
 

  

Abstract: - This paper describes results and observations pertaining to the development of a compiler utility for an 

Architecture Description Language π-ADL, for the .NET platform. Architecture Description Languages or ADLs, are 

special purpose high level languages especially construed to define software architectures. π-ADL, a recent addition to 

this class of languages, is formally based on the π-Calculus, a process oriented formal method. The compiler for 

π-ADL, named π-ADL.NET, is designed with the view of bringing the architecture driven software design approach to 

the .NET platform. 

The process oriented nature and a robust set of parallelism constructs of π-ADL make the π-ADL.NET project a 

novel application of compiler techniques in the context of the .NET platform, with many valuable lessons learnt. This 

paper presents the π-ADL.NET effort from a compiler design perspective, and describes the inclusive approach driving 

the design that facilitates the representation of strong behavioral semantics in architecture descriptions. The subjects of 

parallel process modeling, communication and constructed data types are covered. The paper also documents the 

motivation, vision and future possibilities for this line of work. A detailed comparison with related work is also 

presented. 
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1. Introduction 

A software architecture is a high-level view of a 

software system, focusing on commonalities amongst 

different software components, fundamental design 

choices, data schematics and other high-level features. 

The motive for a software architecture is the same as 

that for building architectures: to make plans before 

implementation, minimize uncertainties and risks, and 

deliver a standardized, high-quality product. To fully 

and clearly represent software architectures, various 

Architecture Description Languages (ADLs) have been 

proposed. A detailed survey and comparison of ADLs 

is reported in [1]. 

π-ADL is a relatively recent ADL, described in [2]. 

Its distinguishing features are that it is formally derived 

from π-Calculus and it is possible to define 

architectural styles using it. The language syntax is 

designed incrementally with higher level functionality 

built upon basic syntactic layers. The advantage to this 

approach is that it opens the possibility of extensions to 

the language, allowing for domain specific syntactic 

enhancements. The approach also allows greater 

leeway for syntactic experimentation and evolving the 

language specification. 

The motivation for the π-ADL.NET project which is 

presented in this paper is the need to validate and 

compile an ADL on a mainstream platform. This has 

certain advantages. Firstly, it opens the possibility of 

integrating the ADL code with the code written in a 

detail oriented language, such has C# or Visual 

Basic.NET, since they are both compiling to the same 

target platform. That way, the software architect's 

investment in the design effort is employed directly in 

the resultant software solution. Secondly, the compiled 

ADL code can access and utilize the large number of 

reusable software libraries already developed for the 

platform. Third, it is an interesting approach to 
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heterogeneous software development, whereby 

different portions of a software are programmed in 

languages better suited to their development. For 

example in implementing a large software project, an 

ADL can be used for the high-level architectural 

specification, and a 3G language be used for the detail 

oriented leg work. 

These factors are increasingly relevant in the 

present-day context when software developers are 

faced with more and more complex functional, 

compatibility and standards conformance requirements 

for the systems they build. As the overall effort 

requirement for software development increases, there 

is a greater need for role separation amongst members 

of a software development team, while at the same time 

reducing redundancy of effort to a minimum. For this it 

is not enough to just clearly define and enact 

specialized roles in a software development team, but 

tool and technology support plays a pivotal role. The 

most pervasive example of this is the clear separation 

of the presentation component from the logic 

component of the software system being designed, 

when using certain web development technologies 

such as JSP and ASP.NET, and in the very recent case 

of using the Extensible Application Markup Language 

for desktop applications based on the Windows 

Presentation Foundation [21]. 

While the clear demarcation between presentation 

and logic has evolved from the nebulous state of first 

generation web technologies, the concept has yet to be 

fully implemented in tools and development 

methodologies for separating software architecture 

from detailed logic, even though we do see tool support 

from industry for software design. The need to separate 

architecture from detailed logic is well argued in 

literature [22] [23] [24]. What we need now is an 

integrative development environment that allows 

architects and programmers to conduct and seamlessly 

combine their respective areas of specialized work. 

The focus of this paper is to describe and evaluate a 

novel application founded on established compiler 

techniques: compiling π-ADL to the Common 

Intermediate Language (CIL), the assembly language 

for the .NET platform. The implementation itself 

supports in detail the use of flexible constructed data 

types and other language features that allow the 

software architecture developed using this platform 

more and more relevant to the end software product, 

thus addressing our above stated objectives of 

separation of concerns with seamless interoperation. 

Section 2 briefly describes the syntax of important 

π-ADL constructs in order to make the algorithm 

descriptions in subsequent sections understandable. 

Section 3 introduces the CIL. In Section 4 

implementation details pertaining to the parallel 

processing constructs of π-ADL are presented. Section 

5 presents implementation details for connection 

syntax and semantics. Section 6 gives an overview of 

the constructed data types supported by this compiler. 

Section 7 concludes this paper with comparison to 

related research. 

2. π-ADL 

π-ADL is a language designed for defining software 

architectures and is formally founded on the 

higher-order  typed π-calculus described in [4]. In a 

π-ADL program, the top level constructs are 

behaviours and abstractions. Each behaviour definition 

results in a separate execution entry point, meaning 

that the program will have as many top level concurrent 

threads of execution as the number of behaviours it 

defines. Abstractions are reusable behaviour templates 

and their functionality can be invoked from behaviours 

and abstractions. An abstraction is capable of receiving 

a single argument when invoked. 

The body of a behaviour or an abstraction can 

contain variable and connection declarations. 

Connections provide functionality analogous to 

channels in π-calculus: code in different parts of 

behaviours or abstractions can communicate 

synchronously via connections, and connections can 

also connect behaviours with abstractions or 

abstractions with abstractions. Connections are typed, 

and can send and receive any of the existing variable 

types, as well as connections themselves. Sending a 

value via a connection is called an output-prefix, and 

receiving via a connection is called an input prefix. 

Listing 1 shows a simple program in which a behaviour 

invokes an abstraction (known as the 

pseudo-application of an abstraction), and associates 

its connection x with the connection y of the 

abstraction through the rename clause. This enables 

communication between the behaviour and the 

abstraction during the course of their respective 

executions. 

The compose keyword seen in Listing 2.1 serves the 

purpose of creating two or more parallel threads of 

execution within a program and corresponds to the 

concurrency construct in π-calculus. The generalized 

syntax for a compose block is: 
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composeBlock := "compose {" block [" and " 
block]+ "}" 

 

where each block inside the compose block results in a 

separate thread of execution. Note that if the two 

statements inside the compose block were coded to 

execute in a single thread, a deadlock would have 

occurred. 

Another important π-ADL construct is the choose 

block. It has the following generalized syntax: 

 
chooseBlock := "choose {" block [" or " 

block]+ "}" 

 

Only one of the sub-blocks inside a choose block is 

executed when execution passes into the choose block. 

For example, in Listing 1, only one of the two choose 

sub-blocks can execute. Since a value is available via y 

and not via x, the second sub-block will execute and 

the first sub-block will be terminated. When more than 

one sub-blocks are eligible for commencing execution 

at the same time, the selection criteria for the block to 

be executed is not defined in the language. 

To provide the equivalent of the π-calculus replicate 

construct, π-ADL supports the replicate keyword, with 

the following syntax: 

 
replicateBlock := "replicate {" block "}" 

 
Semantically, this entails that the contents of the 

replicate block are infinitely replicated in parallel 

threads of execution. As we will see in Section 5, the 

implementation of replicate has been modeled with the 

limits of real world computers kept in mind.  

3. CIL 

The Microsoft Common Intermediate Language or 

CIL is a low-level stack-oriented language, designed to 

be able to express every feature of the Microsoft .NET 

common language runtime. 
 

It is presented in detail in [7]. Given that the .NET 

platform was designed to be able to support the 

syntactic requirements of a host of different high-level 

languages, the CIL packs a lot of features with syntax 

for namespaces, classes, methods, templates, events, 

exception handling, and string manipulation – in 

addition to what is normally found in assembly 

languages. This is helped by the fact it is not tied to any 

particular native platform and it's limitations, but is 

instead just-in-time compiled to the host platform prior 

to its first execution. 

For our purpose of representing π-ADL in terms of 

CIL, the elements described in Section 2 are not 

directly supported by CIL. The approach presented in 

this paper is therefore improvised, with the results 

accomplished by creating special classes and 

supporting methods to completely represent the 

semantic ramifications of the said π-ADL constructs in 

CIL. 

4. Compiling π-ADL Parallel 

Processing Constructs 

As mentioned in Section 2, each behaviour 

definition in a π-ADL program results in a separate 

thread of execution at startup. Other cases where 

parallel processing occurs are the compose, choose and 

replicate blocks. Here we treat the runtime 

implementation of each of these π-ADL constructs in 

turn. 

4.1. Behaviour implementation 

A π-ADL behaviour is compiled as a separate class 

in CIL. Variables and Connections declared in a 

π-ADL behaviour become class variables in CIL. 

While the π-ADL assumes its variables and 

connections to be initialized with declaration, it has to 

be done explicitly in CIL inside the default constructor 

for the behaviour class. The CIL code corresponding to 

the functionality defined in the π-ADL code for the 

behaviour is generated in the ep$ method, which is 

effectively the entry point of execution for each 

behaviour class. Note that the CIL representation of an 

abstraction also has a similar ep$ method, and is called 

against a pseudo-application in π-ADL. The entry point 

of a compiled π-ADL.NET program is the main method 

of an internal class Controller$. After all the 

behaviours are identified, the main method of the 

Controller$ class is generated. 

The function of the Controller$ main method is to 

simply instantiate each behaviour class, and for each 

instance create a corresponding thread object. Each 

thread is then started with the ep$ method of the 

behaviour as its startup method. The main method of 

the Controller$ class initiates each behaviour thread in 

the order in which the behaviour is declared in the 

source program. However the actual execution order is 

determined by the .NET runtime. 
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Program a: Behaviours, Abstractions and Connections Program b: Compose and choose 

behaviourbehaviourbehaviourbehaviour { 
  x : ConnectionConnectionConnectionConnection[Integer]; 
  compose  { 
    via myAbs sendsendsendsend 42 where {x renames y}; 
  and 
    via x send 101; 
  } 
} 
value myAbs is abstractionabstractionabstractionabstraction (argi : Integer) { 
  y : ConnectionConnectionConnectionConnection[Integer]; 
  i : Integer; 
  via y receivereceivereceivereceive i; 
  argi = i * argi; 
} 

behaviour { 
  x : Connection[Integer]; 
  y : Connection[Boolean]; 
  a : Integer;  b : Boolean; 
  composecomposecomposecompose  { 
    via y send true; 
  and 
    choosechoosechoosechoose { 
      via x receive a; 
    or 
      via y receive b; 
    } //end choose 
  } //end compose 
} //end behaviour 

 

 

4.2. Implementing compose 

Semantically, π-ADL requires the sub-blocks of a 

compose block to execute in parallel without any 

precedence requirements. In order to accomplish that 

in CIL, the logic of the sub blocks is output in separate 

methods for each sub-block. These methods belong to 

the class representing the behaviour or abstraction and 

are called from the ep$ method of that behaviour or 

abstraction. The methods are named using the notation 

"method<methodIndex>", where methodIndex is a 

global integral value incremented each time a compose 

or choose sub-block is encountered. 

To implement parallelism for all the sub-blocks 

inside compose, a separate thread is created for each 

sub-block and executes the method generated for that 

sub-block. If there is a compose block nested inside 

another compose block, more methods are created at 

the class level; there is no nesting of methods 

comparable to the representation in π-ADL, since such 

a nesting is not supported by CIL. Instead, the methods 

are named using the above mentioned convention and 

simply called from the method representing the parent 

sub-block, using the same threaded approach as the one 

used for the top level compose block. The π-ADL.NET 

compiler does not impose any limit on the number of 

nesting levels for any of the compose, choose or 

replicate constructs, and any of these constructs can be 

nested within each other in an arbitrary order. 

4.3. Implementing choose 

The logic of each of the different sub-blocks inside 

the choose block is output inside a separate method, 

very much like it is done for compose blocks. Each of 

these methods is invoked through a separate thread, as 

in compose. However the threads for the choose 

sub-blocks are in competition and the successful thread 

needs to be able to terminate the rest before it can 

execute. A basic approach would be that the first thread 

to execute its first statement would terminate the 

others. However there is a possibility that while one 

thread is busy terminating the other threads, another 

thread may resume execution and start the termination 

routine on its own. Therefore in addition to the task of 

terminating all competing threads, the chosen thread 

should also be able to signal the other threads of its 

nomination. 
 

 
 

 

 

 

Fig 1 shows the data structures maintained by the 

π-ADL.NET runtime for thread management and 

signaling. Each choose block has a corresponding hash 

table named chooseThreadList<x>$, where the value 

of x is the integral index assigned to the choose 

keyword by the scanner. A global hash table 

chooseThreadLists$ maintains reference to all the 

chooseThreadList<x>$ objects. 

Each of these hashtables in turn maintains a 

Fig 1. Runtime metadata maintained by a 

π-ADL.NET executable for managing 

Choose constructs variables in PiParser 

Table 1. Two π-ADL programs demonstrating various language concepts. 
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reference to all threads corresponding to the sub-blocks 

of its associated choose block. In order to support 

signaling, the hashtable chooseStatuses$ is used. It 

contains reference to each choose block by its token 

index number, and against this key it maintains a 

Boolean value indicating whether one of its threads has 

commenced execution. By default this value is false for 

each choose block. Upon starting execution, any 

choose sub-block thread does the following: 

a) Acquire a lock on chooseStatuses$ by using the 

Monitor.Enter method. 

b) Check Boolean value for the associated choose 

block in chooseStatuses$. If true then branch to 

e). 

c) Update the value for the associated choose block 

in chooseStatuses$ to true. 

d) Call a special internal method 

cleanupChooseNonTermins$ to terminate all the 

threads for the given choose block. This method 

takes a string argument for the name of the 

chosen thread so as to exlude it from the 

termination sequence. 

e) Release the lock on chooseStatuses$ by using the 

Monitor.Exit method. 

f) If the value examined in b) is true then the 

method returns and the thread terminates. 

Otherwise it continues executing the logic 

encoded in its associated sub-block. 

4.3.1. Special case for abstractions 

This algorithm ensures that one and only one thread 

is executed for any choose block. However there is one 

caveat in the metadata structure which becomes 

evident when multiple instances of the same 

abstraction are executing in parallel. Since the 

chooseThreadList<x>$ variables attempt to maintain 

exclusivity of executing choose blocks through their 

unique indexed position in the π-ADL code, that 

property is not applicable when the same code is 

executing in different threads at the same time. 

To resolve this issue, a custom class Int64Obj has 

been developed to encapsulate a 64-bit integral value. 

Each class representing an abstraction contains a static 

variable of this type named choose$exe$number. In 

addition, a local variable choose$exe$local of type 

Int64Obj is instantiated for each choose block found at 

some level in an abstraction. Every time the abstraction 

is executed, choose$exe$number is incremented and 

this local variable is assigned the resulting value in a 

thread safe manner so that each abstraction instance 

holds a unique value for it’s choose$exe$local.  

Subsequently, the entry made to the chooseStatuses$ 

hash table incorporates the value of the thread unique 

choose$exe$local variable in its key value, adding the 

desired level of differentiation in naming to allow 

multiple abstractions to be identified separately. 

Furthermore, in the case of abstractions the naming 

format of the hash table chooseThreadList<x>$ is 

modified to 

chooseThreadList<x>$-<choose$exe$local> to 

achieve the desired level of differentiation. This allows 

cleanupChooseNonTermins$ to terminate only those 

threads that belong to the one particular abstraction 

instance being executed. 

For the above modification to accommodate 

abstractions, we observe that modifying the design thus 

has the desired effect of exclusivity without changing 

the above mentioned algorithm, or drastically 

modifying the structure in Fig 1. 

4.4. Implementing replicate 

Semantically, the grammar of the π-ADL replicate 

construct can be recursively defined as: 
 

replicate{<set of statements>} ::= 
compose{<set of statements> and replicate{<set 
of statements>}} 
 

This implies that an infinite number of threads will 

be created to execute the <set of statements> in 

parallel. While this syntax establishes a close 

correspondance between the replication concepts of 

π-ADL and π-Calculus, it creates obvious problems for 

the compiler implementation, where an arbitrary 

number of parallel processes will quickly overrun the 

processor and memory ressources of the system 

executing a π-ADL program. To resolve this problem, 

the following solutions were considered: 

a) Have a preset maximum number of parallel 

threads that can execute at any given time. As 

soon as one thread terminates, another one is 

launched. 

b) Extend the replicate syntax to allow the 

provision of an integral parameter. The value of 

this parameter will specify to the system the 

maximum number of parallel threads to be 

launched at any given time. Compared to a), this 

approach gives the flexibility of tuning the 

concurrency level according to the problem at 

hand. 

c) Have only one thread active at any given time. 

This would give the computational equivalent of 

an infinite iterative loop. 
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The π-ADL.NET compiler implements choice c). 

The rationale is that although the approach of a) allows 

a larger problem set to be executed in conformance 

with the π-Calculus formalism, no preset value for the 

maximum number of parallel threads can ensure the 

π-calculus conformant execution of all possible 

programs. Choice b) atleast gives problem specific 

assurances for the correct simulation of the replicate 

formalism, but at the cost of deviating from π-ADL 

syntax. The advantage of c) is the simplicity of the 

implementation while conforming to the π-ADL 

syntax. Using c), a functionality similiar to b) can be 

implemented through other means, such as illustrated 

in Table 2. 
 
behaviour { 
  compose { 
    via myAbs send 42; 
  and 
    via myAbs send 42; 
  and 
    via myAbs send 42; 
  } 
} 
value myAbs is abstraction (argi : Integer) 
{ 
  i : Integer; 
  replicate { 
    via in receive i; 
    i = i * argi; 
    via out send i; 
  } 
} 
 
 

5. Compiling π-ADL Connections 

In developing the π-ADL.NET compiler, the 

implementation of connection related functionality 

went through multiple iterations before reaching its 

present form. The reasons for this are the following 

issues: 

• The send and receive operations have to be atomic. 

The possibility of modifying the variable being 

transfered in a parallel thread should be avoided. 

• The Connections must provision for having 

multiple send operations queued up. Receive 

operations must execute without the loss of any 

data sent in such a case. 

• Connections must also cater to the synchronization 

needs of choose statements in-case the first 

statement of a choose sub-block is a receive 

statement. 

• Connections are mobile. They can be sent and 

received through other connections, and can be 

passed as arguments to abstractions. Earlier 

compiler implementations created a new CIL 

connection class against each π-ADL connection 

declaration, and then instantiated it. However, 

mobility entails that both the sender and recipient 

share the same class definition. To retain both 

definitional consistency and type flexibility, a 

single generic connection class is defined. 

Table 3 shows the Connection class implementation 

in C#. The CIL generated and used by the π-ADL.NET 

executable is isomorphic with this code. Looking at the 

class declaration in line 1 we see that the class is 

declared as a .NET generic class, similar to a C++ 

template class. The variable declarations on lines 2, 3 

and 4 assist in the correct functionality of the send and 

receive methods. There are 2 AutoResetEvent 

instances declared in line 2. 

An AutoResetEvent is like a logical gate. Threads 

block on an AutoResetEvent object when they call its 

WaitOne() method, and if the AutoResetEvent object 

is in the non-signaled state. When the Set() method is 

called on the AutoResetEvent object, the waiting 

thread is unblocked and resumes execution. 

The AutoResetEvent object allows only one thread 

to be unblocked for each Set() call, and reverts to the 

non-signaled state thereafter [8]. 

The Interlocked class used both in the send and 

receive methods provides atomic operations for 

variables that are shared by multiple threads [9]. The 

two methods Increment and Decrement of the 

Interlocked class used in the send and receive methods 

are used to atomically increment and decrement long 

values. The Read method reads the value of a long 

variable atomically. 

As can be seen in the implementation in Listing 3, 

AutoResetEvents, the Interlocked class and the 

Monitor class are employed to ensure correct 

synchronous interaction between the send and receive 

methods. 

The synchronous communication facility provided 

by the send and receive methods can result in a myriad 

different contexts of interaction. This can occasionally 

result in unexpected forms of interaction, resulting in 

the .NET framework level exceptions. A simple and 

practically proven solution is to re-try the send or 

receive operation, as can be seen in the exception 

handling code in lines 29, 54 and 78. 

We also note that there are 2 versions of the receive 

method. The one declared at line 60 is specifically 

written for choose blocks to ensure thread safe 

execution of the choose algorithm explained in Section 

5 as well as of the receive operation. 

Table 2 Simulating controlled concurrent replication 
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1. public class ConnectionTemplate<T> : 
AbstractConnection { 

2. AutoResetEvent e, receiveE; 
3. long sendWaiting, receiveWaiting; 
4. Queue<T> valQueue; 
5. private string toStringVal; 
6. public ConnectionTemplate() { 
7. e = new AutoResetEvent(false); 
8. receiveE = new AutoResetEvent(false); 
9. sendWaiting = 0; 
10. receiveWaiting = 0; 
11. valQueue = new Queue<T>(); 
12. } 
13. public void send(T a) 
14. { 
15. bool noException = true; 
16. valQueue.Enqueue(a); 
17. do { 
18. if(Interlocked.Read(ref receiveWaiting)==0) 
19. { 
20. Interlocked.Increment(ref sendWaiting); 
21. e.WaitOne(); 
22. Interlocked.Decrement(ref sendWaiting); 
23. } 
24. else { 
25. try { 
26. e.Set(); 
27. receiveE.WaitOne(); 
28. } 
29. catch (System.InvalidOperationException) 
30. { 
31. noException = false; 
32. } 
33. } 
34. } while (noException == false); 
35. }  
36.  
37. public void receive(ref T a) 
38. { 
39. bool noException = true; 
40. do { 
41. if (Interlocked.Read(ref sendWaiting) == 0) { 
42. Interlocked.Increment(ref receiveWaiting); 
43. e.WaitOne(); 
44. a = valQueue.Dequeue(); 
45. Interlocked.Decrement(ref receiveWaiting); 
46. receiveE.Set(); 
47. } 

48. else { 
49. try { 
50. a = valQueue.Dequeue(); 
51. e.Set(); 
52. noException = true; 
53. } 
54. catch (System.InvalidOperationException) { 
55. noException = false; 
56. } 
57. } 
58. } while (noException == false); 
59. } 
 
60. public void receive(ref T a, ref Hashtable 

chooseStatuses) { 
61. bool noException = true; 
62. do { 
63. if (Interlocked.Read(ref sendWaiting) == 0) { 
64. Interlocked.Increment(ref receiveWaiting); 
65. e.WaitOne(); 
66. Monitor.Enter(chooseStatuses); 
67. a = valQueue.Dequeue(); 
68. Interlocked.Decrement(ref receiveWaiting); 
69. receiveE.Set(); 
70. } 
71. else { 
72. Monitor.Enter(chooseStatuses); 
73. try { 
74. a = valQueue.Dequeue(); 
75. e.Set(); 
76. noException = true; 
77. } 
78. catch (System.InvalidOperationException) { 
79. noException = false; 
80. } 
81. } 
82. } while (noException == false); 
83. } 
 
84. public bool IsEquivalent(object x) { /*…*/} 
85. public void setToString(string val) { /*…*/} 
86. public override string ToString(){ /*…*/} 
87. public void deepClone(out object obj) { /*…*/} 
88. } 

 
 
 

6. Constructed Data Types 

For a high-level architecture description language, 

π-ADL represents a large and varied set of data types, 

in addition to the primitive types Integer, String, 

Boolean and Float. These constructed data types are: 

Tuple, View, Any, Union, Sequence, Set, Bag, Quote, 

Variant, and Location. 

After evaluating the extent of effort required in 

implementing all of these constructed data types, the 

first 5 data types in the above list where chosen as a 

representative set of data types to be implemented. A 

short description of each of these data types is as 

follows: 

• Tuple: The values of a tuple type tuple[T1, …, Tn], 

for n≥2, are n-tuples tuple(v1, …, vn) where each 

vi is of type Ti. The individual values within the 

tuple can be projected into other variables using 

the project syntax e.g. project t as a, b;. 

• View: Views are labeled forms of tuples. The 

values of a view type view[label1 : T1, …, labeln : 

Tn], for n≥2, are views view(label1 : v1, …, labeln : 

vn) where each vi is of type Ti. In addition to 

projecting like a tuple, a view also supports 

short-hand projection, much like accessing a class 

variable in Java or C# e.g. in order to reference the 

member a of view v, we use the syntax v::a;. 

• Union: A union type union[T1,…,Tn], for n≥2, is the 

disjoint union of the types T1, …,Tn, with values 

union(Ti::v) where v is of one of the types Ti. The 

current type of a union can be determined by 

processing it in a select-case block of code, where 

each case is represented by one of the member data 

types of the union. 

• Any: An any type is like a union type with no 

constraint on the type of value it can hold. 

• Sequence: A sequence is a collection in which the 

elements are ordered. An element may be part of a 

Table 3. Connection implementation for π-ADL.NET (C# code) 
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sequence more than once. The values of a sequence 

type sequence[T] are sequences sequence(v1, …, 

vn) where each vi is of type T. 

Despite this conservative short listing, the 

implementation of specialized constructed data types 

presented an inherent challenge: each of the 5 

implemented constructed data types is capable of 

containing one or more of the other data types, as well 

as connections. This composition requirement entails 

that the containing data type must be sensitive to the 

peculiar properties of the contained data types where 

necessary. Roughly speaking, the effort to implement a 

certain number of data types had a polynomial 

relationship to the number of data types since it had to 

accommodate all the existing data types, and the 

existing data types also needed to be updated to support 

the new data type. 

Furthermore, no assumption was made regarding the 

recursive limits and possibilities engendered by the 

constructed type specifications. A sequence of views 

can be defined to contain views, each of which can 

contain named sequences of views and so on. Several 

marginal cases resulted from this commitment to 

provide a functional system of recursive type 

definition, and had to be handled appropriately as they 

arose. 

In general the following roles and behaviors are 

expected from each data type: 

• Declared in a behaviour or an abstraction. 

• L-value or an r-value (both as variable and as 

constant) in an assignment. 

• Sent or received via a connection. 

• Sent or received via the output or input user 

interface stream respectively. 

• Argument to an abstraction and be used in a 

pseudo-application thereof. 

In addition, the following behaviors are specific to 

one or more data types: 

• View and tuple: projection of member values into 

a set of variables. 

• View: shorthand projection. 

• Union and any: type identification using a 

select-case statement. The union or any type 

consequently takes up the properties of its current 

type within the scope of the correct type case. Also, 

the ability to assign other data type values directly 

e.g. a = x; where a is of type any and x is an integer. 
Constraint checks must be in place when 

performing such an assignment to a union. 

• Sequence: member access via an integer index. 

While the existing variety of constructed data types 

give the π-ADL.NET implementation a rich syntactic 

basis for modeling the structure and behavior of a 

software architecture, the implementation experience 

shows that a more viable approach would have been to 

provide a meta-type system equivalent to the classes 

and objects in object oriented languages. Using such a 

framework would enable the user to easily recreate all 

the properties embodied by the specialized data types 

and more, with relatively little complexity of 

implementation at the compiler level. This is easy to 

conclude from the widespread success of the object 

paradigm today. 

The formal specification work required to develop a 

meta-type system compatible with the π-calculus 

foundations of π-ADL is well outside the domain of the 

π-ADL.NET project, and can form a line of separate 

research work in the future. 

The π-ADL.NET constructed data types are 

implemented as distinct classes in an external C# 

library linked with executable π-ADL code at runtime. 

This helps keep the executable size small, with a minor 

performance penalty. Also this approach helped to 

simplify the implementation of data type functionality, 

which would otherwise have been a difficult and time 

consuming exercise in CIL programming. 

The current implementation of constructed types 

does not support type definition i.e. the definition of a 

particular tuple, view, union or sequence global 

signature that can be used in behaviours and 

abstractions. Without this feature, the programmer has 

to define and redefine a particular constructed type 

each time he intends to use it, causing programming 

overhead. The implementation of type definition 

functionality has also been identified as future work, 

although by providing a meta-type system 

implementation we may alleviate that need. 

7. Conclusion 

The π-ADL.NET compiler currently compiles a 

large subset of π-ADL. This subset is Turing complete 

and provides coverage for all the operations derived 

from π-calculus. In subsequent development phases, it 

will completely implement the π-ADL specification 

and will add implementation specific extensions to the 

language syntax for providing access to external .NET 

class libraries. For the latter work, the language 

extensions will be formally derived in order to conform 

to π-ADL's formal design approach. 

Apart from the core compiler design work, we have 
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done some prototyping work to use the compiler as a 

foundation for a visual programming and architecture 

design environment using the GME tool, and in 

exploring approaches to the use of 3D modeling and 

animation in defining a viable visual syntax. This line 

of work is discussed in [10] along with some initial 

results. 

Under current development is a DirectX based 3D 

programming and modeling interface being developed 

as a plugin to Microsoft Visual Studio 2005 and later. 

The objective of this initiative is provide a 3D visual 

interface to the π-ADL.NET compiler and experiment 

with concepts such as program simulation via 3D 

animation, visual debugging, simultaneous 

multi-aspect views of the architecture during design 

and simulated execution, and the simultaneous 

orchestration of these concepts. This ambitious project 

will form the core of the next generation π-ADL toolset 

as a complement to the π-ADL.NET compiler. 

About 1500 lines of code have been written to test 

the various functions of the π-ADL.NET compiler. In 

addition, a functional web-service architecture has 

been developed in collaboration with the computer 

science department of the University of Rey Juan 

Carlos, constituting a novel application of π-ADL 

compared to pre-π-ADL.NET modeling work. The 

π-ADL.NET compiler is currently under consideration 

at the VALORIA laboratory for modeling multi-agent 

systems, as well as the High Level Architecture (HLA) 

[11]. The parallel and high-level nature of π-ADL 

makes it suitable for development work in all of these 

application areas. There is also some current work at 

our laboratory in visually modeling π-ADL and 

generating code using the DSL tools for Visual Studio 

.NET. The DSL tools are reported in [5]. 

The long term objective of the π-ADL.NET project 

is to test the modeling of more and application 

domains, and consequently improve the toolset 

towards an industry strength solution for software 

architecture modeling. 

7.1. Related work 

While there is no existing research work in 

compiling a π-calculus based language or an ADL to 

the .NET platform, there are some compilers for 

formally founded languages for .NET. One notable 

example is the .NET compiler for the F# language [12], 

which is based on the ML language [13], a formally 

founded functional programming language. Another 

ML based language for the .NET platform is 

SML.NET [18] based on Standard ML '97. L 

Sharp.NET [19] is an implementation of the Lisp 

functional programming language for the .NET 

platform. DotLisp [20] is a lisp like interpreted .NET 

language. 

Turning from formally founded functional language 

compilers for .NET to non-.NET compilers for process 

oriented languages, we find that the BoPi language 

reported in [14] implements a distributed computing 

semantic based on asynchronous π-calculus i.e. the 

send and receive prefixes are asynchronous. Compared 

to this, the π-ADL.NET implementation is based on 

synchronous π-calculus. A compiler implementation 

also exists for the occam-pi language [15], which 

embraces elements of both CSP and π-calculus. 

The PiLib [25] domain specific language is an 

interesting alternative solution for providing a process 

coordination abstraction in that it is implemented as a 

software library hosted by the Scala language. This 

delivers the functionality to program process oriented 

constructs without having to implement a separate 

compiler and runtime – that of Scala is used. It is 

notably relevant to the π-ADL.NET work that this 

implementation posed the researchers a set of 

challenges in adapting the semantic style of Scala for 

the purpose of supporting PiLib. However the contrast 

in semantics and the type system between Scala and 

PiLib isn’t nearly as great as that between π-ADL and 

CIL. Also, the application domain of PiLib is primarily 

as a simple π-calculus interpreter designed for teaching 

purposes. The π-ADL.NET work, of course, has 

different goals. During the implementation of 

π-ADL.NET we realized the limitations imposed on 

the design, had a high level language such as C# been 

used to host π-ADL.NET instead of the assembly level 

CIL. The most notable limitation is the legal character 

choices in variable naming, which is the same for 

π-ADL and C#, and supports no easy resolution of 

conflicts between the naming of internal and user 

defined variables.  

Amongst modeling tools for ADLs, the Honeywell® 

MetaH has a workspace environment for which the 

source module components [16] are of relevance to this 

work. They allow the generation of some aspects of the 

executable from architectural specifications written in 

MetaH. 

A distantly comparable work is also available in the 

form of the analysis and constraint checking tools for 

AcmeStudio [17], the eclipse based modeling 

environment for the Acme ADL. 

Thus we find .NET compilers for functional 

languages, compilers for π-calculus based languages 
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and parser tools for ADLs. While the work reported in 

this paper may be related to all of these three categories 

of research, it forms a distinct domain of work in itself 

by virtue of being the only π-calculus based ADL 

compiler for the .NET platform. 
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