
Adapting a Legacy Code for Ordinary Differential Equations to Novel
Software and Hardware Architectures

DANA PETCU, ANDREI ECKSTEIN, CLAUDIU GIURGIU

Institute e-Austria Timisoara
and Computer Science Department, Western University of Timisoara

B-dul Vasile Parvan 4, 300223 Timisoara
ROMANIA

petcu@info.uvt.ro http://web.info.uvt.ro/~petcu

Abstract: - Modern software engineering concepts, like software as a service, allow the extension of the legacy
code lifetime and the reduction of software maintenance costs. The transformation of a legacy code into a
service is not straightforward task, especially when the initial code was designed with a rich user interface. A
special case is presented in this paper, that of a software code for solving ordinary differential equations.
Initially designed to use parallel computing techniques in the solving process, the code is now modified to take
advantages of the current multi-core architectures. The transformation paths are general and can be followed by
other similar legacy codes.

Key -Words: - Wrapper, Web service, Parallel methods, Multicore architectures, Ordinary differential equations

1 Introduction
The service oriented architecture (SOA) is a current
paradigm for organizing and utilizing distributed
capabilities that may be under control of different
ownership domains. It provides uniform means to
offer, discover, interact with and use capabilities to
produce desired effects consistent with measurable
preconditions and expectations. Its attraction is due
to the fact that it builds on concepts of reusable
software components, while emphasizing the
service’s abstraction. This means that the services
are interoperable, reusable, independent, stateless
and autonomous. To enable interoperability,
services should be composable, loosely coupled, and
standards compliant. The resources available across
a network are made available as independent
services that can be accessed without knowledge of
their underlying platform implementation. The
primary focus of the SOA latest developments is on
dynamic reconfiguration of services and on
developing business services.

 Service-oriented technologies as current solution
for large distributed systems are addressing the
computing and storage needs arising from many
scientific and industrial application areas. Develo-
ping new codes, instrumenting applications with
middleware specific interfaces, or designing
applications to explicitly take advantage of distri-
buted resources is a significant burden for the

developers who are often reluctant to allocate
sufficient effort on non application specific pro-
blems. The middleware is therefore expected to ease
legacy codes migration to service-oriented infra-
structures by proposing a non-intrusive interface to
existing legacy codes, and optimizing the execution
of the application on the available resources. In this
context, enabling legacy code execution on service-
oriented infrastructures is a high priority challenge.
 The migration of a legacy system towards a
service-oriented architecture is, unfortunately, not a
straightforward task. At least two problems can be
straightforward identified:

- establishing which part of the legacy system can
be exposed as service;

- establishing how the transformation will be
done technically.

 The most appropriate legacy systems for the
migration towards Web services are those which are
conceived as black-boxes that are callable through a
command line and having fixed input and output
formats. The full functionality of the system can be
available through wrapping. Two issues should be
still treated:

- if the number of the legacy code functions are
very high (of thousands order) the available
tools for handling services are not facing the
requirements;

WSEAS TRANSACTIONS on COMPUTERS Dana Petcu, Andrei Eckstein
 and Claudiu Giurgiu

ISSN: 1109-2750 463 Issue 5, Volume 7, May 2008

- the public expose of all the legacy code
functions can be a danger for the system hosting
the wrapped software if the exposed function
list includes functions that modify the host
environment.

In both cases the solution is to have a restricted list
of functions that are exposed through the wrapper.
The wrapper translates the incoming requests from
the XML-like formats into the format understand by
the legacy code and the code outputs into XML-like
format. Recently we have analyzed several cases
that conform to these characteristics and details are
given in [16].
 The problem of which part of the legacy code
can be exposed is not easy to handle in the more
complex case, that of migrating a legacy system
with a rich user interface. In this paper we discuss
such a case.
 The second problem, establishing how the
transformation will be done, can be approached via
several techniques. We review them briefly. A
detailed analysis is presented in [5].
 A first class of techniques comprises the black-
box reengineering techniques which integrate
systems via adaptors that wrap legacy code as a
service (as mentioned above).
 A second class comprises white-box methods
which require code analysis and modification in
order to obtain the code components of the system
to be presented as services. Both approaches are
valid in different circumstances, depending on
factors such as the granularity of the code, the
assumed users and application area.
 The first class is mainly applied in the case
when the code is not available. Recent papers on
this subject are [1] and [9]. A solution for the
particular case of interactive legacy systems is
described in [4].
 Java wrapping can be used to generate the
service interfaces automatically as outlined in [13].
Prominent examples in this direction are SWIG,
JAVAW or MEDLI [10].

 The most remarkable non-invasive solution is
represented by GEMLCA, the Grid Execution
Management for Legacy Code [8]. The deployment
process of a legacy code as GEMLCA service
requires only a user-level understanding of the
legacy application (e.g. parameters of the legacy
code, kind of environment needed to run).
GEMLCA provides the capability to convert legacy
codes into Grid services by describing the legacy
parameters and environment values in the XML-like
file. A drawback is that it supposes that the legacy
code is activated in a command-line style and does

not exploit the possible successive interactions. The
same comment is valid also for O’SOAP [18] that
also allows legacy command-line oriented applica-
tions to be deployed as Web services without any
modification, as well as for OPAL [12].
 Recently, we proposed in [6] some technical
solutions for the migration of the well-known
interactive software tools used in the particular field
of symbolic computations.
 The second class mentioned above is based on
invasive procedures on the legacy codes that usually
improve the efficiency of legacy code. In this
invasive approach, it is typically assumed that the
application programmer has some programming
background and would like to build services using
specific software libraries.
 In this paper we make use of a third possible
class, mentioned in [5], the class of the grey-box
techniques, that combine wrapping and white-box
approaches for integrating those parts of the system
that are more valuable.
 We present a case study on an interactive legacy
system that was designed ten year ago to provide
numerical solutions for initial value problems for
systems of ordinary differential equations and
incorporates an expert system. The part of the
legacy system that is the most computationally
intensive is migrated as a Web service, while the
user interface and the expert part are recoded in Java
for portability reasons. Following this approach, the
computational service can be accessed by any client
that sends a message in a specific XML-like format
containing the problem description and the method
to be applied. Furthermore, the module that
implements the parallel numerical methods and
differentiate the code from others available at its
designing time, as one important component of the
part wrapped as a Web service, was extended to
allow the efficient use of the multicore architectures.
 Taking into consideration the current trends to
increase the number of processors on a chip, the
extent to which software can be multithreaded to
take advantage of the multicore chips is likely to be
the main constraint on software performance in the
future. Numerical computations requiring both CPU
power and large memory are well suited candidates
for deriving advantages from the current multicore
architectures. In this context, it is necessary to
design and implement new libraries and tools for
parallel numeric computations, or to re-engineer the
old ones, especially for the new parallel computing
environments using multicore processors.
 One can notice that several parallel numeric
computation packages were designed at the
beginning of the previous decade assuming a

WSEAS TRANSACTIONS on COMPUTERS Dana Petcu, Andrei Eckstein
 and Claudiu Giurgiu

ISSN: 1109-2750 464 Issue 5, Volume 7, May 2008

shared-memory parallel computing environment.
The subsequent evolution of the hardware towards
distributed-memory parallel computers and clusters
of workstations has lead to the impossibility to use
previously developed shared-memory parallel codes
and to the need of designing and implement new
versions that are well suited for distributed memory.
In particular, for the case of computing the
numerical solutions of large systems of ordinary
differential equations, this architectural change had
a tremendous effect: the class of techniques well
suited for implementation on parallel computing
environments has been changed from the ones
applying parallelism across the method towards
those applying parallelism across the steps. The
techniques that are mentioned above were revised in
[3]. By switching to multicore architectures, the
question that raises naturally is that of re-imposing
the status of the parallelism across the method. We
prove in this paper that there is a positive answer:
one can consider again the parallelism across
method as an efficient technique for improving the
response time of the numerical software codes for
ordinary differential equations when a multicore
architecture is used.
 The paper is organized as follows. Section 2
describes shortly the system that is used as case
study, while Section 3 presents the system’s
computational component that is wrapped as a Web
service. The benefits of adding multithreaded
functionality is discussed in Section 4. Finally, some
conclusions are drawn in Section 5. This paper is an
extended version of the recent paper [17].

2 EpODE’s Characteristics, Compo-
nents, and Current Limitations
The ExPert system for Ordinary Differential
Equations, EpODE, was designed as a tool for
solving by numerical procedures initial value
problems for large systems of ordinary differential
equations (ODEs). It is also an expert system since
it provides:

- an automated identification of problem
properties that is defined by the system user,
e.g. linearity, sparsity, stiffness, degree of
parallelism across the problem;

- an automated identification of the properties of
the solving method, e.g. explicit or implicit,
onestep or multistep, onederivative or
multiderivative, onstage or multistage, method
order, error constant, stability characteristics,
degree of parallelism across the method;

- an automated selection of the adequate method
according the problem properties;

- an automated estimation of the computation
time for a specific problem and a specific
method using the host computer;

- parallel computing facilities in a cluster or a
parallel computer in the case when the estimated
time for solving the problem is too high.

2.1 Characteristics
EpODE can be used as a tool for describing,
analyzing and testing new types of iterative methods
for ODEs, mainly due to the method properties
detector, as well as the immediate possibility to
apply them on a large class of problems. In
particular, it allows also to study the methods that
are proposed for parallel or distributed implemen-
tation using real or simulated parallel computing
environments.
 After defining the problem, the solving method
and the computation parameters can be given by an
human expert, or can be the task of the automatic
selector. In the human-exert mode, the tool can be
used to underline the effects of over-passing the step
size restrictions imposed by accuracy or stability of
the numerical process. The method automatic
selection is based on a simple decision tree, and
depends on the type of problem that will be solved,
the admitted global error, and a maximum for the
computation time. The approximate values of the
solution can be visualized using some graphic
facilities in two- and three- dimensional space or
using some tabular form. The numerical results can
also be saved in order to be interpreted within other
tools. Classical performance measurements, like
computation time, number of function evaluations,
or the estimated error, are provided after the end of
the solving process. These measurements can be
used for comparing distinct methods applied to the
same problem.
 It is important to notice that EpODE is freely
distributed with a rich database of problems (at
least one hundred real and test problems, including
those classical ones that are used in tesing new
methods) and a rich database of solving methods
(almost one hundred too, including Runge-Kutta
methods, multistep methods, multi-derivative
multistep methods, block methods, hybrid methods,
nonlinear multistep methods, general linear
methods). These databases can be extended by the
tool user with its own defined problems or methods,
allowing a very easy and comprehensive compari-
son with classical problem and methods that are
already in the database.

WSEAS TRANSACTIONS on COMPUTERS Dana Petcu, Andrei Eckstein
 and Claudiu Giurgiu

ISSN: 1109-2750 465 Issue 5, Volume 7, May 2008

 The main characteristics of EpODE which
distinguish it from other ODE solving environments
are the followings:
- the friendly interface for describing new

problems and solving methods;
- the method recommender system specially

designed for stiff large systems;
- the extensible database of methods and

problems;
- the extensive problem and method properties

detector;
- the dynamic memory allocation scheme avoid

the constraint on the dimension of the problem
to be solved;

- the unique problem solving procedure for all the
methods that allows all solvers to behave in a
coherent way;

- the independence from other software packages
with one exception, that of Parallel Virtual
Machine (PVM) used for parallel or distributed
computations.

 Details about EpODE’s design are given in the
early paper [14]. Several experiments on parallel
computers and cluster environments were reported
later in [15].

2.2 Components
EpODE has five major components:

1. a user interface, the front end of which permits
the description of an initial value problem for
the ODEs or an iterative method, the control of
the solution computation process, and the
interpretation of the results of the computation;
help facilities are provided in order to assist the
user in using the software;

2. a properties detection mechanism containing the
procedures for establishing some properties of
ODEs or those of an iterative method;

3. a mechanism for selecting the solving
procedure, implementing the decision tree for
the selection of the class of iterative methods
according to the properties of the initial value
problem for ODEs and for the selection of one
method from this class according to the solution
accuracy requirements and time restrictions;

4. a sequential computing procedure, a generic
solving procedure whose parameters corres-
ponds to the current problem and the selected
method.

5. a parallel computing procedure, a generic
solving procedure that is similar with the
sequential procedure, but includes also the

splitting of the computational effort to more
than one process as well as they coordination.

 At the time of its design EpODE was the unique
tool that allowed the above mentioned facilities.
Only a recently developed tool reported in [2] has
similar facilities (without the ones for applying
parallelism techniques).

2.3 Limitations
EpODE was written ten years ago in C++ and two
graphical interfaces were provided, for Windows’95
and X Windows. In other words, the first component
mentioned above was not designed to be portable
and this fact lead to usage problems when new
operating systems have appear. In order to solve this
issue, a rewritten of this component is needed in a
portable version, e.g. as Java code. The next section
presents the new interface exposed as a Web
service.
 The other complex components can be conserved
as they are. In Section 3 we describe how the last
two components are wrapped and presented as Web
service. The other two are not included yet in the
service, but will be the subject of further
development of the Web service or of another
specific Web service.
 Concerning the efficiency of the parallel
techniques in solving ordinary differential
equations, that were also implemented by EpODE,
one should note that the rapid development of the
hardware in the last ten years have affected the
notion of the most adequate technique. Indeed, a
rerun of the experiments reported in [15] revealed
that the current hardware improvements led to a
response time of the computational procedures
hundreds of times shorter. In these conditions the
problem dimension for which the parallel computing
techniques are efficient, in the sense that the
computational time dominates the communication
time, is increasing by at least ten times.
 One should remember that the three classes of
techniques applied to achieve parallelism in solving
ODEs are: parallelism across the system (across
space), parallelism across the method, and paralle-
lism across the steps (across time). More details
about this subject can be found in [3].
 According to the technique of parallelism across
the system various components of the system of
ODEs are distributed amongst available processors.
This technique is especially effective in explicit
solving methods and when the system can be split
into a number of independent systems, that is a
uncommon case. EpODE detects the sparsity of the

WSEAS TRANSACTIONS on COMPUTERS Dana Petcu, Andrei Eckstein
 and Claudiu Giurgiu

ISSN: 1109-2750 466 Issue 5, Volume 7, May 2008

system and allows to apply the technique of
parallelism across system. The efficiency results are
not considerable affected by the hardware changes
since the computations are almost independent.
 According to the technique of parallelism across
method, each processor executes a different part of a
method. This approach has the triple advantage of
being application-independent (it does not require
user intervention or special properties of the given
systems of ODE), of avoiding load balancing
problems, and of using a small number of
processors. The main disadvantage is the limited
speed-up. EpODE detects the degree of parallelism
across the method and allows to apply the technique
in the solving process. The efficiency results are
strongly affected by the kind of memory that is used
in the parallel computing environment, as well as
the ratio between the communication and computa-
tion times.
 The parallelism across steps is the only possibi-
lity for using large-scale parallelism on small pro-
blems. Contrary to the step-by-step idea, several
steps are performed simultaneously, yielding nume-
rical approximations in many points of the indepen-
dent variable axis (the time). Some continuous time
iteration methods are used to decouple the ODE
system, and henceforth to discretize the resulting
subsystems, by solving them concurrently. The
number of discrete points handled simultaneously is
the degree of parallelism of the method. The main
weakness of this approach is that the iteration
process may suffer from slow convergence or even
divergence. Despite the fact that EpODE imple-
ments also this technique, we have not perform yet
efficiency tests to see how the new hardware
architecture affects the efficiency results – this is a
subject for further developments.

3 EpODE’s Computational Kernel as
a Web Service
The most intensive computational part of EpODE
consists in the generic numerical solving procedure
for sequential or parallel iterative methods applied
to initial value problems for ODEs. The procedure is
generic in the sense that it does not depend on the
specific problem or the particular method – the
concrete problem and methods are given as
parameters. Since there is no need of user
intervention in the computational process, and, at
the same time, there is a need for a fast response,
this part of EpODE is well suited for transformation
into a computational service lying on a remote high-
performance server.

3.1 Technologies and operations
The component that implements the computational
procedure in C++ and PVM is wrapped as a statefull
Web service (WSRF implementation using Globus
Toolkit 4 – see other wrapping examples in black-
box style reported in [16]).
 The container of the Web service is based on
Tomcat technologies. Axis is used as implemen-
tation of the SOAP specification. The WSDL file of
the service was generated with the Java2WSDL tool
of Axis.
 The Web service has four operations:
1. setmethod to set the solving method;
2. setproblem to set the problem to be solve;
3. setcompute to set the computation parameters;
4. compute to start a computation;
5. getstatus to retrieve the computation status;
6. getresults to retrieve the computation results.

We describe in the subsection 3.3 their actions.

3.2 Data structures
The unique solving procedure for any type of
iterative method for ODEs takes into account the
variety of mathematical forms that a solving
method can have (one- or multi-stage, one- or multi-
step, one- or multi-derivative, explicit or implicit
methods).
 A specification of the method in EpODE
includes: the iterative formula, the starting
procedure, the implicit equation solver, the error
control procedure. In order to define a new iterative
formula, the user must specify the variables, the
right side of the formula, the variables whose values
will be stored, and the link between the old and the
new values of the variables. In order to define a
starting procedure for a multistep method, the user
must describe or a onestep method (the right side of
an iterative formula). In order to define an implicit
equation solver, e.g. simple iterations or Newton
like iterations and some starting values (using, for
example, onestep method). In order to define the
error control procedure, the user must specify the
variables which must be checked.
 Uniformity in defining the difference methods
allows in EpODE to construct a unique procedure
for interpreting the data about an arbitrary method.
The parameters of such a procedure are the outputs
of the method interpreter provided in a condensed
form, like evaluation trees of some arithmetic
expression.
 The Web service receives the method definition
in the form of an XML-like structure that is
described it its WSDL as follows:

WSEAS TRANSACTIONS on COMPUTERS Dana Petcu, Andrei Eckstein
 and Claudiu Giurgiu

ISSN: 1109-2750 467 Issue 5, Volume 7, May 2008

<xsd:element name=”setmethod”>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Implicit" type="xsd:Boolean"/>
 <xsd:element name="MStep" type="xsd:Boolean"/>
 <xsd:element name="MStage" type="xsd:Boolean"/>
 <xsd:element name="MDeriv" type="xsd:Boolean"/>
 <xsd:element name="Newton" type="xsd:Boolean"/>
 <xsd:element name="Nsta" type="xsd:int"/>
 <xsd:element name="Nfin" type="xsd:int"/>
 <xsd:element name="Nplu" type="xsd:int"/>
 <xsd:element name="Nimp" type="xsd:int"/>
 <xsd:element name="Mpas" type="xsd:int"/>
 <xsd:element name="Care" type="xsd:int"/>
 <xsd:element name="VarMet" type="xsd1:ArrayStr"/>
. <xsd:element name=”SupEqs” type="xsd1:ArrayStr"/>
. <xsd:element name=”StaEqs” type="xsd1:ArrayStr"/>
 <xsd:element name="FinEqs" type="xsd1:ArrayStr"/>
 <xsd:element name="PluEqs" type="xsd1:ArrayStr"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

The data structure fields above are referring to some
method properties: implicit or explicit, multistep or
not, multistage or not, multiderivative or not, etc.
Then the method equations follow. ArrayStr is
described in the <types> part of the WSDL:

 <complexType name="ArrayStr">
 <complexContent>
 <restriction base="soapenc:Array">
 <attribute ref="soapenc:arrayType"
 wsdl:arrayType="string[]"/>
 </restriction>
 </complexContent>
 </complexType>

A Java client that will access the service to compute
the solution of a problem with the DIRK4 method
[3], described by the iterative process:

 yn+1=yn+h(11k1+25k2+11k3+25k4)/72, n=0,1,...
 k1=f(yn +hk1)
 k2=f(yn +3hk2/5)
 k3=f(yn +h(171k1-225k2+44k3)/44)
 k4=f(yn +h(39k2-43k1+12k4)/20)

where f is the system function and y the unknown
vector function from the y’(t)=f(t,y(t)), y(0)=y0, can
have a piece of code similar to the following
sequence:

 Epode_service.setmethod(
 true, //implicit method
 false, //onestep method
 true, //multistage method
 false, //onederivative method
 true, //use Newton iteration to solve implicit eqs.
 1, //no. of stages
 1, //no. of variables stored at the end of the step
 4, //no. of intermediate variables
 4, //no. of implicit equations

 0, //steps skipped at next iteration (block case)
 0, //index of the method variables to be saved
 {“h”,”y”,”k1”,”k2”,”k3”,”k4”,”x”}, //method vars
 {} //supplementary eqs. for implicit solving proc.
 {} //start eqs. for multistep methods
 {“x+h*(11*k1+25*k2+11*k3+25*k4)/72)”} //fin.eq.
 {“fct(x+h*k1)”,”fct(x+3*h*k2/5)”,
 ”fct(x+h*(171*k1-215*k2+44*k3)/44)”,
 “fct(x+h*(39*k2-43*k1+12*k4)/20)”} //plus eqs.
);

 The data structure describing the problem to be
solved is present in the WSDL file:

<xsd:element name=”setproblem”>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Dim" type="xsd:int"/>
 <xsd:element name="Vars" type="xsd1:ArrayStr"/>
 <xsd:element name="Eqs" type="xsd1:ArrayStr"/>
 <xsd:element name="T0" type="xsd:double"/>
 <xsd:element name="InitV" type="xsd1:ArrayStr"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

where Dim is the problem dimension, Vars is a
vector with the problem variables, Eqs are the
differential equations, BJacob is a Boolean matrix
indicating the non-zero positions in the Jacobian
matrix of the system, Jacob are the non-zero
elements of the Jacobian matrix of the system, T0 is
the initial value of the independent variable, and
InitV is the vector of the initial values.
 A Java client that access the Web service to
compute the solution of a simple problem like the
following one:

 u’(t)=v(t), v’(t)=5(1-u(t)2)v(t)-u(t), u(0)=2, v(0)=0

will have a piece of code similar to the following:

 Epode_service.setproblem(
 2, //problem dimension
 {“t”,”u”,”v”}, //problem variables
 {“v”,”5*(1-u*u)*v-u”}, //problem equations
 0.0, //Start value of the indep.var.
 {“2”,”0”} //Initial values
)

The data structure describing the options for the
computations includes:

<xsd:element name=”setcompute”>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Step" type="xsd:double"/>
 <xsd:element name="T1" type="xsd:double"/>
 <xsd:element name="WhichV" type="xsd1:ArrayStr"/>
 <xsd:element name="PVM" type="xsd:Boolean"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

WSEAS TRANSACTIONS on COMPUTERS Dana Petcu, Andrei Eckstein
 and Claudiu Giurgiu

ISSN: 1109-2750 468 Issue 5, Volume 7, May 2008

A Java client that access the Web service to
compute the solution of a the above described
problem will have a piece of code similar to:

 Epode_service.setcompute(
 0.0001, //method step
 1, //maxim value of the independent var.
 {“u”,”v”}, //variables to be stored
 true //apply parallelism across method
)

 Due to the fact that the method and problem
properties detector was currently not included yet in
the Web service has the disadvantage that the user
must provide at this moment a more complex
structure that is described above: the equations
should be given not only in they explicit form, but
also in the Polish form, and, moreover, in the case
of the problem, the Jacobian matrix should be
provided too. This inconvenient should be removed
soon. Moreover, for the sake of the initial testing,
only the option for parallelism across the method is
activated through the interface. Further develop-
ments will include into the computational kernel the
EpODE’s component that transforms any expression
in its Polish form, the EpODE’s facilities for paral-
lelism across steps, as well as for parallelism across
the problem.

3.3 Actions
The Java code that implements the wrapper
translates the setting requests as copying actions of
the incoming complex data structures into its private
variables. A request for compute has the following
consequences:

1. write the problem and method descriptions
(implicit values are used if set* requests were
not used), as well as supplementary information
requested to proceed with the computation, into
a file with a specific format;

2. transfer at the server site where the computa-
tional procedure will be launch the previously
written file with the problem, method, and
computation parameters;

3. call the computational procedure through a line
command that specifies the file.

A pipe is establish between the wrapper and the
computational kernel. The client receives an
acknowledgement if the computational procedure
has start. Later it can ask for the status of the
computa-tion through the getstatus operation of the
Web service (the wrapper). If the status is “done”
than the client can ask for the results through the
getresults operation of the Web service that will
transfer the file with the numerical solution.

 To allow the late retrieval of the result, for each
client a new instance of the service will be created.
The client knows the address of a register of servi-
ces and queries the registry about the computational
service. The service register sends back the address
of the service factory that matches the query. The
client contacts the service factory and requests a
service instance. The service factory creates an
instance of a service interface (the wrapper). Then
the client sends to the interface the method, problem
and computing parameters, as well as the compute
request. The service interface will launch the code
of interest, and:

- if the code will run on the server, then the code
will be launched by a thread of the service
interface;

- if a cluster scheduler is installed on the server,
then the code will be launched on the cluster by
the scheduler that is called by a thread of the
service interface;

- if no scheduler is installed and the server is not
part of the cluster, but lies in the same security
domain as the cluster, the remote code can be
invoked through classical rsh/ssh commands by
a thread of the service interface.

3.4 Usage scenarios
 We can imagine three kinds of clients of the Web
service:

1. EpODE GUI interface
2. another tool that needs a fast numeric compu-

tation of the solution of an initial value problem
for ordinary differential equations;

3. a workflow execution engine.

 EpODE’s graphical used interface will be
redesigned soon to allow remote computations when
the estimated computation time is too high and there
is a need for a faster response by using the Web
service that is lying on a high-performance server;
 The role of the client of the Web service can
also be played by another tool that sends the input
data in the requested format. For example, through
the tools described in [6] symbolic computing
systems can access and consume Web services – it
is known that such systems are slow when they
work with their internal numerical procedures and
they can really benefit from faster external codes.
 We can imagine also the case when the Web
service is called by another numerical software
code, that solves partial differential equations and
during its solving procedure it transforms the
problem into a large system of ordinary differential

WSEAS TRANSACTIONS on COMPUTERS Dana Petcu, Andrei Eckstein
 and Claudiu Giurgiu

ISSN: 1109-2750 469 Issue 5, Volume 7, May 2008

equations. Note that the largest ODE systems that
are usually used in testing ODE software tools are
provided by a such discretization processes [3].
Moreover, the Jacobian of the system in its
symbolic form currently requested by EpODE
computational procedures can be easily generated
with a computer algebra system – for example an
older software tool, ODEXPERT [11] uses Maple
for this task.
 We can further imagine a more complex scenario
in which several Web services are composed: one
for generating the ODE system, another for
computing the Jacobian, both wrapped as Web
services, are sending the necessary information for
the expert system (also a Web service) that picks an
appropriate method from a rich database (can be the
EpODE component) and asks the above described
Web service to perform the computation, and finally
sends the numeric computation results to a
visualization tool that is also wrapped as a Web
service. The entire scenario is described into the
graphical interface of a workflow editor and engine.
This scenario will be the basis of our future
development.
 Compared to the wrapping examples that were
described in the recent paper [16], the current one
has a higher degree of potential integration in a
service-oriented architecture. For example, in [16] is
described the wrapping of a CFD code and a
evolutionary computing: a specific simulation is
transferred from the client side to the service side –
the client should know how this file should look
like. In the case described in this section, the input
data are described in an XML-like format that can
be discovered by any client of the service.

4 Adding a Multi-threaded Facility
for Multicore Architectures
The ability of multi-core processors to increase
application performance depends on the use of
multiple threads within applications. Numerical
computations are well-suited candidates for deriving
advantages from multi-core parallel architectures.
This is possible only if the specific libraries and
tools are designed to allow multi-threading and
multi-processes.
 EpODE was designed to allow the experimen-
tation of parallel methods when solving initial value
problems for ODEs. As mentioned in Section 2,
there are three classical approaches:

1. parallelism across the problem that depends on
the degree on the sparsity of the system’s
Jacobian matrix;

2. parallelism across the method that depends on
the number of the method’s variables that can
be computed simultaneously, and

3. parallelism across the steps that allows a higher
degree of parallelism with the drawback of
heavy control of the convergence of the
numerical solutions towards the exact one.

 The parallelism across the method was a viable
solution ten years ago in the case of large systems
and the availability of a small network of computers
or a parallel computer. With computation power
increasing faster than communication speed, parallel
computations based on parallelism across the
method are justified only in the case of systems with
hundreds of equations. Indeed, we have re-run the
experiments reported in [15] dealing with systems
of almost one hundred equations on a new
generation cluster (7 HP ProLiant DL-385 with 2 x
CPU AMD Opteron 2.4 GHz, dual core, 1 MB L2
cache per core, 4 GB DDRAM, 2 network cards 1
Gb/s) and the results show that the parallel variant is
no longer efficient at the same scale of problem
dimensions.
 The question is if we can improve the efficiency
of the basic non-parallel computational procedures
by implementing parallelism across the method
through multithreading when running on multicore
architectures. To be able to answer this question, we
have rewritten some parts of the C++ code for the
computational procedures of EpODE dealing with
the parallelism across method. The multithreading
implementation is close to the one based on the
PVM library – instead of PVM processes, threads
are used, and instead message passing, threads are
communicating through a common matrix.
 The answer to the above question is positive: the
response time of the computational procedure is
clearly improved using the multi-threaded version
compared with the non-thread or parallel version at
the problem dimensions for which the old parallel
code is no more efficient.
 In order to prove the above statement, Table 1
shows the response times of the code in the case of
two classical problems of 81, and 140 equations,
respectively, solved by some representative methods
from different classes of parallel methods. DIRK4 is
the 4-stage 4th order Diagonally Implicit Runge-
Kutta method that was described in Section 3, PC1
is the predictor-corrector scheme based on the
implicit trapezoidal rule, PC6 is another predictor-
corrector scheme, while BL1 and BL2 are one-stage
block methods, all of them available through the
rich database of methods provided by EpODE.
ME140 is a discretization of the Medical Akzo

WSEAS TRANSACTIONS on COMPUTERS Dana Petcu, Andrei Eckstein
 and Claudiu Giurgiu

ISSN: 1109-2750 470 Issue 5, Volume 7, May 2008

Nobel problem, using the method of lines [7].
Plate81 is obtained by following the same procedure
starting from a diffusion problem. Please refer to [3,
15] for the description of these problems and
methods.

Table 1: Response times of the computational
procedure with or without threads

Method Time (ms) Pro-

blem Acro-
nym

Parall.
degree

No.
steps No

threads
With
threads

Plate81 DIRK4 2 5 2031 1519
 FR2 2 50 3658 2068
ME140 PC1 2 50 5165 3624
 PC6 2 50 10022 4992
 BL1 2 50 3428 2768
 BL2 3 10 3119 1431

 In order to incorporate the multithreading
facility into the Web service described in the
previous section, the following field from the
computing parameters description should change
from a Boolean to an integer value:

 <xsd:element name="PVM" type="xsd:int"/>

This variable should be used as follows:

1. PVM is set to the value 1 with the meaning that
parallelism across method through PVM should
be used when the problem dimension is of
hundreds order of equations;

2. PVM is set to the value 2 with the meaning that
parallelism across method through multithread-
ding should be used when the problem
dimension is of ten order of equations;

3. PVM is set to the value 0 when parallelism
facilities are not used due to the fact that the
system to deal with is small

As stated in Section 3 there are different ways to
launch the legacy code: on the same server as the
service interface or at a remote location (specified or
decided by a scheduler). In the case of the current
Web service that wrap the legacy code, the service
container and the service itself run on the interface
node of the above-mentioned multicore cluster, so
each option specified by the PVM parameter can be
properly exploited when EpODE’s computational
kernel is launch by the service interface.

5 Conclusions and Future Work
In order to prolong the lifetime of a legacy code we
have used a partial-invasive technique for migrating
it towards a service-oriented architecture. One of its

unique components, the one that can profit from the
computational power of remote high-performance
servers, was wrapped as a Web service. This new
service can be accessed by any client code that
respects the format of the input data describing the
problem to be solved, the iterative method and the
computation parameters. The migration opens new
possibilities to exploit the facilities provided by the
legacy code by combining it with other services to
offer complex computational scientific services.
 Taking into consideration the current trends to
increase the number of processors on a chip, the
extent to which software can be multi-threaded to
take advantage of the multi-core chips is likely to be
the main constraint on software performance in the
future. Therefore the computational kernel of the
legacy code was modified to allow multithreading.
Initial tests are proving that the transformation has
clear advantages when solving medium size initial
value problems for ordinary differential equations.
 While the computational kernel was successfully
adapted to make efficient use of multicore
architectures, several other components are still left
to be translated into the new user interface. The
improvement and the integration of the expert
system into the same Web service or another Web
service is one of the next steps to be taken soon.
Complex usage scenarios, as the one described in
Section 3, should be the context of the future
intensive tests of the Web service.
 Moreover, the transformations that were
performed on the expert system for ordinary diffe-
rential equations have a high degree of generality
and can be easily apply to other tools in order to be
incorporated as valuable components in the new
service-oriented or multi-core architectures.

Acknowledgements: The reported work was
performed in the frame of the national projects
NanoSim CEEX-I-PC-D03-PT04-439 (first author,
from Institute e-Austria Timisoara) and GRAI
CEEX-II-12/2006 (second author, from Western
University of Timisoara) funded by the Romanian
Ministry of Research.

References:
[1] B. Balis, M. Bubak and M. Wegiel, A Solution

for Adapting Legacy Code as Web Services,
Component Models and Systems for Grid
Applications, V. Getov and T. Kiellmann
(eds.), Springer, 2005, pp. 57–75.

[2] B. Bunus, A Simulation and Decision Frame-
work for Selection of Numerical Solvers in
Scientific Computing, Procs. Annual

WSEAS TRANSACTIONS on COMPUTERS Dana Petcu, Andrei Eckstein
 and Claudiu Giurgiu

ISSN: 1109-2750 471 Issue 5, Volume 7, May 2008

Simulation Symposium 2006, vol. 39, IEEE
Computer Press, 2006, pp. 178–187.

[3] K. Burrage, Parallel and Sequential Methods
for Ordinary Differential Equations, Numerical
Mathematics and Scientific Computation,
Oxford University Press, 1995.

[4] G. Canfora, A.R. Fasolino, G. Frattolillo, P.
Tramontana, Migrating Interactive Legacy
System to Web Services, Procs. 10th European
Conference on Software Maintenance and
Reengineering, IEEE Computer Press, 2006,
pp. 23-32.

[5] G. Canfora, A.R. Fasolino, G. Frattolillo, P.
Tramontana, A Wrapping Approach for
Migrating Legacy System Interactive Functio-
nalities to Service Oriented Architectures, J.
Syst. Software, 81, issue 4, 2008, pp. 463-480.

[6] A. Carstea, M. Frincu, G. Macariu, D. Petcu, K.
Hammond, Generic Access to Web an Grid-
based Symbolic Computing Services, Procs.
ISPDC 2007, Hagenberg, IEEE Computer
Press, 2007, pp. 143–150.

[7] M.T. Darvishi and M. Javidi, Method of Lines
for Solving Systems of Time-dependent Partial
Differential Equations, WSEAS Transactions
on Mathematics, vol. 1 (4), 2002, pp. 218– 222.

[8] T. Glatard, D. Emsellem, J. Montagnat,
Generic Web Service Wrapper for Efficient
Embedding of Legacy Codes in Service-based
Workflows, Procs. GELA 2006, pp. 44—53.

[9] D. Gannon, S. Krishnan, A. Slominski, G.
Kandaswamy, L. Fang, Building Applications
from a Web Service based Component
Architecture, Component Models and Systems
for Grid Applications, V. Getov and T.
Kiellmann (eds), Springer, 2005, pp. 3-17.

[10] Y. Huang, I. Taylor, D. W. Walker, Wrapping
Legacy Codes for Grid-based Applications,
Procs. IPDPS’03, IEEE Computer Press, 2003,
pp. 139.

[11] M.S. Kamel, K.S. Ma and W.H. Enright,
ODEXPERT - An Expert System to Select
Numerical Solvers for Initial Value ODE
Systems, ACM Transactions on Mathematical
Software (TOMS), vol. 19: 1, 1993, pp. 44– 62.

[12] S. Krishnan, B. Stearn, K. Bhatia, K.
Baldridge, W. Li and P. Arzberger,, Opal:
Simple Web Services Wrappers for Scientific
Applications, Procs. ICWS’06, IEEE Computer
Press, 2006, pp. 823-832.

[13] D. Kuebler, W. Eibach, Adapting Legacy
Applications as Web services”, IBM Developer
Works, http://www-106.ibm.com/developer-
works/webservices/library/ws-legacy/

[14] D. Petcu, M. Dragan, Designing an ODE
Solving Environment, Lectures Notes in
Computational Science and Engineering 10:
Advances in Software Tools for Scientific
Computing, H.P. Langtangen, A.M. Bruaset
and E. Quak (eds.), Springer-Verlag, Berlin,
2000, pp. 319–338.

[15] D. Petcu, Experiments with an ODE Solver on
a Multiprocessor System, Computers & Mathe-
matics with Applications 42, no. 8-9, Perga-
mon-Elsevier Science, 2001, pp. 1189–1199.

[16] D. Petcu, A. Eckstein and C. Giurgiu, Using
Statefull Web Services to Expose the
Functionality of Legacy Software Codes,
Procs. SACCS 2007, Iasi, 2007, pp. 257–263.

[17] D.Petcu, A. Eckstein, C. Giurgiu, Reengi-
neering a Software System Implementing
Parallel Methods for Differential Equations,
Procs. SEPADS'08, 2008, pp. 95-100.

[18] K. Pingali, P. Stodghill, A distributed System
based on Web Services for Computational
Science Simulations, Procs. of the 20th Inter-
national Conference on Supercomputing, 2006,
pp. 297–306.

WSEAS TRANSACTIONS on COMPUTERS Dana Petcu, Andrei Eckstein
 and Claudiu Giurgiu

ISSN: 1109-2750 472 Issue 5, Volume 7, May 2008

	

