
Basis Path Test Suite and Testing Process for WS-BPEL

THEERAPONG LERTPHUMPANYA
1, 2

 AND TWITTIE SENIVONGSE
1

1
Department of Computer Engineering, Chulalongkorn University

Phyathai Road, Pathumwan, Bangkok 10330
2
Department of Software Engineering, Bangkok University

Rama IV Road, Klong Toey, Bangkok 10110

THAILAND

theerapong.l@bu.ac.th http://tulip.bu.ac.th/~theerapong.l/

twittie.s@chula.ac.th http://www.cp.eng.chula.ac.th/~twittie/home.htm

Abstract: - Web services technology offers a WS-BPEL language for business process execution. The building

block of WS-BPEL is those Web services components that collaborate to realize a certain function of the

business process. Applications can now be built more easily by composing existing Web services into

workflows; each workflow itself is also considered a composite Web service. As with other programs, basis

path testing can be conducted on WS-BPEL processes in order to verify the execution of every node of the

workflow. This paper discusses the generation of the test suite for basis path testing of WS-BPEL and an

accompanying tool that can be used by service testers. The test suite consists of test cases, stubs of the

constituent services in the workflow, and auxiliary state services that assist in the test; these are deployed

when running a test on a particular WS-BPEL. The paper presents also a testing process for service testers. A

business process of a market place is discussed as a case study.

Key-Words: - Basis path testing, WS-BPEL, test cases, control flow graph, cyclomatic complexity

1 Introduction
Web services technology opens an opportunity to

aggregate functionalities of various loosely-coupled

software components, called services, in a software

composition. This is due to the fact that service

consumers’ requirements cannot be fulfilled by a

single Web service and hence several Web services

are composed in order to answer the requirements.

The composition can be defined by a Business

Process Execution Language (WS-BPEL) which has

become a standard for describing a workflow of

collaborating Web services [1]. With WS-BPEL,

the workflow can be seen as an internal process of a

composite Web service which executes by the

orchestration of an execution engine.

 A service composer designs a composite Web

service by defining Web service instances of

particular tasks and how they collaborate in the

workflow. Such a composite service can be used

further as a component in the construction of other

composite services. Before its deployment, the WS-

BPEL service will be tested by a service tester to

ensure a correct composition. Web services testing

tools mostly focus on single Web services, treating

them as black boxes and testing their functions or

performance, while WS-BPEL tools support

designing but not testing of the composition of the

designed workflows.

 As with other programs, basis path testing [2] can

be conducted on WS-BPEL processes in order to

verify the execution of every node of the workflow.

This paper discusses the generation of the test suite

for basis path testing of WS-BPEL and an

accompanying tool that can be used by service

testers. The test suite for a particular WS-BPEL

process consists of test cases, stubs of the

constituent Web services within the flow, and

auxiliary state services that assist in the test; these

are deployed when running a test on that WS-BPEL.

Such a test is white box testing, considering the

internal process of the composite service while

performing black box testing on the constituent Web

services through their corresponding stubs. The

supporting tool creates a control flow graph for any

WS-BPEL flow and determines its basis paths based

on McCabe’s cyclomatic complexity [3]. It

generates test case data for all basis paths together

with service templates, stubs for constituent Web

services, and auxiliary state services with little

human intervention. The paper describes also the

basis path testing process for service testers.

 Section 2 reviews related work on Web services

testing. Section 3 describes basis path testing and

introduces a market place case study. Details on

each task realized by our supporting tool for the

generation of the test suite are in Section 4, followed

by the testing procedure to be taken by service

WSEAS TRANSACTIONS on COMPUTERS Theerapong Lertphumpanya and Twittie Senivongse

ISSN: 1109-2750 483 Issue 5, Volume 7, May 2008

testers in Section 5. Section 6 gives implementation

details of the tool. Section 7 discusses the approach

and Section 8 concludes the paper.

2 Related Work
There have been research attempts to define

frameworks or create testing tools for Web services.

The work in [4] extends WSDL of a Web service

with information necessary for testing the service

including input-output dependency, sequence of

method invocation, hierarchical functional

description, and sequence specification. This

information helps automate regression testing, data

flow testing, and path testing. The work in [5]

introduces a tool to measure CPU utilization and

response time of a Web service by installing a

sensor object at the service provider’s site. The tool

can also perform unit testing on the service by using

the information in the extended WSDL of [4]. In [6],

a test master is used to generate XML-based test

cases from the WSDL of a Web service and a test

engine is used to run the test cases for the service. In

[7], a framework for generating Web service

requests and analyzing subsequent request-response

pairs is proposed. Based on the WSDL of a Web

service, a client code is automatically generated to

send requests to the Web service with extreme,

special, and random input values. The response is

then analyzed to see how robust the Web service is

in response to the generated inputs.

 On the commercial side, several testing tools are

available in the market such as those in Table 1.

They primarily target on testing certain aspects of a

Web service and now some are extending to testing

at business process level, e.g. SOATest and

WebServiceTester support load testing for the entire

workflow of Web services instead of load testing for

individual service endpoints.

 To summarize, current research and commercial

tools mostly treat Web services as black boxes and

test their functions or performance; none support

basis path testing on the internal processes of

composite services.

Table 1. Web services testing tools
Tool By Testing

Capability

SOATest

[8]

Parasoft - Server Functional

Testing

- Load Testing

- Client Testing

- Regression Testing

- Performance Testing

- Workflow testing

Table 1. Web services testing tools (continued)
Tool By Testing

Capability

WebService

Tester [9]

Optimyz

Software

- Functional Testing

- Regression Testing

- Load/Stress Testing

- Performance Testing

- Business Process

Orchestration Testing

- Secure Service

Testing

Stylus

Studio [10]

Progress

Software

Corporation

- Functional Testing

SilkPerformer

[11]

Borland - Load Testing

- Performance testing

SOAPscope

[12]

Mindreef - Functional Testing

- Regression Testing

- Load/Stress Testing

- Performance Testing

- Client Testing

soapUI [13] Eviware - Functional Testing

- Load Testing

TestMaker [14] PushToTest - Functional Testing

- Load Testing

3 Basis Path Testing
Basis path testing is a white box testing that aims for

deriving a logical complexity measure of a

procedural design of a program and using the

complexity measure as a guide for defining a basis

set of execution paths. For WS-BPEL, a service

tester will perform basis path testing to test whether

all the loops and conditions within the workflow

give proper outputs and whether existing data flows

and control flows are correct. Test cases that

exercise the basis set will execute every statement in

the workflow at least once during testing.

 This paper demonstrates basis path testing

through the business process of a market place

service, adapted from [15], as in Fig. 1. The market

place service acts as a negotiator for a buyer and a

seller on the sale of products. Given a particular

product ID as an input, the market place negotiates

by invoking a Seller Web service and a Buyer Web

service to obtain the offered selling price and buying

price and compare them. The negotiation repeats

until the offered prices match. The commission is

then charged to the client of the market place; the

rate depends on the product category and the efforts

put on the negotiation.

 The rest of the paper focuses mainly on two

aspects: the generation of a test suite for the market

place service and a testing procedure for a service

tester to utilize the test suite.

WSEAS TRANSACTIONS on COMPUTERS Theerapong Lertphumpanya and Twittie Senivongse

ISSN: 1109-2750 484 Issue 5, Volume 7, May 2008

Fig. 1. Business process of market place service

4 Test Suite Generation
Fig. 2 depicts how a basis path test suite for a WS-

BPEL is generated. These tasks are supported by our

testing tool; each is described in the corresponding

numbered subsections.

4.1 Receive Input Files
A WS-BPEL can be created by a designer tool. In

this work, we use Oracle BPEL Designer [15] which

produces a WS-BPEL file, a WSDL file for the WS-

BPEL service, and a configuration file which

contains PartnerLinks of the WS-BPEL (i.e. links to

WSDLs of constituent Web services). These files

are uploaded to the tool as in Fig. 3.

4.2 Insert Node IDs to WS-BPEL
Basis path testing starts with creating a control flow

graph (CFG) for the WS-BPEL. To do so, node IDs

are first associated with WS-BPEL constructs, e.g.

input receipt, output reply, assignment, sequence,

repetition, condition, and invocation control within

the workflow. We insert Node IDs by using Java

embedding feature of Oracle BPEL designer such as

node IDs 1 and 2 are associated with <receive> and

<assign> nodes of the WS-BPEL in Fig. 4.

WSEAS TRANSACTIONS on COMPUTERS Theerapong Lertphumpanya and Twittie Senivongse

ISSN: 1109-2750 485 Issue 5, Volume 7, May 2008

Fig. 2. Tasks in test suite generation

4.3 Create Control Flow Graph
The testing tool generates a CFG for the WS-BPEL

with node IDs such as in Fig. 5. The complete CFG

of the market place service is in Fig. 6.

4.4 Find Basis Paths
From the CFG, McCabe’s cyclomatic complexity

(V(G)) is computed to determine the number of

basis paths which corresponds to the number of test

cases needed for the flow. The V(G) of the market

place is computed by:

 V(G) = no. of edges – no. of nodes + 2

 = 15 – 14 + 2 = 3

 According to V(G), there are 3 basis paths for

this market place service, and therefore 3 test cases

are needed to test these paths:

Path 1 : 1 – 2 – 3 – 4 – 5 – 6 – 7 – 13 – 14

Path 2 : 1 – 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9 – 10 – 12 –

7 – 13 – 14

Path 3 : 1 – 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9 – 11 – 12 –

7 – 13 – 14

 The tool produces basis paths such as in Fig. 7.

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

WSEAS TRANSACTIONS on COMPUTERS Theerapong Lertphumpanya and Twittie Senivongse

ISSN: 1109-2750 486 Issue 5, Volume 7, May 2008

Fig. 3. Input WS-BPEL

<process name="MarketPlace" targetNamespace="http://acm.org/samples"

…

 <sequence name="main">

 <bpelx:exec xmlns:bpelx="http://schemas.oracle.com/bpel/extension"

 language="java" version="1.4" name="NodeId(1)">

 <![CDATA[System.out.println("Node : 1");]]>

 </bpelx:exec>

 <receive name="receiveInput" partnerLink="client"

 portType="tns:MarketPlace" operation="process" variable="input"

 createInstance="yes"/>

 <bpelx:exec xmlns:bpelx="http://schemas.oracle.com/bpel/extension"

 language="java" version="1.4" name="NodeId(2)">

 <![CDATA[System.out.println("Node : 2");]]>

 </bpelx:exec>

 <assign name="assignProductID">

 <copy>

 <from variable="input" part="payload"

 query="/tns:MarketPlaceRequest/tns:id"></from>

 <to variable="sInput" part="payload" query="/tns:SellerRequest/tns:id"/>

 </copy>

 </assign>

…

Fig. 4. WS-BPEL with embedded node IDs

Fig. 5. CFG of market place produced by the tool

WSEAS TRANSACTIONS on COMPUTERS Theerapong Lertphumpanya and Twittie Senivongse

ISSN: 1109-2750 487 Issue 5, Volume 7, May 2008

Fig. 6. Complete CFG of market place

Fig. 7. Basis path 2 of market place

WSEAS TRANSACTIONS on COMPUTERS Theerapong Lertphumpanya and Twittie Senivongse

ISSN: 1109-2750 488 Issue 5, Volume 7, May 2008

4.5 Find Variable Information
To create test data for the basis paths, the testing

tool analyzes variables relevant to each path. The

tool finds PartnerLinks from the uploaded

configuration file in order to get to the WSDLS of

constituent Web services and then determine input

and output of these services. The WS-BPEL and its

WSDL are also analyzed to determine input and

output of the flow and other data that will be needed

in the execution of each path.

4.6 Define Variable Values
From the previous step, some variables that

determine branching of the path or are the result of

service invocation will have their values generated

automatically by the tool. On the other hand, those

that are input or expected output will be constants

and specified manually by the service tester. The

tester specifies range (i.e. possible min and max

values) and length of all relevant data values such as

in Fig. 8.

 Also, the tester specifies necessary constant

values such as those for basis path 2 in Fig. 9. Here

the tester specifies constants for the initial input

product ID “2”, the product name “Product Name 2”

to be returned by the Seller service, and the expected

final commission ‘45.00’. Other data values are

randomly generated according to their types.

Supported data types are integer, float, boolean, and

string. (Note that two sets of variable values will be

defined for the Seller service because it would be

invoked twice in path 2.)

4.7 Create Test Cases
According to the value constraints above, the testing

tool generates variable values that have to be

randomized (Table 2). These generated values and

manually-specified constants form the test cases for

the WS-BPEL. For example, test case 2 is for testing

basis path 2 of section 4.4; it comprises data that are

needed to execute the path. Given a constant product

ID ‘2’ to the flow, the tool generates the output of

the first invocation to the Seller service to return the

category “Jewelry” and the price ‘40.80858’. The

output of the first invocation to the Buyer service is

also generated with the price ‘78.72712’. Since these

two output prices do not match, the path would fall

through the loop and the Seller and Buyer services

would be re-invoked. For the second invocation, the

tool generates the prices of equal value, i.e.

47.74675, so that the two prices would match and

the loop would be exited. Finally the commission

charge would be returned. Other test cases trigger

corresponding paths in the same way.

 The testing tool represents the test cases for all

basis paths in XML format as in Fig. 10.

4.8 Create State Services and WSDLs
When the WS-BPEL contains a loop as for the case

of the market place, the testing tool additionally

generates an auxiliary Web service called a BPEL

state service, together with its WSDL, for each loop

execution. The state service is used to determine the

state of the visit to the loop by a relevant basis path.

The path will be controlled to fall into the loop just

one time on its first visit (i.e. the state service

returns 1) and exits on the next visit (i.e. the state

service returns 2). Fig. 11 describes the WSDL of

the state service and Fig. 12 presents its Java

implementation.

4.9 Create Stub Templates
The testing tool creates a template for each

constituent Web service in the WS-BPEL. The

template will be used for generating a stub for each

constituent service which will be invoked during the

test. For the market place service, the template for

the stubs of the Seller and Buyer services is shown

in Fig. 13. It is a WS-BPEL flow that merely

receives the same input as the service and assigns

certain data values from a particular test case as

outputs. The placeholders that will be replaced by

constants and generated data from a particular test

case are shown in boldface type.

Table 2. Randomized values for all test cases
Input Test

Case

No.

(Path

No.)

Variable

Name

Service

Name

Type Value

sOutput.price Seller Float 6.9283094 1

bOutput.price Buyer Float 6.9283094

sOutput.category Seller String “Jewelry”*

“Jewelry”**

sOutput.price Seller Float 40.80858*

47.74675**

2

bOutput.price Buyer Float 78.72712*

47.74675**

sOutput.category Seller String “u6GP5L8ydd”*

“BShX34mreq”**

sOutput.price Seller Float 60.880894*

87.276184**

3

bOutput.price Buyer Float 58.134274*

87.276184**

* generated for 1st invocation ** generated for 2nd invocation

WSEAS TRANSACTIONS on COMPUTERS Theerapong Lertphumpanya and Twittie Senivongse

ISSN: 1109-2750 489 Issue 5, Volume 7, May 2008

Fig. 8. Specify range and length for data values

Fig. 9. Specify constants (input and expected output) for basis path 2 of market place

Fig. 10. Generated test cases

WSEAS TRANSACTIONS on COMPUTERS Theerapong Lertphumpanya and Twittie Senivongse

ISSN: 1109-2750 490 Issue 5, Volume 7, May 2008

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions

 targetNamespace=http://localhost:8080/axis/BPELStateService.jws

…

 <wsdl:message name="getStateIDResponse">

 <wsdl:part name="getStateIDReturn" type="xsd:int"/>

 </wsdl:message>

 <wsdl:message name="getStateIDRequest">

 <wsdl:part name="strFile" type="xsd:string"/>

 </wsdl:message>

 <wsdl:portType name="BPELStateService">

 <wsdl:operation name="getStateID" parameterOrder="strFile">

 <wsdl:input message="impl:getStateIDRequest"

 name="getStateIDRequest"/>

 <wsdl:output message="impl:getStateIDResponse"

 name="getStateIDResponse"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="BPELStateServiceSoapBinding"

 type="impl:BPELStateService">

 <wsdlsoap:binding style="rpc"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="getStateID">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="getStateIDRequest">

 <wsdlsoap:body

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 namespace="http://DefaultNamespace" use="encoded"/>

 </wsdl:input>

 <wsdl:output name="getStateIDResponse">

 <wsdlsoap:body

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 namespace="http://localhost:8080/axis/BPELStateService.jws"

 use="encoded"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="BPELStateServiceService">

 <wsdl:port binding="impl:BPELStateServiceSoapBinding"

 name="BPELStateService">

 <wsdlsoap:address

 location="http://localhost:8080/axis/BPELStateService.jws"/>

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

Fig. 11. WSDL of state service

import java.io.*;

public class BPELStateService {

 public int getStateID(String strName) throws IOException {

 int stateID=1;

 String strFile = "C://"+strName+".txt";

 File inFile = new File(strFile);

 if (inFile.exists()) {

 FileInputStream inFileStream = new FileInputStream(inFile);

 DataInputStream inDataStream = new DataInputStream(inFileStream);

 stateID = inDataStream.readInt();

 inDataStream.close();

 if (stateID >= 2) {

 stateID = 1;

 } else {

 stateID = 2;

 }

 }

 File outFile = new File(strFile);

 FileOutputStream outFileStream = new FileOutputStream(inFile);

 DataOutputStream outDataStream = new DataOutputStream(outFileStream);

 outDataStream.writeInt(stateID);

 outDataStream.close();

 return stateID;

 }

}

 Fig. 12. Implementation of state service

<process name="_ServiceName_" targetNamespace=http://acm.org/samples

 …

 xmlns:nsxml0="http://localhost:8080/axis/BPELStateService.jws">

 <partnerLinks>

 <partnerLink name="client" partnerLinkType="tns:_ServiceName_"

 myRole="_ServiceName_Provider"/>

 <partnerLink name="BPELStateService"

 partnerLinkType="nsxml0:BPELStateServiceLink"

 partnerRole="BPELStateServiceProvider"/>

 </partnerLinks>

 <variables>

 <variable name="input"

 messageType="tns:_ServiceName_RequestMessage"/>

 <variable name="output"

 messageType="tns:_ServiceName_ResponseMessage"/>

 <variable name="bpelInput" messageType="nsxml0:getStateIDRequest"/>

 <variable name="bpelOutput"

 messageType="nsxml0:getStateIDResponse"/>

 </variables>

 <sequence name="main">

 <receive name="receiveInput" partnerLink="client"

 portType="tns:_ServiceName_" operation="process" variable="input"

 createInstance="yes"/>

 <assign name="assignService">

 <copy>

 <from expression="_ServiceName_"></from>

 <to variable="bpelInput" part="strName"/>

 </copy>

 </assign>

 <invoke name="invokeBPELStateService"

 partnerLink="BPELStateService" portType="nsxml0:BPELStateService"

 operation="getStateID" inputVariable="bpelInput"

 outputVariable="bpelOutput"/>

 <switch name="checkState">

 <case condition="(bpws:getVariableData('bpelOutput','getStateIDReturn')

 = 1)">

 <sequence>_ReturnOutput1_</sequence>

 </case>

 <otherwise>

 <sequence>_ReturnOutput2_</sequence>

 </otherwise>

 </switch>

 <reply name="replyOutput" partnerLink="client"

 portType="tns:_ServiceName_" operation="process"

 variable="output"/>

 </sequence>

</process>

Fig. 13. Template for stubs of Seller and Buyer

4.10 Create Stubs
Test data are obtained from each test case to replace

the placeholders in relevant templates to create

service stubs for that test case. For test case 2 of the

market place, the stubs for the Seller and Buyer

services are created. Fig. 14-15 show the Seller stub

and Buyer stub respectively.

5 Testing Procedure
When the test cases, stubs, and state service are all

created, the test suite is ready to use for basis path

testing. The service tester then follows the procedure

depicted in Fig. 16. A test case is first selected and

the tester deploys relevant service stubs, state

service (if any), and the WS-BPEL with embedded

node IDs. In our case, we deploy the WS-BPEL and

stubs by using Oracle BPEL designer and executing

them by Oracle BPEL Process Manager engine [15],

WSEAS TRANSACTIONS on COMPUTERS Theerapong Lertphumpanya and Twittie Senivongse

ISSN: 1109-2750 491 Issue 5, Volume 7, May 2008

while the state service is an Axis Web service [16].

With the initial input, the WS-BPEL starts and lists

the execution path as its control goes through node

IDs. The tester then compares the listed path with

the basis path given by the tool (such as Fig.7).

<process name="Seller" targetNamespace=http://acm.org/samples

 …

 xmlns:nsxml0="http://localhost:8080/axis/BPELStateService.jws">

 <partnerLinks>

 <partnerLink name="client" partnerLinkType="tns:Seller"

 myRole="SellerProvider"/>

 <partnerLink name="BPELStateService"

 partnerLinkType="nsxml0:BPELStateServiceLink"

 partnerRole="BPELStateServiceProvider"/>

 </partnerLinks>

 <variables>

 <variable name="input"

 messageType="tns:SellerRequestMessage"/>

 <variable name="output"

 messageType="tns:SellerResponseMessage"/>

 <variable name="bpelInput" messageType="nsxml0:getStateIDRequest"/>

 <variable name="bpelOutput"

 messageType="nsxml0:getStateIDResponse"/>

 </variables>

 <sequence name="main">

 <receive name="receiveInput" partnerLink="client"

 portType="tns:Seller" operation="process" variable="input"

 createInstance="yes"/>

 <assign name="assignService">

 <copy>

 <from expression="Seller"></from>

 <to variable="bpelInput" part="strName"/>

 </copy>

 </assign>

 <invoke name="invokeBPELStateService"

 partnerLink="BPELStateService" portType="nsxml0:BPELStateService"

 operation="getStateID" inputVariable="bpelInput"

 outputVariable="bpelOutput"/>

 <switch name="checkState">

 <case condition="(bpws:getVariableData('bpelOutput','getStateIDReturn')

 = 1)">

 <sequence>

 <assign name="assignoutputname">

 <copy>

 <from expression="Product Name 2"></from>

 <to variable="output" part="payload"

 query="/tns:SellerResponse/tns:name"/>

 </copy>

 </assign>

 <assign name="assignoutputcategory">

 <copy>

 <from expression="Jewelry"></from>

 <to variable="output" part="payload"

 query="/tns:SellerResponse/tns:category"/>

 </copy>

 </assign>

 <assign name="assignoutputprice">

 <copy>

 <from expression="40.80858"></from>

 <to variable="output" part="payload"

 query="/tns:SellerResponse/tns:price"/>

 </copy>

 </assign>

 </sequence>

 </case>

 <otherwise>

 <sequence>

 <assign name="assignoutputname">

 <copy>

 <from expression="Product Name 2"></from>

 <to variable="output" part="payload"

 query="/tns:SellerResponse/tns:name"/>

 </copy>

 </assign>

 <assign name="assignoutputcategory">

 <copy>

 <from expression="Jewelry"></from>

Fig. 14. Stub of Seller service

 <to variable="output" part="payload"

 query="/tns:SellerResponse/tns:category"/>

 </copy>

 </assign>

 <assign name="assignoutputprice">

 <copy>

 <from expression="47.74675"></from>

 <to variable="output" part="payload"

 query="/tns:SellerResponse/tns:price"/>

 </copy>

 </assign>

 </sequence>

 </otherwise>

 </switch>

 <reply name="replyOutput" partnerLink="client" portType="tns:Seller"

 operation="process" variable="output"/>

 </sequence>

</process>
Fig. 14. Stub of Seller service (continued)

<process name="Buyer" targetNamespace=http://acm.org/samples

 …

 xmlns:nsxml0="http://localhost:8080/axis/BPELStateService.jws">

 <partnerLinks>

 <partnerLink name="client" partnerLinkType="tns:Buyer"

 myRole="BuyerProvider"/>

 <partnerLink name="BPELStateService"

 partnerLinkType="nsxml0:BPELStateServiceLink"

 partnerRole="BPELStateServiceProvider"/>

 </partnerLinks>

 <variables>

 <variable name="input"

 messageType="tns:BuyerRequestMessage"/>

 <variable name="output"

 messageType="tns:BuyerResponseMessage"/>

 <variable name="bpelInput" messageType="nsxml0:getStateIDRequest"/>

 <variable name="bpelOutput"

 messageType="nsxml0:getStateIDResponse"/>

 </variables>

 <sequence name="main">

 <receive name="receiveInput" partnerLink="client"

 portType="tns:Buyer" operation="process" variable="input"

 createInstance="yes"/>

 <assign name="assignService">

 <copy>

 <from expression="Buyer"></from>

 <to variable="bpelInput" part="strName"/>

 </copy>

 </assign>

 <invoke name="invokeBPELStateService"

 partnerLink="BPELStateService" portType="nsxml0:BPELStateService"

 operation="getStateID" inputVariable="bpelInput"

 outputVariable="bpelOutput"/>

 <switch name="checkState">

 <case condition="(bpws:getVariableData('bpelOutput','getStateIDReturn')

 = 1)">

 <sequence>

 <assign name="assignoutputprice">

 <copy>

 <from expression="78.72712"></from>

 <to variable="output" part="payload"

 query="/tns:BuyerResponse/tns:price"/>

 </copy>

 </assign>

 </sequence>

 </case>

 <otherwise>

 <sequence>

 <assign name="assignoutputprice">

 <copy>

 <from expression="47.74675"></from>

 <to variable="output" part="payload"

 query="/tns:BuyerResponse/tns:price"/>

 </copy>

 </assign>

 </sequence>

 </otherwise>

 </switch>

 <reply name="replyOutput" partnerLink="client" portType="tns:Buyer"

 operation="process" variable="output"/>

 </sequence>

</process>

 Fig. 15. Stub of Buyer service

WSEAS TRANSACTIONS on COMPUTERS Theerapong Lertphumpanya and Twittie Senivongse

ISSN: 1109-2750 492 Issue 5, Volume 7, May 2008

Generate Test Suite

Compare Listed Path with Basis Path from Test Suite

Run WS-BPEL with Node IDs with Test Case Data

Deploy WS-BPEL with Node IDs

Deploy Service Stubs and State Services for Test Case

[More Test Case Available]

[else]

Fig. 16. Testing procedure

6 Implementation Details
The testing tool is implemented with Java (J2SDK

1.4.2_09). Its design is depicted in a class diagram

in Fig 17. The classes are contained in three

packages:

1. UI package comprises the following classes:

• Class MainProgram is the main class that calls

class MainFrame.

• Class MainFrame builds the user menu for the

tool and displays results. It controls the upload of

all input files, creation of the control flow graph,

discovery of basis paths, input and validation of

variable information, generation of test cases,

service template, service stubs, and state

services. It extends Java’s class JFrame.

2. Parser package comprises the following classes:

• Class InsertMarkNode analyzes the input WS-

BPEL file to annotate WS-BPEL tags with node

IDs according to Java embedding feature of

Oracle BPEL designer.

• Class NodeParser extends Java’s class

SAXParser. It analyzes the WS-BPEL file with

embedded node IDS from the class

InsertMarkNode in order to extract node IDs and

details of the corresponding WS-BPEL tags, and

determine the association between node IDs.

This is for discovering the basis paths. The

analyzed information is kept in the

corresponding Node objects.

• Class PartnerParser extends Java’s class

SAXParser. It finds PartnerLinks of the WS-

BPEL (i.e. links to WSDLs of constituent Web

services). Since Oracle BPEL Designer also

produces a configuration file that contains

PartnerLinks to accompany with the WS-BPEL

file, PartnerParser therefore analyzes this

configuration file to determine locations of

constituent Web services WSDLs.

• Class WSDLParser extends Java’s class

SAXParser. It analyzes all WSDLs (i.e. WSDLs

of the WS-BPEL and constituent Web services)

to extract information related to input/output

variables of the WS-BPEL and the relevant Web

service operations. This is for further generation

of test cases. The extracted information is kept in

the Node objects that correspond to <receive>,

<reply>, and <invoke> tags of WS-BPEL.

3. Utility package comprises the following classes:

• Class Node maintains information of each node.

The information includes node IDs, tag detail,

node status (whether it is while or switch node),

related variables and expressions, and

associations with neighboring nodes. Each Node

object is part of the NodeArray object.

• Class NodeArray maintains all Node objects of

the flow.

• Class GraphDraw draws the control flow graph

according to node information in the NodeArray

object.

• Class Arrow draws arrow heads on the edges in

the control flow graph. It is part of GraphDraw.

• Class BasisPath builds basis paths for the control

flow graph. The information in the NodeArray

object will be used to discover basis paths. The

algorithm starts by identifying an associated

node (i.e. the next node) for each current node.

Table 3 lists all pairs of associated nodes for the

control flow graph in Fig. 6. Then, for each node

pair, paths leading to/from the current node are

identified. For example, for the pair no.2, the

path leading to node 2 is 1-2 and the path leading

from node 2 is 3-4-5-6-7-13-14. These two paths

join to form a complete path 1-2-3-4-5-6-7-13-

14. Table 4 lists path details of all associated

nodes pairs in Table 3. The algorithm then

WSEAS TRANSACTIONS on COMPUTERS Theerapong Lertphumpanya and Twittie Senivongse

ISSN: 1109-2750 493 Issue 5, Volume 7, May 2008

removes duplicate paths and finally validates the

resulting paths. That is, they are checked

whether they start with the start node (node 1),

end with the end node (node 14), and the path is

valid to traverse. In our example, the resulting

three paths as listed previously in Section 4.4

pass the validation and become the basis paths.

• Class InputVariableRange gets constants and

constraints on data variables from the user

(service tester). The input information is kept in

VarTable.

• Class VarTable maintains a table of constants

and constraints on data variables.

• Class Expression parses mathematical

expressions associated with the nodes to extract

relevant operators, operands, and any constant

values in the expression. This is used when

randomizing test case values.

• Class GenerateData calls the classes

GenerateTestCase, GenerateTemplate,

GenerateStub, and GenerateStateService to

generate relevant XML documents.

• Class GenerateTestCase generates test cases in

XML. It gets constants relevant to particular test

cases from the class VarTable and uses the class

RandomData to generate other necessary data

values at random. Randomized data values have

to obey their constraints and if they are part of

any conditional expression, they have to satisfy

the designated condition for such a test case. For

the case of basis path 2 of the market place (see

Section 4.4), three randomized data values are

involved: sOutput.price, bOutput.price, and

sOutput.Category (see Fig. 9). The randomized

values of sOutput.price and bOutput.price have

to make the condition at node 7 of Fig. 6 “true”

at the first invocation to the Seller and Buyer

services. Therefore these two price values will be

randomized until they can make the condition

“true”. In our example as in Table 2, ‘40.80858’

is assigned to sOutput.price and ‘78.72712’ to

bOutput.price at random. For sOutput.Category,

“Jewelry” is assigned to make the condition at

node 9 “true” for this basis path.

• Class RandomData randomizes data values for

the test cases according to the constraints, i.e.

data types and possible min and max values (for

numeric data) or size of value (for string data).

• Class GenerateTemplate creates templates in

WS-BPEL format for constituent Web services.

• Class GenerateStub creates sets of stubs in WS-

BPEL format for constituent Web services; each

set is for each test case.

• Class GenerateStateService creates a WSDL and

Java code of a state service which will be called

by a service stub that involves in a loop within

the control flow graph. In our experiment, the

state service is an Axis 1.1 Web service hosted

by Apache Tomcat 5.0 application server.

Fig. 17. Class diagram of testing tool

WSEAS TRANSACTIONS on COMPUTERS Theerapong Lertphumpanya and Twittie Senivongse

ISSN: 1109-2750 494 Issue 5, Volume 7, May 2008

Table 3. Pairs of associated nodes for market place

Pair No. Current Node Next Node Description

1 1 2 Start node

2 2 3

3 3 4

4 4 5

5 5 6

6 6 7

7 7 13 In the case of false

8 7 8 In the case of true

9 8 9

10 9 10 In the case of true

11 9 11 In the case of false

12 10 12

13 11 12

14 12 7

15 13 14

16 14 - End node

Table 4. Path details of associated nodes pairs for market place

Pair No. Path to Path from Complete Path

1 1 2-3-4-5-6-7-13-14 1-2-3-4-5-6-7-13-14

2 1-2 3-4-5-6-7-13-14 1-2-3-4-5-6-7-13-14

3 1-2-3 4-5-6-7-13-14 1-2-3-4-5-6-7-13-14

4 1-2-3-4 5-6-7-13-14 1-2-3-4-5-6-7-13-14

5 1-2-3-4-5 6-7-13-14 1-2-3-4-5-6-7-13-14

6 1-2-3-4-5-6 7-13-14 1-2-3-4-5-6-7-13-14

7 1-2-3-4-5-6-7 13-14 1-2-3-4-5-6-7-13-14

8 1-2-3-4-5-6-7 8-9-10-12-7-13-14 1-2-3-4-5-6-7-8-9-10-12-7-13-14

9 1-2-3-4-5-6-7-8 9-10-12-7-13-14 1-2-3-4-5-6-7-8-9-10-12-7-13-14

10 1-2-3-4-5-6-7-8-9 10-12-7-13-14 1-2-3-4-5-6-7-8-9-10-12-7-13-14

11 1-2-3-4-5-6-7-8-9 11-12-7-13-14 1-2-3-4-5-6-7-8-9-11-12-7-13-14

12 1-2-3-4-5-6-7-8-9-10 12-7-13-14 1-2-3-4-5-6-7-8-9-10-12-7-13-14

13 1-2-3-4-5-6-7-8-9-11 12-7-13-14 1-2-3-4-5-6-7-8-9-11-12-7-13-14

14 1-2-3-4-5-6-7-8-9-10-12 7-3-14 1-2-3-4-5-6-7-8-9-10-12-7-13-14

15 1-2-3-4-5-6-7-13 14 1-2-3-4-5-6-7-13-14

16 1-2-3-4-5-6-7-13-14 - 1-2-3-4-5-6-7-13-14

7 Discussion
We consider our approach to basis path testing of

WS-BPEL simple and straightforward as it follows

steps for basis path testing on programs in general.

The supporting tool facilitates the testing procedure

and requires little tester intervention. Although WS-

BPEL and WSDL are supposed to be standards, in

practice cross-vendor deployment of WS-BPEL

processes and WSDLs is not yet well-supported.

That is, they are specific to the environments and

tools that create them. Our testing tool may therefore

be considered an add-on to Oracle’s BPEL

development environment but the approach can be

followed to develop a basis path test suite for other

platforms.

 The tool is currently at a prototype stage as it

does not yet support all XML schema data types in

the generation of test data; only integer, float,

boolean, and string are supported. Also, only

sequence, condition, and repetition patterns of

control are allowed. Nonetheless, these represent a

set of data types and workflow constructs that are

typically used for setting up business workflows.

Since there is correspondence between parallel and

sequence patterns [17], it may be possible to

transform a WS-BPEL with parallel control into one

WSEAS TRANSACTIONS on COMPUTERS Theerapong Lertphumpanya and Twittie Senivongse

ISSN: 1109-2750 495 Issue 5, Volume 7, May 2008

with sequence. The tool does not consider infeasible

paths that cannot be accessed either.

8 Conclusion
The contribution of this paper is an approach to the

generation of basis path test suite and testing

procedure for basis path testing on WS-BPEL

services. The procedure is assisted by a testing tool

which can automatically generate test cases, stubs of

constituent services, and state services. As with

other testing tool, our tool requires small

intervention from service testers to specify

constraints on those data values to be generated for

test cases. Through this testing, service composers

can be assured of the composition flow before

deploying WS-BPELs.

 We expect to enhance the tool to support WS-

BPELs and WSDLs from different vendors.

Shortcomings as discussed in the previous section

will be dealt with in the next version of the tool. It is

also possible to extend the approach to

accommodate other kinds of structural testing, e.g.

branch coverage and path coverage testing.

Acknowledgment:

This research is part of the Engineering New

Paradigm Software for Enterprises with Service-

Oriented Architecture Project, supported by

Thailand’s Software Industry Promotion Agency

(Public Organization).

References:

[1] OASIS, WS-BPEL, http://www.oasis-

open.org/committees/wsbpel

[2] P. C. Jorgenson, Software Testing: A

Craftman’s Approach, 2
nd

 edition, CRC

Press, 2002.

[3] T. J. McCabe, A Complexity Metric, IEEE

Transactions on Software Engineering, Vol.

SE-2, No. 4, December 1976, pp. 308-320.

[4] W. T. Tsai, R. Paul, Y. Wang, C. Fan, and D.

Wang, Extending WSDL to Facilitate Web

Services Testing, Proceedings of 7
th
 IEEE

International Symposium on High Assurance

System Engineering (HASE’02), 2002.

[5] T. T. Cheng and C. H. Fu, On the

Development of Software Tools for Testing

Web Services, Proceedings of International

Conference on Internet Computing, 2004.

[6] W. T. Tsai, R. Paul, W. Song, and Z. Cao,

Coyote: An XML-Based Framework for Web

Service Testing, Proceedings of 7
th
 IEEE

International Symposium on High Assurance

System Engineering (HASE’02), 2002.

[7] E. Martin, S. Basu, and T. Xie, Automated

Testing and Response Analysis of Web

Services, Proceedings of 2007 IEEE

International Conference on Web Services

(ICWS 2007), Salt Lake City, Utah, 9-13 July

2007.

[8] Parasoft, SOAtest,

http://www.parasoft.com/soatest

[9] Optimyz Software, WebServiceTester,

http://www.optimyz.com

[10] Progress Software Corporation, Stylus

Studio,

http://www.stylusstudio.com/ws_tester.html

[11] Borland, SilkPerformer,

http://www.borland.com/us/products/silk/silk

performer/index.html

[12] Mindreef, SOAPscope,

http://home.mindreef.com/products/soapscop

e-server/products.html

[13] Eviware, soapUI, http://www.soapui.org/

[14] PushToTest, TestMaker,

http://www.pushtotest.com/

[15] Oracle, Oracle BPEL Designer and Process

Manager, http://www.oracle.com

[16] Apache, Web Services – Axis,

http://ws.apache.org/axis/

[17] M. Klusch, A. Gerber, and M. Schmidt,

Semantic Web Service Composition Planning

with OWLS-Xplan, Proceedings of 1
st

International AAAI Fall Symposium on

Agents and the Semantic Web, Arlington, VA,

USA, 2005.

WSEAS TRANSACTIONS on COMPUTERS Theerapong Lertphumpanya and Twittie Senivongse

ISSN: 1109-2750 496 Issue 5, Volume 7, May 2008

