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Abstract: - Modern software engineering concepts, like software as a service, allow the extension of the legacy 
code lifetime and the reduction of software maintenance costs. The transformation of a legacy code into a 
service is not straightforward task, especially when the initial code was designed with a rich user interface. A 
special case is presented in this paper, that of a software code for solving ordinary differential equations. 
Initially designed to use parallel computing techniques in the solving process, the code is now modified to take 
advantages of the current multi-core architectures. The transformation paths are general and can be followed by 
other similar legacy codes.     
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1 Introduction 
The service oriented architecture (SOA) is a current 
paradigm for organizing and utilizing distributed 
capabilities that may be under control of different 
ownership domains. It provides uniform means to 
offer, discover, interact with and use capabilities to 
produce desired effects consistent with measurable 
preconditions and expectations. Its attraction is due 
to the fact that it builds on concepts of reusable 
software components, while emphasizing the 
service’s abstraction. This means that the services 
are interoperable, reusable, independent, stateless 
and autonomous. To enable interoperability, 
services should be composable, loosely coupled, and 
standards compliant. The resources available across 
a network are made available as independent 
services that can be accessed without knowledge of 
their underlying platform implementation. The 
primary focus of the SOA latest developments is on 
dynamic reconfiguration of services and on 
developing business services.  

  Service-oriented technologies as current solution 
for large distributed systems are addressing the 
computing and storage needs arising from many 
scientific and industrial application areas. Develo-
ping new codes, instrumenting applications with 
middleware specific interfaces, or designing 
applications to explicitly take advantage of distri-
buted resources is a significant burden for the 

developers who are often reluctant to allocate 
sufficient effort on non application specific pro-
blems. The middleware is therefore expected to ease 
legacy codes migration to service-oriented infra-
structures by proposing a non-intrusive interface to 
existing legacy codes, and optimizing the execution 
of the application on the available resources. In this 
context, enabling legacy code execution on service-
oriented infrastructures is a high priority challenge.  
     The migration of a legacy system towards a 
service-oriented architecture is, unfortunately, not a 
straightforward task. At least two problems can be 
straightforward identified: 
 

- establishing which part of the legacy system can 
be exposed as service; 

 

- establishing how the transformation will be 
done technically. 

 

     The most appropriate legacy systems for the 
migration towards Web services are those which are 
conceived as black-boxes that are callable through a 
command line and having fixed input and output 
formats. The full functionality of the system can be 
available through wrapping. Two issues should be 
still treated:  
 

- if the number of the legacy code functions are 
very high (of thousands order) the available 
tools for handling services are not facing the 
requirements; 
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- the public expose of all the legacy code 
functions can be a danger for the system hosting 
the wrapped software if the exposed function 
list includes functions that modify the host 
environment. 

 

In both cases the solution is to have a restricted list 
of functions that are exposed through the wrapper.  
The wrapper translates the incoming requests from 
the XML-like formats into the format understand by 
the legacy code and the code outputs into XML-like 
format. Recently we have analyzed several cases 
that conform to these characteristics and details are 
given in [16]. 
      The problem of which part of the legacy code 
can be exposed is not easy to handle in the more 
complex case, that of migrating a legacy system 
with a rich user interface. In this paper we discuss 
such a case. 
     The second problem, establishing how the 
transformation will be done, can be approached via  
several techniques. We review them briefly. A 
detailed analysis is presented in [5]. 
      A first class of techniques comprises the black-
box reengineering techniques which integrate 
systems via adaptors that wrap legacy code as a 
service (as mentioned above).  
      A second class comprises white-box methods 
which require code analysis and modification in 
order to obtain the code components of the system 
to be presented as services. Both approaches are 
valid in different circumstances, depending on 
factors such as the granularity of the code, the 
assumed users and application area.  
      The first class is mainly applied in the case 
when the code is not available. Recent papers on 
this subject are [1] and [9]. A solution for the 
particular case of interactive legacy systems is 
described in [4].  
       Java wrapping  can be used to generate the 
service interfaces automatically as outlined in [13]. 
Prominent examples in this direction are SWIG, 
JAVAW or MEDLI [10]. 

   The most remarkable non-invasive solution is 
represented by GEMLCA, the Grid Execution 
Management for Legacy Code [8]. The deployment 
process of a legacy code as GEMLCA service 
requires only a user-level understanding of the 
legacy application (e.g. parameters of the legacy 
code, kind of environment needed to run). 
GEMLCA provides the capability to convert legacy 
codes into Grid services by describing the legacy 
parameters and environment values in the XML-like 
file. A drawback is that it supposes that the legacy 
code is activated in a command-line style and does 

not exploit the possible successive interactions. The 
same comment is valid also for O’SOAP [18] that 
also allows legacy command-line oriented applica-
tions to be deployed as Web services without any 
modification, as well as for OPAL [12].  
       Recently, we proposed in [6] some technical 
solutions for the migration of the well-known 
interactive software tools used in the particular field 
of symbolic computations.  
      The second class mentioned above is based on 
invasive procedures on the legacy codes that usually 
improve the efficiency of legacy code. In this 
invasive approach, it is typically assumed that the 
application programmer has some programming 
background and would like to build services using 
specific software libraries. 
      In this paper we make use of a third possible 
class, mentioned in [5], the class of the grey-box 
techniques, that combine wrapping and white-box 
approaches for integrating those parts of the system 
that are more valuable. 
      We present a case study on an interactive legacy 
system that was designed ten year ago to provide 
numerical solutions for initial value problems for 
systems of ordinary differential equations and 
incorporates an expert system. The part of the 
legacy system that is the most computationally 
intensive is migrated as a Web service, while the 
user interface and the expert part are recoded in Java 
for portability reasons. Following this approach, the 
computational service can be accessed by any client 
that sends a message in a specific XML-like format 
containing the problem description and the method 
to be applied. Furthermore, the module that 
implements the parallel numerical methods and 
differentiate the code from others available at its 
designing time, as one important component of the 
part wrapped as a Web service, was extended to 
allow the efficient use of the multicore architectures.  
    Taking into consideration the current trends to 
increase the number of processors on a chip, the 
extent to which software can be multithreaded to 
take advantage of the multicore chips is likely to be 
the main constraint on software performance in the 
future. Numerical computations requiring both CPU 
power and large memory are well suited candidates 
for deriving advantages from the current multicore 
architectures. In this context, it is necessary to 
design and implement new libraries and tools for 
parallel numeric computations, or to re-engineer the 
old ones, especially for the new parallel computing 
environments using multicore processors. 
     One can notice that several parallel numeric 
computation packages were designed at the 
beginning of the previous decade assuming a 
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shared-memory parallel computing environment. 
The subsequent evolution of the hardware towards 
distributed-memory parallel computers and clusters 
of workstations has lead to the impossibility to use 
previously developed shared-memory parallel codes 
and to the need of designing and implement new 
versions that are well suited for distributed memory. 
In particular, for the case of computing the 
numerical solutions of large systems of ordinary 
differential equations, this architectural change had 
a tremendous effect: the class of techniques well 
suited for implementation on parallel computing 
environments has been changed from the ones 
applying parallelism across the method towards 
those applying parallelism across the steps. The 
techniques that are mentioned above were revised in  
[3]. By switching to multicore architectures, the 
question that raises naturally is that of re-imposing 
the status of the parallelism across the method. We 
prove in this paper that there is a positive answer: 
one can consider again the parallelism across 
method as an efficient technique for improving the 
response time of the numerical software codes for 
ordinary differential equations when a multicore 
architecture is used. 
     The paper is organized as follows. Section 2 
describes shortly the system that is used as case 
study, while Section 3 presents the system’s 
computational component that is wrapped as a Web 
service. The benefits of adding multithreaded 
functionality is discussed in Section 4. Finally, some 
conclusions are drawn in Section 5. This paper is an 
extended version of the recent paper [17].  

 
 
2 EpODE’s Characteristics,  Compo-
nents, and Current Limitations  
The ExPert system for Ordinary Differential 
Equations, EpODE, was designed as a tool for 
solving by numerical procedures initial value 
problems for large systems of ordinary differential 
equations (ODEs). It is also an expert system since 
it provides: 
 

- an automated identification of problem 
properties that is defined by the system user, 
e.g. linearity, sparsity, stiffness, degree of 
parallelism across the problem; 

- an automated identification of the properties of 
the solving method, e.g. explicit or implicit, 
onestep or multistep, onederivative or 
multiderivative, onstage or multistage, method 
order, error constant, stability characteristics, 
degree of parallelism across the method; 

- an automated selection of the adequate method 
according the problem properties; 

- an automated estimation of the computation 
time for a specific problem and a specific 
method using the host computer;   

- parallel computing facilities in a cluster or a 
parallel computer in the case when the estimated 
time for solving the problem is too high. 

 
 
2.1 Characteristics 
EpODE can be used as a tool for describing, 
analyzing and testing new types of iterative methods 
for ODEs, mainly due to the method properties 
detector, as well as the immediate possibility to 
apply them on a large class of problems. In 
particular, it allows also to study the methods that 
are proposed for parallel or distributed implemen-
tation using real or simulated parallel computing 
environments.  
     After defining the problem, the solving method 
and the computation parameters can be given by an 
human expert, or can be the task of the automatic 
selector. In the human-exert mode, the tool can be 
used to underline the effects of over-passing the step 
size restrictions imposed by accuracy or stability of 
the numerical process. The method automatic 
selection is based on a simple decision tree, and 
depends on the type of problem that will be solved, 
the admitted global error, and a maximum for the 
computation time. The approximate values of the 
solution can be visualized using some graphic 
facilities in two- and three- dimensional space or 
using some tabular form. The numerical results can  
also be saved in order to be interpreted within other 
tools. Classical performance measurements, like 
computation time, number of function evaluations, 
or the estimated error, are provided after the end of 
the solving process. These measurements can be 
used for  comparing distinct methods applied to the 
same problem. 
     It is important to notice that EpODE is freely 
distributed with a rich database of  problems (at 
least one hundred real and test problems, including 
those classical ones that are used in tesing new 
methods) and a rich database of solving methods 
(almost one hundred too, including Runge-Kutta 
methods, multistep methods, multi-derivative 
multistep methods, block methods, hybrid methods, 
nonlinear multistep methods, general linear 
methods). These databases can be extended by the 
tool user with its own defined problems or methods, 
allowing a very easy and comprehensive compari-
son with classical problem and methods that are 
already in the database.   
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    The main characteristics of EpODE which 
distinguish it from other ODE solving environments 
are the followings: 
- the friendly interface for describing new 

problems and solving methods; 
- the method recommender system specially 

designed for stiff large systems; 
- the extensible database of methods and 

problems; 
- the extensive problem and method properties 

detector; 
- the dynamic memory allocation scheme avoid 

the constraint on the dimension of the problem 
to be solved; 

- the unique problem solving procedure for all the 
methods that allows all solvers to behave in a 
coherent way; 

- the independence from other software packages 
with one exception, that  of Parallel Virtual 
Machine (PVM) used for parallel or distributed 
computations. 

 

     Details about EpODE’s design are given in the 
early paper [14]. Several experiments on parallel 
computers and cluster environments were reported 
later in [15]. 
 
 
2.2 Components 
EpODE has five major components: 
 

1. a user interface, the front end of which permits 
the description of an initial value problem for 
the ODEs or an iterative method, the control of 
the solution computation process, and the 
interpretation of the results of the computation; 
help facilities are provided in order to assist the 
user in using the software; 

2. a properties detection mechanism containing the 
procedures for establishing some properties of 
ODEs or those of an iterative method; 

3. a mechanism for selecting the solving 
procedure, implementing the decision tree for 
the selection of the class of iterative methods 
according to the properties of the initial value 
problem for ODEs and for the selection of one 
method from this class according to the solution 
accuracy requirements and time restrictions; 

4. a sequential computing procedure, a generic 
solving procedure whose parameters corres-
ponds to the current problem and the selected 
method. 

5. a parallel computing procedure, a generic 
solving procedure that is similar with the 
sequential procedure, but includes also the 

splitting of the computational effort to more 
than one process as well as they coordination. 

 

     At the time of its design EpODE was the unique 
tool that allowed the above mentioned facilities. 
Only a recently developed tool reported in [2] has 
similar facilities (without the ones for applying 
parallelism techniques). 
 
 
2.3 Limitations 
EpODE was written ten years ago in C++ and two 
graphical interfaces were provided, for Windows’95 
and X Windows. In other words, the first component 
mentioned above was not designed to be portable 
and this fact lead to usage problems when new 
operating systems have appear. In order to solve this 
issue, a rewritten of this component is needed in a 
portable version, e.g. as Java code. The next section 
presents the new interface exposed as a  Web 
service.  
     The other complex components can be conserved 
as they are. In Section 3 we describe how the last 
two components are wrapped and presented as Web 
service. The other two are not included yet in the 
service, but will be the subject of further 
development of the Web service or of another 
specific Web service.   
     Concerning the efficiency of the parallel 
techniques in solving ordinary differential 
equations, that were also implemented by EpODE, 
one should note that the rapid development of the 
hardware in the last ten years have affected the 
notion of the most adequate technique. Indeed, a 
rerun of the experiments reported in [15] revealed 
that the current hardware improvements led to a 
response time of the computational procedures 
hundreds of times shorter. In these conditions the 
problem dimension for which the parallel computing 
techniques are efficient, in the sense that the 
computational time dominates the communication 
time, is increasing by at least ten times. 
     One should remember that the three classes of 
techniques applied to achieve parallelism in solving 
ODEs are: parallelism across the system (across 
space), parallelism across the method, and paralle-
lism across the steps (across time). More details 
about this subject can be found in [3].  
     According to the technique of parallelism across 
the system various components of the system of 
ODEs are distributed amongst available processors. 
This technique is especially effective in explicit 
solving methods and when the system can be split 
into a number of independent systems, that is a 
uncommon case. EpODE detects the sparsity of the 
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system and allows to apply the technique of 
parallelism across system. The efficiency results are 
not considerable affected by the hardware changes 
since the computations are almost independent.   
     According to the technique of parallelism across 
method, each processor executes a different part of a 
method. This approach has the triple advantage of 
being application-independent (it does not  require 
user intervention or special properties of the given 
systems of ODE), of avoiding load balancing 
problems, and of using a small number of 
processors. The main disadvantage is the limited 
speed-up.  EpODE detects the degree of parallelism 
across the method and allows to apply the technique 
in the solving process. The efficiency results are 
strongly affected by the kind of memory that is used 
in the parallel computing environment, as well as 
the ratio between the communication and computa-
tion times.  
     The parallelism across steps is the only possibi-
lity for using large-scale parallelism on small pro-
blems. Contrary to the step-by-step idea, several 
steps are performed simultaneously, yielding nume-
rical approximations in many points of the indepen-
dent variable axis (the time). Some continuous time 
iteration methods are used to decouple the ODE 
system, and henceforth to discretize the resulting 
subsystems, by solving them concurrently. The 
number of discrete points handled simultaneously is 
the degree of parallelism of the method. The main 
weakness of this approach is that the iteration 
process may suffer from slow convergence or even 
divergence. Despite the fact that EpODE imple-
ments also this technique, we have not perform yet 
efficiency tests to see how the new hardware 
architecture affects the efficiency results – this is a 
subject for further developments.   
 
 
3 EpODE’s Computational Kernel as 
a Web Service 
The most intensive computational part of EpODE 
consists in the generic numerical solving procedure 
for sequential or parallel iterative methods applied 
to initial value problems for ODEs. The procedure is 
generic in the sense that it does not depend on the 
specific problem or the particular method – the 
concrete problem and methods are given as 
parameters. Since there is no need of user 
intervention in the computational process, and, at 
the same time, there is a need for a fast response, 
this part of EpODE is well suited for transformation 
into a computational service lying on a remote high-
performance server. 

3.1 Technologies and operations 
The component that implements the computational 
procedure in C++ and PVM is wrapped as a statefull 
Web service (WSRF implementation using Globus 
Toolkit 4 – see other wrapping examples in black-
box style reported in [16]). 
     The container of the Web service is based on 
Tomcat technologies. Axis is used as implemen-
tation of the SOAP specification. The WSDL file of 
the service was generated with the Java2WSDL tool 
of Axis.        
     The Web service has four operations: 
1. setmethod to set the solving method; 
2. setproblem to set the problem to be solve; 
3. setcompute to set the computation parameters; 
4. compute to start a computation; 
5. getstatus to retrieve the computation status; 
6. getresults to retrieve the computation results.        
 

We describe in the subsection 3.3 their actions. 
 
 
3.2 Data structures 
The unique solving procedure for any type of 
iterative method for ODEs takes into account the 
variety of mathematical forms that a solving  
method can have (one- or multi-stage, one- or multi-
step, one- or multi-derivative, explicit or implicit 
methods).  
     A specification of the method in EpODE 
includes: the iterative formula, the starting 
procedure, the implicit equation solver, the error 
control procedure. In order to define a new iterative 
formula, the user must specify the variables, the 
right side of the formula, the variables whose values 
will be stored, and the link between the old and the 
new values of the variables.  In order to define a 
starting procedure for a multistep method, the user 
must describe or a onestep method (the right side of 
an iterative formula). In order to define an implicit 
equation solver,  e.g. simple iterations or Newton 
like iterations and some starting values (using, for 
example, onestep method). In order to define the 
error control procedure, the user must specify the 
variables which must be checked.  
     Uniformity in defining the difference methods 
allows in EpODE to construct a unique procedure 
for interpreting the data about an arbitrary method. 
The parameters of such a procedure are the outputs 
of the method interpreter provided in a condensed 
form, like evaluation trees of some arithmetic 
expression. 
      The Web service receives the method definition 
in the form of an XML-like structure that is 
described it its WSDL as follows: 
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<xsd:element name=”setmethod”> 
  <xsd:complexType> 
  <xsd:sequence> 
     <xsd:element name="Implicit" type="xsd:Boolean"/> 
     <xsd:element name="MStep" type="xsd:Boolean"/> 
     <xsd:element name="MStage" type="xsd:Boolean"/> 
     <xsd:element name="MDeriv" type="xsd:Boolean"/> 
     <xsd:element name="Newton" type="xsd:Boolean"/> 
     <xsd:element name="Nsta" type="xsd:int"/> 
     <xsd:element name="Nfin" type="xsd:int"/> 
     <xsd:element name="Nplu" type="xsd:int"/> 
     <xsd:element name="Nimp" type="xsd:int"/> 
     <xsd:element name="Mpas" type="xsd:int"/> 
     <xsd:element name="Care" type="xsd:int"/> 
     <xsd:element name="VarMet" type="xsd1:ArrayStr"/> 
.    <xsd:element name=”SupEqs” type="xsd1:ArrayStr"/> 
.    <xsd:element name=”StaEqs” type="xsd1:ArrayStr"/> 
     <xsd:element name="FinEqs" type="xsd1:ArrayStr"/> 
     <xsd:element name="PluEqs" type="xsd1:ArrayStr"/> 
   </xsd:sequence> 
   </xsd:complexType> 
 </xsd:element> 
 

The data structure fields above are referring to some 
method properties: implicit or explicit, multistep or 
not, multistage or not, multiderivative or not, etc. 
Then the method equations follow. ArrayStr is 
described in the <types> part of the WSDL: 
 

  <complexType name="ArrayStr"> 
    <complexContent> 
     <restriction base="soapenc:Array"> 
        <attribute ref="soapenc:arrayType" 
              wsdl:arrayType="string[]"/> 
     </restriction> 
    </complexContent> 
  </complexType> 
 
A Java client that will access the service to compute 
the solution of a problem with the DIRK4 method 
[3], described by the iterative process: 
 

  yn+1=yn+h(11k1+25k2+11k3+25k4)/72, n=0,1,... 
     k1=f(yn +hk1) 
     k2=f(yn +3hk2/5)  
     k3=f(yn +h(171k1-225k2+44k3)/44) 
     k4=f(yn +h(39k2-43k1+12k4)/20) 
 

where f is the system function and y the unknown 
vector function from the y’(t)=f(t,y(t)), y(0)=y0, can 
have a piece of code similar to the following 
sequence: 
 

     Epode_service.setmethod( 
            true,    //implicit  method 
            false,   //onestep method 
            true,    //multistage method 
            false,   //onederivative method 
            true,    //use Newton iteration to solve implicit eqs. 
            1,        //no. of stages 
            1,        //no. of variables stored at the end of the step 
            4,        //no. of intermediate variables 
            4,        //no. of implicit equations 

            0,        //steps skipped at next iteration (block case) 
            0,        //index of the method variables to be saved 
            {“h”,”y”,”k1”,”k2”,”k3”,”k4”,”x”}, //method vars 
            {}       //supplementary eqs. for implicit solving proc. 
            {}       //start eqs. for multistep methods 
            {“x+h*(11*k1+25*k2+11*k3+25*k4)/72)”} //fin.eq. 
            {“fct(x+h*k1)”,”fct(x+3*h*k2/5)”, 
              ”fct(x+h*(171*k1-215*k2+44*k3)/44)”, 
              “fct(x+h*(39*k2-43*k1+12*k4)/20)”} //plus eqs. 
       ); 
 

      The data structure describing the problem to be 
solved is present in the WSDL file: 
 

<xsd:element name=”setproblem”> 
  <xsd:complexType> 
  <xsd:sequence> 
    <xsd:element name="Dim" type="xsd:int"/> 
    <xsd:element name="Vars" type="xsd1:ArrayStr"/> 
    <xsd:element name="Eqs" type="xsd1:ArrayStr"/> 
    <xsd:element name="T0" type="xsd:double"/> 
    <xsd:element name="InitV" type="xsd1:ArrayStr"/> 
   </xsd:sequence> 
   </xsd:complexType> 
 </xsd:element> 
 

where Dim is the problem dimension, Vars is a 
vector with the problem variables, Eqs are the 
differential equations, BJacob is a Boolean matrix 
indicating the non-zero positions in the Jacobian 
matrix of the system, Jacob are the non-zero 
elements of the Jacobian matrix of the system, T0 is 
the initial value of the independent variable, and 
InitV is the vector of the initial values. 
     A Java client that access the Web service to 
compute the solution of a simple problem like the 
following one: 
 

   u’(t)=v(t), v’(t)=5(1-u(t)2)v(t)-u(t), u(0)=2, v(0)=0 
 

will have a piece of code similar to the following: 
       

     Epode_service.setproblem( 
            2,                                    //problem dimension 
            {“t”,”u”,”v”},                 //problem variables 
            {“v”,”5*(1-u*u)*v-u”}, //problem equations 
             0.0,                                //Start value of the indep.var. 
             {“2”,”0”}                      //Initial values 
        ) 
 

The data structure describing the options for the 
computations includes: 
 

<xsd:element name=”setcompute”> 
  <xsd:complexType> 
  <xsd:sequence> 
    <xsd:element name="Step" type="xsd:double"/> 
    <xsd:element name="T1" type="xsd:double"/> 
    <xsd:element name="WhichV" type="xsd1:ArrayStr"/> 
    <xsd:element name="PVM" type="xsd:Boolean"/> 
   </xsd:sequence> 
   </xsd:complexType> 
 </xsd:element> 
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A Java client that access the Web service to 
compute the solution of a the above described 
problem will have a piece of code similar to: 
 

     Epode_service.setcompute( 
            0.0001,      //method step 
            1,               //maxim value of  the independent var.  
            {“u”,”v”}, //variables to be stored 
            true            //apply parallelism across method 
    )  
 

     Due to the fact that the method and problem 
properties detector was currently not included yet in 
the Web service has the disadvantage that the user 
must provide at this moment a more complex 
structure that is described above: the equations 
should be given not only in they explicit form, but 
also in the Polish form, and, moreover, in the case 
of the problem, the Jacobian matrix should be 
provided too. This inconvenient should be removed 
soon. Moreover, for the sake of the initial testing, 
only the option for parallelism across the method is 
activated through the interface. Further develop-
ments will include into the computational kernel the 
EpODE’s component that transforms any expression 
in its Polish form, the EpODE’s facilities for paral-
lelism across steps, as well as for parallelism across 
the problem. 
 
 
3.3 Actions 
The Java code that implements the wrapper 
translates the setting requests as copying actions of 
the incoming complex data structures into its private 
variables. A request for compute has the following 
consequences: 
 

1. write the problem and method descriptions 
(implicit values are used if set* requests were 
not used), as well as supplementary information 
requested to proceed with the computation, into 
a file with a specific format; 

2. transfer at the server site where the computa-
tional procedure will be launch the previously 
written file with the problem, method, and 
computation parameters; 

3. call the computational procedure through a line 
command that specifies the file. 

 

A pipe is establish between the wrapper and the 
computational kernel. The client receives an 
acknowledgement if the computational procedure 
has start.  Later it can ask for the status of the 
computa-tion through the getstatus operation of the 
Web service (the wrapper). If the status is “done” 
than the client can ask for the results through the 
getresults operation of the Web service that will 
transfer the file with the numerical solution.   

     To allow the late retrieval of the result, for each 
client a new instance of the service will be created. 
The client knows the address of a register of servi-
ces and queries the registry about the computational 
service. The service register sends back the address 
of the service factory that matches the query. The 
client contacts the service factory and requests a 
service instance. The service factory creates an 
instance of a service interface (the wrapper). Then 
the client sends to the interface the method, problem 
and computing parameters, as well as the compute 
request. The service interface will launch the code 
of interest, and: 
 

- if the code will run on the server, then the code 
will be launched by a thread of the service 
interface; 

- if a cluster scheduler is installed on the server, 
then the code will be launched on the cluster by 
the scheduler that is called by a thread of the 
service interface; 

- if no scheduler is installed and the server is not 
part of the cluster, but lies in the same security 
domain as the cluster, the remote code can be 
invoked through classical rsh/ssh commands by 
a thread of the service interface. 

 
 
3.4 Usage scenarios 
     We can imagine three kinds of clients of the Web 
service: 
 

1. EpODE GUI interface  
2. another tool that needs a fast numeric compu-

tation of the solution of an initial value problem 
for ordinary differential equations; 

3. a workflow execution engine. 
 

      EpODE’s graphical used interface will be 
redesigned soon to allow remote computations when 
the estimated computation time is too high and there 
is a need for a faster response by using the Web 
service that is lying on a high-performance server; 
      The role of the client of the Web service can 
also be played by another tool that sends the input 
data in the requested format. For example, through 
the tools described in [6] symbolic computing 
systems can access and consume Web services – it 
is known that such systems are slow when they 
work with their internal numerical procedures and 
they can really benefit from faster external codes.  
      We can imagine also the case when the Web 
service is called by another numerical software 
code, that solves partial differential equations and 
during its solving procedure it transforms the 
problem into a large system of ordinary differential 
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equations. Note that the largest ODE systems that 
are usually used in testing ODE software tools are 
provided by a such discretization processes [3]. 
Moreover, the Jacobian of the system in its 
symbolic form currently requested by EpODE 
computational procedures can be easily generated 
with a computer algebra system – for example an 
older software tool, ODEXPERT [11] uses Maple 
for this task. 
     We can further imagine a more complex scenario 
in which several Web services are composed: one 
for generating the ODE system, another for 
computing the Jacobian, both wrapped as Web 
services, are sending the necessary information for 
the expert system (also a Web service) that picks an 
appropriate method from a rich database (can be the 
EpODE component) and asks the above described 
Web service to perform the computation, and finally 
sends the numeric computation results to a 
visualization tool that is also wrapped as a Web 
service. The entire scenario is described into the 
graphical interface of a workflow editor and engine. 
This scenario will be the basis of our future 
development. 
     Compared to the wrapping examples that were 
described in the recent paper [16], the current one 
has a higher degree of potential integration in a 
service-oriented architecture. For example, in [16] is 
described the wrapping of a CFD code and a 
evolutionary computing: a specific simulation is 
transferred from the client side to the service side – 
the client should know how this file should look 
like. In the case described in this section, the input 
data are described in an XML-like format that can 
be discovered by any client of the service.   
 
 
4 Adding a Multi-threaded Facility 
for Multicore Architectures 
The ability of multi-core processors to increase 
application performance depends on the use of 
multiple threads within applications. Numerical 
computations are well-suited candidates for deriving 
advantages from multi-core parallel architectures. 
This is possible only if the specific libraries and 
tools are designed to allow multi-threading and 
multi-processes.  
    EpODE was designed to allow the experimen-
tation of parallel methods when solving initial value 
problems for ODEs. As mentioned in Section 2, 
there are three classical approaches:  
 

1. parallelism across the problem that depends on 
the degree on the sparsity of the system’s 
Jacobian matrix; 

2. parallelism across the method that depends on 
the number of the method’s variables that can 
be computed simultaneously, and 

3. parallelism across the steps that allows a higher 
degree of parallelism with the drawback of 
heavy control of the convergence of the 
numerical solutions towards the exact one. 

 

    The parallelism across the method was a viable 
solution ten years ago in the case of large systems 
and the availability of a small network of computers 
or a parallel computer. With computation power 
increasing faster than communication speed, parallel 
computations based on parallelism across the 
method are justified only in the case of systems with 
hundreds of equations. Indeed, we have re-run the 
experiments reported in [15] dealing with systems 
of almost one hundred equations on a new 
generation cluster (7 HP ProLiant DL-385 with 2 x 
CPU AMD Opteron 2.4 GHz, dual core, 1 MB L2 
cache per core, 4 GB DDRAM, 2 network cards 1 
Gb/s) and the results show that the parallel variant is 
no longer efficient at the same scale of problem 
dimensions. 
     The question is if we can improve the efficiency 
of the basic non-parallel computational procedures 
by implementing parallelism across the method 
through multithreading when running on multicore 
architectures. To be able to answer this question, we 
have rewritten some parts of the C++ code for the 
computational procedures of EpODE dealing with 
the parallelism across method. The multithreading 
implementation is close to the one based on the 
PVM library – instead of PVM processes, threads 
are used, and instead message passing, threads are 
communicating through a common matrix. 
      The answer to the above question is positive: the 
response time of the computational procedure is 
clearly improved using the multi-threaded version 
compared with the non-thread or parallel version at 
the problem dimensions for which the old parallel 
code is no more efficient.  
     In order to prove the above statement, Table 1 
shows the response times of the code in the case of 
two classical problems of 81, and 140 equations, 
respectively, solved by some representative methods 
from different classes of parallel methods. DIRK4 is 
the 4-stage 4th order Diagonally Implicit Runge-
Kutta method that was described in Section 3, PC1 
is the predictor-corrector scheme based on the 
implicit trapezoidal rule, PC6 is another predictor-
corrector scheme, while BL1 and BL2 are one-stage 
block methods, all of them available through the 
rich database of methods provided by EpODE. 
ME140 is a discretization of the Medical Akzo 
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Nobel problem, using the method of lines [7]. 
Plate81 is obtained by following the same procedure 
starting from a diffusion problem. Please refer to [3, 
15] for the description of these problems and 
methods. 
 

Table 1: Response times of the computational 
procedure with or without threads 

 
Method Time (ms) Pro- 

blem Acro-
nym 

Parall. 
degree 

No. 
steps No 

threads 
With 
threads 

Plate81 DIRK4 2 5 2031 1519 
 FR2 2 50 3658 2068 
ME140 PC1 2 50 5165 3624 
 PC6 2 50 10022 4992 
 BL1 2 50 3428 2768 
 BL2 3 10 3119 1431 
 
      In order to incorporate the multithreading 
facility into the Web service described in the 
previous section, the following field from the 
computing parameters description should change 
from a Boolean to an integer value: 
 

      <xsd:element name="PVM" type="xsd:int"/> 
 

This variable should be used as follows: 
   

1. PVM is set to the value 1 with the meaning that 
parallelism across method through PVM should 
be used when the problem dimension is of 
hundreds order of equations;  

2. PVM is set to the value 2 with the meaning that  
parallelism across method through multithread-
ding should be used  when the problem 
dimension is of ten order of equations;  

3. PVM is set to the value 0 when parallelism 
facilities are not used due to the fact that the 
system to deal with is small 

 
As stated in Section 3 there are different ways to 
launch the legacy code: on the same server as the 
service interface or at a remote location (specified or 
decided by a scheduler). In the case of the current 
Web service that wrap the legacy code, the service 
container and the service itself run on the interface 
node of the above-mentioned multicore cluster, so 
each option specified by the PVM parameter can be 
properly exploited when EpODE’s computational 
kernel is launch by the service interface. 
 
 
5 Conclusions and Future Work 
In order to prolong the lifetime of a legacy code we 
have used a partial-invasive technique for migrating 
it towards a service-oriented architecture. One of its 

unique components, the one that can profit from the 
computational power of remote high-performance 
servers, was wrapped as a Web service. This new 
service can be accessed by any client code that 
respects the format of the input data describing the 
problem to be solved, the iterative method and the 
computation parameters. The migration opens new 
possibilities to exploit the facilities provided by the 
legacy code by combining it with other services to 
offer complex computational scientific services. 
     Taking into consideration the current trends to 
increase the number of processors on a chip, the 
extent to which software can be multi-threaded to 
take advantage of the multi-core chips is likely to be 
the main constraint on software performance in the 
future. Therefore the computational kernel of the 
legacy code was modified to allow multithreading. 
Initial tests are proving that the transformation has 
clear advantages when solving medium size initial 
value problems for ordinary differential equations. 
     While the computational kernel was successfully 
adapted to make efficient use of multicore 
architectures, several other components are still left 
to be translated into the new user interface. The 
improvement and the integration of the expert 
system into the same Web service or another Web 
service is one of the next steps to be taken soon. 
Complex usage scenarios, as the one described in 
Section 3, should be the context of the future 
intensive tests of the Web service. 
      Moreover, the transformations that were 
performed on the expert system for ordinary diffe-
rential equations have a high degree of generality 
and can be easily apply to other tools in order to be 
incorporated as valuable components in the new 
service-oriented or multi-core architectures. 
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