the backpropagation is 0.2. The 
identification results for  are shown in Figure 4. If we 
define the mean squared error for finite time as 

y(k)

J(T) =
1

2T
e2(k)

k=1

T

∑ , the comparison results for the 

identification error are shown in Figure 5.  
 

 
Figure 4: Identification results in example 1. 
 

 
Figure 5: Identification error in example 1.  

 
Example 2 Consider the nonlinear system: 

 

y(k) =
y2(k − 3) + y2(k − 2) + y2(k −1) + tanh(u(k)) +1

y2(k − 3) + y2(k − 2) + y2(k −1) +1
(30) 

 
where U(k) = 0.6sin(9πkTs) + 0.2sin(12πkTs) + 1.2sin(3πkTs) , 

, Ts = 0.01 x1(k) = y(k −1), x2(k) = y(k − 2) , x3(k) = y(k − 3) , 

x4 (k) = u(k). We use the neural network given in (10) to 
identify the this nonlinear system, we use 10 nodes in the 
hidden layer, i.e., vk ∈ ℜ1x10 , W1,k ,W 2,k ∈ ℜ10 x 4 , 

 σ = σ1,σ 2,,L,σ10[ ]T
. The initial weights 1W  and 1V  are 

chosen in random between (0,1) and (0,0.2) respectively. 
We select P(1) = diag(100) ∈ ℜ20x20, λ=0.9, 

2ς =1x10-6  such that λ 2ς <1. We compare the OBE 
training algorithm (20) with the standard backpropagation 
algorithm [1], [28]-[29], the learning rate for the 
backpropagation is 0.1. The identification results for  
are shown in Figure 6. If we define the mean squared error 
for finite time as 

y(k)

J(T) =
1

2T
e2(k)

k=1

T

∑ , the comparison results 

for the identification error are shown in Figure 7. 
 
We have that the OBE algorithm has better behavior than 
the backpropagation. 
 

 
Figure 6: Identification results in example 2. 
 
In the future we pretend to apply this identification 
algorithm for some real systems as the robotic systems [30] 
and the mechatronic systems [31], [33] or for pattern 
recognition [23], [32], [34]. 
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Figure 7: Identification error in example 2. 

 
4   Conclusions 
  
In this paper a novel training method for neural 
identification is proposed. We give a modified 
optimal bounded ellipsoid (OBE) algorithm for 
feedforward neural networks training. Both hidden 
layers and output layers of the neural network can be 
updated. From a dynamic system point of view, such 
training can be useful for all neural network 
applications requiring real-time updating of the 
weights. In the future we will prove the stability of 
the algorithm and we will apply this algorithm for 
identification of some nonlinear real systems as are 
the robotic or the mechatronic systems or for pattern 
recognition. 
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