
An Hybrid Simulated Annealing Threshold Accepting Algorithm for
Satisfiability Problems using Dynamically Cooling Schemes

FELIX MARTINEZ-RIOS1 and JUAN FRAUSTO-SOLIS2

1Universidad Panamericana, Campus Ciudad de México
 Augusto Rodín 498, Col. Insurgentes Mixcoac, 03920, Distrito Federal

MEXICO
fmartin@up.edu.mx

2Tecnológico de Monterrey, Campus Cuernavaca
Autopista del Sol km 104, Colonia Real del Puente, 62790, Xochitepec, Morelos

MEXICO
juan.frausto@itesm.mx

Abstract: For Satisfiability (SAT) Problem there is not a deterministic algorithm able to solve it in a polynomial
time. Simulated Annealing (SA) and similar algorithms like Threshold Accepting (TA) are able to find very
good solutions of SAT instances only if their control parameters are correctly tuned. Classical TA’s algorithms
usually use the same Markov chain length for each temperature cycle but they spend a lot of time. In this paper a
new hybrid algorithm is presented. This algorithm is in fact a TA algorithm which is hybridized with SA in a
certain way. For this TA algorithm, the Markov chain length (L) is obtained in a dynamical way for each
temperature. Besides, it is known that TA and SA obtain very good results whether their parameters are
correctly tuned. Experimental tuning methods expend a lot of time before a TA algorithm can correctly be
executed; in other hand, analytical tuning methods for TA were only completely developed for the geometrical
cooling function. This paper also shows how TA can be tuned for three common cooling functions with an
analytical model. Experimentation presented in the paper shows that the new TA algorithm is more efficient
than the classical one.

Key-Words: Simulated Annealing, Threshold Accepting, Cooling function, Dynamic Markov Chains, SAT
problem

1 Introduction
Satisfiability Problem (SAT) is an NP-complete (NP
in short) problem which is fundamental to
complexity theory [1, 2] and is widely studied in
several areas such as: planning, circuit testing,
temporal reasoning, scheduling and many others [3].
Besides, any instance of an NP problem can be
transformed to a SAT instance by using a
polynomial transformation [1, 4]. Therefore, if SAT
can be solved efficiently with a particular algorithm,
then similar results could be obtained for other NP
problems using the same algorithm [5]. It other
words, NP has the property found by Cook and
others: “If and efficient algorithm for any problem in
NP is found, it could be adapted to solve all the
other NP problems as well” [5].
 It is common to say that a polynomial algorithm π
solve all the instances where π in an efficient way;
in other words polynomial and efficient algorithms
are considered as synonyms. A polynomial

algorithm has a temporal function t(n) (where n is
the instance size) measuring the execution time to
solve all the instances of π; examples of t(n) can be
n, n2, 2n and so on. Polynomial and exponential time
algorithms are frequently referred as “good
algorithms” (i.e. efficient) and “bad algorithms”,
(i.e. not efficient) respectively [6]; however this
classification is not always correct, as can be noticed
in the following examples [7]:

• A polynomial algorithm requires n1230 steps
to find the answer of a problem which size is
3<n<10. An exponential algorithm designed
for the same problem, requires 2n steps to
find the solution. It is obvious that this
polynomial algorithm cannot be classified as
a good algorithm even though it is a
polynomial one. Besides this polynomial
algorithm has a worse performance that the

WSEAS TRANSACTIONS on COMPUTERS Felix Martinez-Rios and Juan Frausto-Solis

ISSN: 1109-2750 374 Issue 5, Volume 7, May 2008

previous exponential one (and many other
exponential algorithms).

• Cook [8] shows another example of a
particular polynomial algorithm which is not
a good one because it requires n100 steps (it
is impractical even for n values around
1000).

• It is well known than the old algorithm for
linear programming known as Simplex [9]
has an exponential complexity. However it
is also well known that for many linear
optimization problems Simplex is the best
one [9, 10].

In the case of SAT, it is reported that by using

complete methods (all of them being deterministic
methods) it is very difficult to find the optimal
solution or a solution close to the optimal one.
Nowadays, most of the time, random methods have
a better performance than complete methods for
SAT instances. Therefore, in general random
methods require less execution time to obtain good
solutions than complete methods. Here, a “good
solution” means the optimal one or a solution close
to it.

Since the seminal papers of Simulated Annealing
algorithm (SA) [11, 12], this algorithm has shown to
be very efficient for solving combinatorial
optimization problems. Due to this, new algorithms
based on SA have been proposed; this kind of
algorithms is referred as SALA algorithms
(Simulated Annealing Like Algorithms). The
classical SA and Threshold Accepting algorithm
(TA) [13] are the most popular SALA algorithms.
TA is similar to SA except for a small modification,
which purpose is to reduce the execution time with
similar quality of the final solution obtained by SA.

In this paper a new hybrid algorithm is presented.
This algorithm is in fact a TA but hybridized with
SA in a particular way. Besides, an analytical
adaptive method to establish the initial and final
temperatures and the length of each Markov chain in
a dynamic way for TA algorithm is presented.
Experimentation with a set of SAT instances shows
that this new TA algorithm has a better performance
than the classical one. This experimentation is done
with three cooling functions. In addition, it is also
presented analytical methods for TA tuning
parameters for all of these cooling functions.

2 Simulated Annealing Like
Algorithms (SALA)

A Simulated Annealing Like Algorithm (SALA) is
an algorithm that works with a Simulated Annealing
(SA) approach [14]. The classical SA of Kirkpatrick
and Cerny [11, 12] and Threshold Accepting (TA)
[13] among many others can be classified in this
category.

As was mention before, SA is a simple and
effective optimization method to find near optimal
solutions to many instances of NP problems [2]. A
SA algorithm may be seen like a Markov chain
sequence [17] (a homogeneous one); Lk identifies
the length of each Markov chain and obviously Lk
must be greater than zero (where k is the sequence
index). The states in a Markov chain are established
by the solution space S of the optimization problem.
The sequence of Markov chains is built on a
descending sequence of a control parameter (ck>0)
commonly referred as the temperature. The output of
a Markov chain is a solution Seq

k ∈ S, where Seq
k is a

solution when the dynamic equilibrium or the
stationary distribution is reached. This control
parameter must satisfy the following property:

 0lim =
∞→ kk

c (1)

1,1 ≥∀≥ + kcc kk (2)

Consecutive temperatures ck’s are setting

through a cooling function:

)(1 kk cfc =+ (3)

SA does a stochastic walk on the solution space

of the optimization problem. For each Markov chain,
this stochastic walk is done until the stationary
distribution is reached. During the stochastic walk,
the accepted solutions depend on the temperature
parameter; it should be remarked that during this
stochastic walk, any solution with a worse cost (i.e.
a cost deterioration) than the previous one is
accepted with a Boltzmann distribution probability.
It should be also taken into account that the
acceptance probability decreases along the iterations
(i.e. if the temperature decreases, then the
acceptance probability is decremented).

TA [13] also does a stochastic walk on the
solution space and it also uses a cooling function to
control the transition probabilities among solutions
in order to accept solutions with a cost deterioration
(for a minimization problem, a cost deterioration
means a greater cost in the new iteration). The
distribution probability (usually Boltzmann in SA) is

WSEAS TRANSACTIONS on COMPUTERS Felix Martinez-Rios and Juan Frausto-Solis

ISSN: 1109-2750 375 Issue 5, Volume 7, May 2008

now a hidden distribution probability which handles
a parameter known as “threshold”. It is common that
in any iteration, the current temperature is the
threshold parameter.

One of the main characteristics of SALA
alg

 publication of the seed paper of SA
alg

approaches uses some
exp

2.1 oblem
roblem referred to be as NP–

1. A set of n variables x1, x2 ,…, xn
able xi or its

orithms is the asymptotic convergence to the
optimal solution. For this reason SALA are
classified as approximation algorithms. Therefore, a
good balance between efficiency (i.e. execution
time) and efficacy (i.e. quality solution) need to be
established.

Since the
orithm [11, 12], several methods and procedures

have been proposed to reduce the execution time of
SA. These methods have mainly been focused on the
cooling function parameters; although developed for
SA, some of these methods have being extended to
SALA algorithms since many years ago. However,
most of these methods are based on experimentation
and usually their tuning process requires a huge
amount of experimentation, money and time. It will
be advantageous to find a practical tuning method
with an experimentation time as small as possible.
Some alternatives tuning approaches have been
proposed: a) Analytical Markov approaches [15] and
b) Adaptive methods [16].

In fact both of these
erimentation (but it is reduced) to define the

SALA parameters. Trousset [15] presents a general
framework to derive the SALA parameters using a
Markov model; from them a general mathematical
model is developed in [14]; these “analytical”
methods use a set of formulas to derive the initial
and final temperatures and the number of iterations
in the metropolis cycle as well. Adaptive Methods
adjust SALA parameters depending on the results
obtained in the objective function; for instance the
new temperature can be reduced in function of the
improvement obtained in the previous metropolis
cycle. The Hybrid SA presented here uses the
advantages of both approaches.

 SAT pr

SAT was the first p
complete [8] and is fundamental to the analysis of
the computational complexity of many problems [2].
An instance of SAT is a boolean formula which
consists on the next components:

2. A set of literals; a literal is a vari
negation ¬xi.

3. A set of m clauses: C1, C2 ,…, Cm linked by
the logical connective AND (∧) where each
clause consists of literals linked by the
logical connective OR (∨).

This is:

Φ= C1 ∧ C2 ∧…∧ Cm (4)

where Φ is the SAT instance. Then the SAT problem
can be enunciated as follows:

Definition 1:

Given a finite set { C1, C2,…, Cm } of clauses,
determine whether there is an assignment of
truth-values to the literals appearing in the
clauses which makes all the clauses true.

For instance, the following 4-variables SAT

instance:

Φ= (x2 ∨ x3 ∨ x4) ∧
 (¬x1 ∨ ¬x2 ∨ ¬ x4) ∧
 (x1 ∨ ¬x2 ∨ x3) ∧
 (x1 ∨ ¬x3 ∨ x4)

is formed by four clauses. Φ is made true when

S1= {x1=false, x2=true, x3=true, x4=true}. The same
happens with S2= {x1=false, x2=false, x3=true,
x4=true}. S1 and S2 are known as solutions of the
SAT instance.
 Any SAT instance can be represented as an
optimization problem. Hence this problem is known
as the Maximum Satisfiability problem or MAX-
SAT problem.
 The formulation of SAT to MAX-SAT is carried
through by introducing the next objective function:

∑
=

=
m

j
jCZ

1
max (5)

where Cj is the j-th clause of m.
 The goal in this problem is maximize (minimize)
the number of true (false) clauses. In this sense, Cj=1
if the j-th clause is made true or Cj=0 if it is made
false.

3 Classic TA algorithm
Threshold Accepting algorithm (TA) [13], is very
similar to SA; it has been applied to many areas,
such as Databases [18], Bin Packing [19] and many

WSEAS TRANSACTIONS on COMPUTERS Felix Martinez-Rios and Juan Frausto-Solis

ISSN: 1109-2750 376 Issue 5, Volume 7, May 2008

others. SA and TA accept bad solutions in order to
escape of local optima. However, TA does not use
Boltzmann Distribution to accept bad solutions but
the threshold deterministic parameter mention
before. This parameter is usually the current
temperature (c) as is shown in Fig. 1.

TA is similar to SA since it begins with a current
solution Si from which a new solution Snew is
generated. In the algorithm ci and cf represent the
initial and final temperatures respectively. Notice
that TA has also two cycles:

• The outer cycle or temperature cycle which

is between lines 2–13. This cycle controls
the threshold value (the current temperature
c)

• The inner cycle or Metropolis cycle which is
between lines 3–11. In this cycle the
stochastic walk discussed before is done for
each temperature cycle.

 As we can see in Fig. 1, once the algorithm
executes the line twelve, a new temperature is
generated using the cooling function [20]. A new
solution is always accepted (line 7) whether the cost
of a new solution (Z(Snew)) is lower than the
previous one (Z(Si)) or if their difference is smaller
than the threshold parameter c.

The outer loop parameters define the cooling
scheme of TA:

• The initial temperature ci,
• The final temperature cf, and
• The cooling function (it is shown in line 12

of Figure 1).

In the experiments with each SAT instances three
cooling functions were used [20], which are in the
following equations:

kk cc α=+1 (geometric) (6)

kk cc)exp(1 α−=+ (exponential) (7)

)ln(1 α
k

k
cc =+ (logarithmic) (8)

The inner or Metropolis cycle is determined by

the length of each Markov chain L (i.e. its iterations’
number).

3.1 Markov Chains Length
As it was previously discussed, TA makes a
stochastic walk on the solution space which can be
modeled as a sequence of homogeneous Markov
chains. In this sequence, every Markov chain has a
length L, lower than the previous one; this length is
calculated by using a function of the temperature
control parameter c>0 which generates descending L
values. Obviously any Markov chain length is
always greater that zero. Therefore if Lk>0 is the
length of a Markov chain for the temperature ck, we
have:

1,,0lim;0 1 ≥∀≥=> +
∞→

kcccL kkk
k

k (9)

1. Initialization (Si, c=ci)
2. Repeat
3. Repeat
4. Snew = Generate (Si)
5. ΔZ= Z(Snew)- Z(Sj)
6. If Z(Snew)< Z(Sj) then
7. Si = Snew
8. Else
9. If ΔZ < c
10. Si = Snew
11. Until the equilibrium
12. c = New(α,c)
13.Until (c=cf)

Fig. 1. Pseudo–code of TA algorithm.

As can be observed, ck and Lk have a strong
relation. This can be easily explained for SA and
then for TA as follows:

• First, when the process is at the beginning

the temperature is very high. This is because
in the Boltzman distribution the acceptance
probability is directly related with the cost
increment:)/exp(kA TZP Δ= ; where Tk is
the temperature parameter ck. Therefore

)(/ Ak PLnZc Δ−= where 0<PA<1.
• At the beginning of the process, PA is close

to one and the temperature is extremely
high. Almost any solution is accepted at this
temperature; as a consequence the stochastic
equilibrium of a Markov cycle is reached
with the first guess solution.

• Similarly, when the process is ending the
acceptance probability and the temperature

WSEAS TRANSACTIONS on COMPUTERS Felix Martinez-Rios and Juan Frausto-Solis

ISSN: 1109-2750 377 Issue 5, Volume 7, May 2008

are closer to zero but the Metropolis Length
is very long.

• The arguments described in the later
paragraphs are represented by the next
properties:

1. when 0, →∞→ kk Lc and

2. when ∞→→ kk Lc ,0

 The control parameter is set by a cooling function
like . At the beginning of the process
the temperature has a high value and the probability
to accept one proposed solution is high. When the
temperature decreases this probability also decreases
and only good solutions are accepted at the end of
the process. In this sense every Markov chain makes
a stochastic walk in the solution space until the
stationary distribution is reached. Because Markov
chains are built through a neighborhood sampling
method, the maximum number of different solutions
rejected at when the current solution is the
optimal one. The Markov chain length is the
neighborhood size

)(1 kk cfc =+

fc iS

iSV (see Definition 2). In

general can be established as: kL

()
iSk VgLL =≤ max

(10)

where ()

iSVg is a function that gives the maximum

number of samples that must be taken from the
neighborhood in order to evaluate an expected

fraction of different solutions at .
iSV

fc
 Usually an SA algorithm uses a uniform
probability distribution function given by a random
replacement sampling method to explore at any

temperature [21]. In this way, the probability to

obtain the solution in samples is:

iSV

kc

jS N

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

iS
j V

NSP exp1)(

(11)

The length of the Markov Chain in TA can be
taken in the same way that SA, assuming that an
iterative use of threshold functions emulates the
Boltzmann distribution. Therefore the maximum

Markov chain Lmax at the final temperature can be
calculated with (11):

iSiR VSPLnL))((max −= (12)

Where

iSV represents the neighborhood size

and is the rejection probability for a solution
S

)(iR SP

i (or a proportion of the solution space).
We can define))((iR SPLnC −= . C ranges from

1 to 4.6 which guarantee a good exploration level of
the neighborhood at the final temperature; for
instance if C=4.6 then PR represents the exploration
of 99% of the solution space.

 Therefore ()
iSk VgL = ; this function gives the

maximum number of samples that must be taken
from the neighborhood VSi in order to evaluate an
expected fraction of different solutions in a Markov
chain. Lk depends only on the number of elements of
VSi that will be explored at ck.

Because the strong relation between ck and Lk, at
the beginning of the process (ck = ci), any solution
has the same acceptance probability. Therefore, as in
SA, the first Markov chain length in TA must be as
small as possible (L1≈1). When k is increased, ck is
decremented until it reaches cf. Therefore, for
consecutive values of ck, TA is forced to increment
its Markov chain length in order to reach its
stationary probabilistic state.

Thus, Lk is incremented since its lower value (i.e.
one) at ci until it achieves is maximum value Lmax at
cf. As a consequence, an incremental Markov chain
function can be proposed for each cooling scheme
(Equations 6, 7 and 8) as follows:

kk LL β=+1 (geometric) (13)

kk LL)exp(1 β−=+ (exponential) (14)

)ln(1 β
k

k
LL =+ (logarithmic) (15)

Where 1>β is called incremental coefficient

and again Lk is the length of the Markov chain at ck,
and Lk+1 represents the length of the Markov chain at
ck+1.

Because the Markov chain length is incremented
from L1 to Lmax when ck varies from c1 to cf in a
Markov process we have:

WSEAS TRANSACTIONS on COMPUTERS Felix Martinez-Rios and Juan Frausto-Solis

ISSN: 1109-2750 378 Issue 5, Volume 7, May 2008

1max LL nβ= (geometric) (16)

1max)exp(LL nβ−= (exponential) (17)

n
LL

)ln(
1

max β
= (logarithmic) (18)

Then β can be obtained from the previous
equations as follows:

⎟
⎠
⎞

⎜
⎝
⎛ −

=
n

LLnLLn)()(exp 1maxβ

(geometric) (19)

n
LLnLLn)()(max1 −

=β

(exponential) (20)

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
n
L
LLn
max

1

expexpβ

(logarithmic) (21)

steps performed from ci to cf can be
represented for:

(geometric) (22)

(exponential) (23)

For each cooling scheme (Equations 6, 7 and 8)

the n number of

i
n

f cc α=

i
n

f cc)exp(α−=

n
i

f
cc

)ln(α
= (logarithmic) (24)

alculated from Equations 22, 23
and 24 as follows:

Then n can be c

)(
)()(

αLn
cLncLn

n if −
= (geometric) (25)

α
)()(fi cLncLn

n
−

= (exponential) (26)

))((αLnLn
c
cLn

n f

i
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

=
(logarithmic) (27)

3.2 Initial and final temperatures in TA
In TA, ci and cf are explicit bounds since they
determine the beginning and the end of the process
of it. At the beginning ci must be determined in such
a way that almost all the transitions may be
accepted. If ci is too high TA will expend a lot of
time, but if it is too small the probability to get stuck
on a local minimum is high.

On the other hand, if cf is set too high TA
probably does not have a good exploration of the
solution space. If cf is set to a very low value a lot of
time will be wasted at the final of the process. In this
paper ci and cf was fixed with the method suggested
in [21]. In this sense, the neighborhood structure can
be defined as follows:

Definition 2:

Let
 }:|,{ SSVVSVsetaSS

ii SSi →=⊂∃∈∀

be the neighborhood of a solution Si, where iS∀
is the neighborhood set of Si, is a
mapping and S is the solution space of the
problem being solved.

SSV →:

In this definition, it can be noticed that the

neighbors of Si depend only on the neighborhood
structure V from every particular problem, and then
the maximum and minimum cost increments
produced from this neighborhood structure are [21]:

Then ci and cf are calculated as the minimum and

maximum deterioration of the objective function:

maxVi Zc Δ= (30)

)}()({
max ijV SZSZMaxZ −=Δ

SSVS iSj i
∈∀∈∀ ,

(28)

)}()({
min ijV SZSZMinZ −=Δ

SSVS iSj i
∈∀∈∀ ,

 (29)

WSEAS TRANSACTIONS on COMPUTERS Felix Martinez-Rios and Juan Frausto-Solis

ISSN: 1109-2750 379 Issue 5, Volume 7, May 2008

minVf Zc Δ≤ (31)

3.3 Initial and final temperatures in SA
SA (see Fig 2) like TA begins with a current
solution Si from which a new solution Snew is
generated. In the algorithm ci and cf represent the
initial and final temperatures respectively. SA has
two cycles: the outer cycle (lines 2–13) that controls
the current temperature c and the inner cycle in lines
3 to 11. As can be seen in line 12 a new temperature
is generated using a cooling function. A new
solution is always accepted (line 7) if the cost of a
new solution (Z(Snew)) is lower than the previous one
(Z(Si)) or if expression: rnd<exp(-ΔZ) is true, where
rnd is a uniform distributed random number into the
interval (0,1).

The inner or Metropolis cycle is determined by
the length of each Markov chain (i.e. its iterations’
number.

1. Initialization (Si, c=ci)
2. Repeat
3. Repeat
4. Snew = Generate (Si)
5. ΔZ= Z(Snew)- Z(Sj)
6. If Z(Snew)< Z(Sj) then
7. Si = Snew
8. Else
9. If rnd<exp(-ΔZ)
10. Si = Snew
11. Until the equilibrium
12. c = New(α,c)
13.Until (c=cf)

Fig. 2. Pseudo–code of SA algorithm.

In SA the maximum Markov chain Lmax occurs at

the final temperature, and
iSVCL =max , where

iSV is the neighborhood size.

 and is the rejection
probability for a solution S

))((iR SPLnC −=)(iR SP

i. C ranges from 1 to 4.6
that guarantee a good exploration level of the
neighborhood at the final temperature. Different
exploration levels PR can be applied, for instance if
99% of the solution space is going to be explored,
then . Let and be the
maximum and minimum cost deteriorations of the

objective function through the neighborhood setV .
Then the initial and final temperatures c

6.4=C maxVZΔ minVZΔ

i and cf are
[14]:

Notice in line 9 in Fig. 2, that SA produces

different ci and cf parameters because of Boltzmann
distribution [21].

4 Experiments Executed
TA can be executed with its own parameters or with
some of them taken from SA. Therefore the
following cases were tested:

1. TA pure: ci and cf are calculated using
Equations 30 and 31 respectively.

2. TA with final temperature of SA: ci obtained
by TA pure (Equation 30) but cf calculated
as SA using Equation 33.

3. TA with initial temperature of SA: cf
obtained by TA pure (Equation 31) but ci
calculated as SA (using Equation 32).

4. TA hybridized with SA: ci and cf are
calculated as TA (Equations 30 and 31) pure
when c=cf then running SA with the last
solution obtained by TA, and cf is calculated
as SA (using Equation 33).

Table 1 shows several SAT instances with

different σ relations of clauses/variables [22]; they
were taken from SATLIB or generated with Hories
algorithm [23].

The measurement of efficiency is based on the
execution time; a quality solution measure is defined
as the percentage of “true” clauses with respect to
the total clauses in an instance at the end of the
execution program.

Both algorithms were implemented in a Dell Intel
Core Duo with 2 Gb of RAM memory and Pentium
4 processor running at 2.40 GHz.

Each instance was executed 40 times and then the
average execution time and the average quality
solution were obtained. A quality solution measure
can be defined by the equation:

))(ln(max

max

VA

V
i ZP

Zc
Δ
Δ−

= (32)

))(ln(min

min

VA

V
f ZP

Zc
Δ
Δ−

= (33)

WSEAS TRANSACTIONS on COMPUTERS Felix Martinez-Rios and Juan Frausto-Solis

ISSN: 1109-2750 380 Issue 5, Volume 7, May 2008

100×=
clausestotal

trueclausesQ (34)

The alpha’s values used for each cooling function
(Equations 6, 7 and 8) were obtained experimentally
as 0.99, 0.01 and 2.745 respectively. Notice than
once the alpha value is obtained for the geometrical
cooling function (Equation 6), the other alpha’s
values can be obtained by analyzing when
equivalent results are obtained with the other cooling
functions.

Table 1. SAT instances tested.

Instance Id σ Sat?

aim-100-1_6-yes1-1 a1 1.60 Yes
aim-50-1_6-yes1-3 a2 1.60 Yes
aim-200-1_6-no-1 a7 1.60 No
aim-50-1_6-no-2 a8 1.60 No
aim-50-2_0-no-4 a10 2.00 No
g2_V100_C200_P2_I1 g1 2.00 Yes
BMS_k3_n100_m429_161 b1 2.83 Yes
g2_V300_C900_P3_I1 g15 3.00 Yes
g2_V50_C150_P3_I1 g17 3.00 Yes
BMS_k3_n100_m429_368 b2 3.08 Yes
par8-1 p1 3.28 Yes
aim-50-3_4-yes1-2 a4 3.40 Yes
par8-3-c p2 3.97 Yes
par8-5-c p3 3.97 Yes
g2_V100_C400_P4_I1 g3 4.00 Yes
uuf225-045 u4 4.27 No
RTI_k3_n100_m429_150 r1 4.29 Yes
uf175-023 u1 4.30 Yes
uuf100-0789 u8 4.30 No
uf50-01 u7 4.36 Yes
uuf50-01 u9 4.36 No
ii8a2 i3 4.44 Yes
uf20-0235 u2 4.55 Yes
uf20-0531 u3 4.55 Yes
g2_V50_C250_P5_I1 g19 5.00 Yes
ii32e1 i2 5.34 Yes
anomaly a6 5.44 Yes
aim-50-6_0-yes1-1 a5 6.00 Yes
g2_V50_C300_P6_I1 g20 6.00 Yes
jnh201 j1 8.00 Yes
jnh215 j3 8.00 No
medium m1 8.22 Yes
jnh301 j2 9.00 Yes

5 Experimental results
Tables 2, 3, 4 and 5 show the results obtained for
each cooling function; in these tables, the initial and
final temperatures were calculated as is described in
section 4. The quality of the solution was obtained
from Equation 34 and the execution time was
measured in seconds. The average of the execution
time and quality of solution for every SAT instance
tested here, is shown in the last row of each of the
tables 2,3,4, and 5.

Table 2. Results for TA pure: ci and cf are calculated
using Equations 30 and 31 respectively.

 Geometric Logarithmic Exponential

Id Q(%) T(s) Q(%) T(s) Q(%) T(s)
a1 93.8 0.34 93.9 0.39 93.8 0.37
a10 94.6 0.01 94.5 0.01 94.6 0.01
a2 95.6 0.08 95.5 0.08 95.8 0.08
a4 93.1 0.02 93.0 0.02 92.7 0.02
a5 90.4 0.00 90.6 0.01 90.4 0.01
a6 93.4 0.80 93.1 0.89 93.2 0.79
a7 94.5 0.35 94.6 0.39 94.6 0.36
a8 96.4 0.08 96.8 0.08 96.4 0.08
b1 94.5 6.81 94.5 7.53 94.4 6.66
b2 94.1 6.30 94.1 7.19 94.2 6.42
g1 96.4 5.67 96.4 6.34 96.2 5.60
g15 90.6 32.54 90.7 35.54 90.6 33.51
g17 96.7 0.66 96.7 0.70 96.8 0.64
g19 95.0 1.09 95.0 1.17 94.9 1.06
g20 94.3 0.98 94.2 1.05 94.4 0.92
g3 93.7 4.15 93.7 4.74 93.7 4.24
i2 91.1 3.64 91.1 4.28 90.7 4.07
i3 89.1 3.18 89.0 3.45 89.5 3.23
j1 97.0 1.47 97.2 1.69 97.1 1.44
j2 96.9 2.08 96.9 2.32 96.9 2.03
j3 96.4 2.25 96.5 2.39 96.5 2.17
m1 90.0 9.93 90.3 11.37 90.3 9.78
p1 86.7 83.51 86.7 97.09 86.8 85.36
p2 93.0 5.19 92.8 5.95 93.0 5.27
p3 93.1 6.63 93.1 7.44 93.0 6.56
r1 93.7 5.08 93.7 5.74 93.6 4.81
u1 92.5 14.93 92.5 17.32 92.5 15.18
u2 98.9 0.14 99.0 0.14 99.0 0.13
u3 99.0 0.20 99.0 0.23 99.2 0.18
u4 91.9 27.95 92.0 31.08 91.8 28.11
u7 95.8 1.35 96.0 1.51 95.8 1.37
u8 93.9 5.29 93.9 6.00 93.6 5.16
u9 95.3 1.16 95.3 1.33 95.3 1.19
Avg. 94.0 7.10 94.0 8.00 94.0 7.20

WSEAS TRANSACTIONS on COMPUTERS Felix Martinez-Rios and Juan Frausto-Solis

ISSN: 1109-2750 381 Issue 5, Volume 7, May 2008

As can be observed the results obtained for the

quality of the solution (Equation 34) is very similar
for each cooling function. In fact, the differences
observed for the average of the quality of the
solution are very small and always smaller to one
percent.

For the execution times analysis (reported in
seconds), run times averages were obtained in every
one of the four tuning schemes.

Then the next observations are obtained:

• The geometric cooling function has the best

execution time than both of the other two (i.e.
the exponential and logarithmic cooling
function).

• The logarithmic cooling function always

obtains the worst execution times but again
the difference is always very small (in fact
smaller than one percent). Similar results were
obtained when the solution quality is
analyzed.

Figures 3 and 4 show the results obtained for the

execution times as well as the quality solution
measurements. In this figures the results were
grouped by every cooling function, whereas figures
5 and 6 group the results obtained for every tuning
scheme (using initial and final temperatures
proposed in section 4).

Now Figures 3 and 5 are showing very important
results regarding the hybrid algorithm. As can be
notice it is in fact TA algorithm hybridized with SA,
because the former is taken some features from the
second one. Particularly, these figures show the
quality solution obtained with the hybrid TA
algorithm but its final temperature cf is taken from
SA model (i.e. the final temperature of SA).

Fig. 3. Averages of quality solutions using Equation
34 grouped by each cooling function.

Table 3. Results for TA with initial temperature of
SA: cf obtained from TA pure (Equation 31) but ci
calculated as SA (using Equation 32).

 Geometric Logarithmic Exponential

Id Q(%) T(s) Q(%) T(s) Q(%) T(s)
a1 95.0 19.86 95.3 21.13 94.5 20.13
a10 97.0 6.39 97.0 6.90 96.4 6.80
a2 97.5 6.17 97.8 6.58 97.0 6.38
a4 95.7 5.97 95.4 6.36 94.8 6.06
a5 93.8 17.77 93.9 19.84 93.1 18.84
a6 95.1 18.32 94.4 20.18 94.0 19.18
a7 95.8 20.01 95.8 21.26 95.4 20.26
a8 97.9 6.17 98.3 6.59 97.3 6.49
b1 94.8 59.64 94.7 65.97 94.8 60.25
b2 94.6 62.38 95.1 69.73 94.9 63.21
g1 96.9 44.39 96.9 47.49 97.1 44.96
g15 91.0 613.61 91.2 688.34 91.1 623.32
g17 97.3 14.46 97.6 15.36 97.9 14.66
g19 96.0 23.59 96.0 25.55 96.3 23.80
g20 95.8 26.60 95.8 30.03 95.3 26.93
g3 94.5 67.82 94.7 75.25 94.7 68.30
i2 94.2 181.40 94.1 215.29 93.9 184.13
i3 91.0 113.96 91.4 136.63 91.1 115.42
j1 97.8 101.17 97.8 112.86 97.8 101.55
j2 97.3 116.38 97.5 130.55 97.5 117.40
j3 97.0 106.70 97.2 118.02 97.1 106.63
m1 91.7 135.97 91.6 151.55 91.4 137.02
p1 87.2 638.81 87.3 717.23 87.0 650.70
p2 94.0 49.96 93.8 56.14 93.3 50.20
p3 93.5 53.33 93.6 60.25 93.6 54.54
r1 94.4 74.57 94.5 83.44 95.0 74.87
u1 93.1 200.24 93.1 223.50 93.0 202.64
u2 100.0 0.93 100.0 0.38 100.0 0.74
u3 100.0 0.43 100.0 0.55 100.0 0.95
u4 92.3 320.37 92.4 356.02 92.2 325.66
u7 96.9 22.51 97.1 24.06 96.8 22.71
u8 94.7 75.34 94.5 84.10 94.6 76.09
u9 96.2 21.60 96.1 23.47 96.2 21.96
Avg. 95.2 97.80 95.2 109.70 95.0 99.20

In Figures 3 and 5 the quality solution are

reported for all the three cooling functions. In the
case of Figure 3, the initial temperature is taken
directly from its own model (i.e. the initial
temperature for TA pure, or without hybridization.

WSEAS TRANSACTIONS on COMPUTERS Felix Martinez-Rios and Juan Frausto-Solis

ISSN: 1109-2750 382 Issue 5, Volume 7, May 2008

Fig. 4. Averages of execution times grouped by
each cooling function..

Fig. 5. Averages of quality of solutions grouped by
TA algorithms versions.

Fig. 6. Averages of execution times grouped by TA
tuning schemes.

Table 4. Results for TA with final temperature of
SA: ci obtained from TA pure (Equation 30) but cf
calculated as SA (using Equation 33).

 Geometric Logarithmic Exponential

Id Q(%) T(s) Q(%) T(s) Q(%) T(s)
a1 94.4 3.48 94.9 3.77 94.5 3.61
a10 97.3 0.84 96.6 0.87 96.4 0.83
a2 96.3 0.99 96.5 1.06 97.0 1.00
a4 95.1 1.40 94.7 1.46 94.8 1.36
a5 92.9 2.09 93.0 2.34 93.1 2.13
a6 94.4 3.96 94.0 4.33 94.0 3.97
a7 95.2 3.50 95.5 3.78 95.4 3.63
a8 97.5 0.98 97.8 1.06 97.3 1.00
b1 94.8 18.27 94.7 19.74 94.8 18.29
b2 94.5 17.86 94.4 20.17 94.6 18.29
g1 97.0 14.57 96.5 15.31 96.8 14.65
g15 91.2 143.54 90.7 160.95 90.9 144.47
g17 97.8 3.19 97.2 3.36 97.3 3.24
g19 95.3 5.21 95.5 5.56 95.6 5.33
g20 94.9 5.56 95.0 6.21 94.8 5.62
g3 94.0 16.57 94.1 18.72 94.0 16.42
i2 92.7 32.36 92.5 40.01 92.4 33.04
i3 89.9 22.25 90.9 26.13 90.3 21.99
j1 97.4 17.23 97.4 19.13 97.5 17.28
j2 97.2 20.59 97.3 23.12 97.2 20.84
j3 96.9 19.67 96.8 21.67 96.8 19.63
m1 91.2 35.27 90.9 39.32 91.1 35.86
p1 86.7 212.26 86.8 238.33 86.9 210.98
p2 93.3 14.62 93.2 16.30 93.2 14.92
p3 93.5 16.96 93.2 18.47 93.4 17.06
r1 94.5 19.05 94.1 21.17 94.1 19.02
u1 92.9 52.64 92.8 59.05 92.8 53.93
u2 99.2 0.73 99.6 0.60 99.1 0.80
u3 100.0 0.48 99.8 0.33 100.0 0.39
u4 92.2 89.71 92.1 100.17 92.2 89.03
u7 96.2 5.44 96.4 5.85 96.6 5.47
u8 94.1 19.35 94.5 21.47 94.0 19.27
u9 96.0 5.06 95.6 5.45 95.6 5.10
Avg. 94.7 25.00 94.7 28.00 94.7 25.10

WSEAS TRANSACTIONS on COMPUTERS Felix Martinez-Rios and Juan Frausto-Solis

ISSN: 1109-2750 383 Issue 5, Volume 7, May 2008

 Table 5. Results for TA hybridized with SA: ci and
cf are calculated as TA (Equations 30 and 31) pure
when c=cf then running SA with the last solution
obtained with TA, and cf is calculated as SA (using
Equation 33).

 Geometric Logarithmic Exponential
Id Q(%) T(s) Q(%) T(s) Q(%) T(s)

a1 94.8 2.00 94.6 2.15 94.5 2.07
a10 97.3 0.67 96.4 0.69 96.6 0.66
a2 96.6 0.61 97.3 0.63 96.3 0.61
a4 95.1 1.10 94.4 1.14 94.8 1.08
a5 93.1 1.93 93.1 2.03 93.1 1.9 6
a6 93.2 2.08 93.9 2.17 93.7 2.0 7
a7 95.6 2.01 95.1 2.16 95.1 2.07
a8 97.5 0.61 97.5 0.64 97.5 0.62
b1 94.7 9.85 94.4 10.00 94.6 9.61
b2 94.4 9.50 94.3 9.94 94.4 9.71
g1 96.4 7.83 96.4 8.04 96.4 7.72
g15 90.6 75.09 90.8 76.87 90.8 74.36
g17 96.9 1.66 97.2 1.71 97.5 1.66
g19 95.9 2.69 95.5 2.80 95.4 2.72
g20 94.4 2.98 94.6 3.06 94.8 2.95
g3 93.8 8.51 94.0 9.02 93.9 8.50
i2 91.9 18.61 93.4 21.15 92.3 18.85
i3 90.5 12.60 89.9 13.52 89.5 12.21
j1 97.4 10.45 97.5 10.73 97.6 10.37
j2 97.3 12.18 97.1 12.44 97.3 12.06
j3 96.7 11.21 96.7 11.31 96.7 11.09
m1 90.7 18.26 90.8 18.96 90.7 18.32
p1 86.6 112.64 86.7 121.91 86.8 114.77
p2 93.3 7.75 93.0 8.30 93.2 7.88
p3 93.0 9.22 92.8 9.60 93.2 9.16
r1 94.6 9.78 94.3 10.33 93.8 9.48
u1 92.7 26.72 92.6 28.98 92.7 27.39
u2 99.7 0.24 99.3 0.42 99.1 0.40
u3 99.7 0.33 99.6 0.32 99.6 0.32
u4 91.8 46.04 92.0 48.07 92.0 46.21
u7 96.3 2.78 96.0 2.93 95.9 2.77
u8 93.8 9.98 93.8 10.53 93.9 9.83
u9 95.4 2.58 95.5 2.72 95.6 2.63
Avg. 94.6 13.30 94.6 14.10 94.5 13.40

From Figures 4 and 6 can be noticed that the best
execution times were obtained when the
temperatures of the new algorithm were calculated
directly from TA model (Equations 30 and 31). All
the execution times were obtained by using tuning
schemes three and fourth described in section 4. It
can be noticed that all these execution times are
really very good.

 Figure 7 shows the averages of quality of solution
for all cooling functions grouped by the tuning
schemes. In Figure 7, not remarkable differences can
be observed for the quality of solution for each
instance. Nevertheless from Figure 8 (where the
execution times are shown), remarkable differences
in the values obtained for the instances: g15, p1, u1
and u4 can be observed.
 Based on the fact that a good criterion for
comparing random algorithms is very good quality
with reasonable execution time, the algorithms
presented here are listed from the best to the worst
as follows:

1. TA hybridized with SA.
2. TA with final temperature of SA.
3. TA pure
4. TA with initial temperature of SA.

6 Conclusions
In this paper a new hybrid TA method based on the
neighborhood structure to obtain the Markov chain
length in a dynamical way is proposed.

Experiments showed that hybridizing TA with
SA algorithm is an excellent option for SAT
instances; it has an excellent performance based on
its quality solution and its execution time. In this
algorithm each SAT instance is executed with a TA
algorithm but when its temperature parameter
reaches the final temperature (i.e c=cf,) then this
temperature cf is calculated as in TA); then once cf is
reached an SA algorithm is executed with the better
solution previously obtained with TA. However, the
tuning method is adaptive dynamically only when
the length of the Markov chain is modified in every
iteration. In a future research an adaptive tuning
method where the temperature be changed according
with the objective function is currently been
developed.

WSEAS TRANSACTIONS on COMPUTERS Felix Martinez-Rios and Juan Frausto-Solis

ISSN: 1109-2750 384 Issue 5, Volume 7, May 2008

Fig. 7. Averages of quality of solutions for each
SAT instance grouped by TA tuning schemes.

Fig. 8. Averages of execution times for each SAT
instance grouped by by TA tuning schemes.

References:
[1] Cook, S.A., The complexity of theorem proving

procedures. Proceedings of 3rd Annual ACM
symposium on the Theory of Computing, ACM,
(1971), pp.151–158

[2] Papadimitriou, C.H., Computational Complexity.,
Addison Wesley Longman, (1995)

[3] GU, J., Multispace search for satisfiability and
np-hard problems, DIMACS Series in Discrete
Mathematics and Theoretical Computer Scienc,.
Satisfiability Problem: Theory and Applications:
Proceedings of a DIMACS Workshop 35, (1996),
pp. 407–517

[4] Creignou, N. The class of problems that are
linearly equivalent to satisfiability or a uniform
method for proving np-completeness, Lecture
Notes in Computer Science, 702, (1993), pp.115–
133

[5] Aaronson Scott, The limits of quantum
computers, Scientific American, March, (2008),
pp. 62-69.

[6] Edmons, J., Minimum partition of a matroid into
independent subset. J. Res. Nat. Bur. Standards
Sect. B, 69, pp 67-72, (1965)

[7] Frausto-Solis, J., Martinez-Rios, F.: Golden Ratio
Annealing for Satisfiability Problems using
Dynamically Cooling Schemes. 17th
International Symposium on Methodologies for
Intelligent Systems (ISMIS'08), Toronto, Canada,
May 20, (2008), Accepted as a full paper for
publication in ISMIS 2008 proceedings will
appear in Springer's Lecture Notes in Artificial
Intelligence (LNAI) (2008)

[8] Cook, S., Computational Complexity of Higher
Type Functions. Proc. International Congress of
Mathematicians, Kyoto, Japan, pp 51-69,
Springer Verlag, (1991)

[9] Dantzig, G.B., Thapa, M.N., Linear
Programming: 1: Introduction (Springer Series
in Operations Research and Financial
Engineering), Springer; 1 edition, (1997)

[10] Bertzekas D. P., Network Optimization:
Continuos and Discrete Models, Athena
Scientific, (1998).

[11] Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.,
Optimization by Simulated Annealing, Science,
Number 4598, 13 May 1983, 220, 4598, (1983),
pp. 671–680

[12] Cerny, V., Thermodynamical approach to the
traveling salesman problem: An efficient
simulation algorithm, Journal of Optimization
Theory and Applications, 45, (1985), pp. 41–51

[13] Dueck, G., Scheuer, T., Threshold accepting: a
general purpose optimization algorithm
appearing superior to simulated annealing.,
Journal of Computational Physics, (1990),
pp.161–175

[14] Sanvicente-Sánchez, H., Frausto-Solís, J.,
Method to Establish the Cooling Scheme in
Simulated Anneling Like Algorithms,
Computational Science and its Applications –
ICCSA 2004, Volume 3045, Springer Verlag,
(2004)

[15] Trosset, M.W., What is Simulated Annealing?,
Optimization and Engineering, 2, (2001), pp
201-213.

[16] Cicirello, V.A., On the Design of an Adaptive
Simulated Annealing Algorithm, in First
Workshop on Autonomous Search, In
conjunction with CP’2007, September 23,
(2007), Providence, Rhode Island, USA

[17] Aarts, E., Korst, J., Simulated annealing and
Boltzmann machines: A stochastic approach to

WSEAS TRANSACTIONS on COMPUTERS Felix Martinez-Rios and Juan Frausto-Solis

ISSN: 1109-2750 385 Issue 5, Volume 7, May 2008

combinatorial optimization and neural
computing. John Wiley & Sons, Great Britain,
(1989)

[18] Pérez Ortega, J., Pazos Rangel, R.A., Romero,
D., Sataolaya, R., Rodríguez Ortiz, G. and Sosa,
V. Adaptive and Scalable Allocation of Data-
Objects in the Web, Lecture Notes in Computer
Science, (LNCS 2667), Springer Verlag, ICCSA
2003, pp.134-143

[19] Pérez Ortega, J., Cruz, L., Landero Najera,
R.V., Pazos Rangel, R., Pérez Rosas, V.,
Zarate Rivera, G. and Reyes Salgado, G.:
Explaining Performance of the Threshold
Accepting algorithm for the Bin Packing
Problem, a causal approach, Polish Journal of
Environmental Studies, Vol. 16, No. 5B, Hard,
Poland, (2007), pp.72-76

[20] Ingber, L, Simulated Annealing; Practice
Versus Theory, J MATHL. Comput Modeling,
Vol 18, No. 11, 1993, pp.29-57

[21] Frausto, J., Sanvicente, H. and Imperial, F.
ANDYMARK: An analytical Method to
Establish Dynamically the Length of the
Markov Chain in Simulated Annealing for the
Satisfiablity Problem, Springer Verlag, (2006),
ISSN: 0302-9743

[22] Mezard, M., Parisi, G. and Zecchina, R.,
Analytic and algorithmic solution of random
satisfiability problems, Science, June 27, 2002

[23] Horie, S. and Watanabe, O., Hard instance
generation for SAT, Technical Report TR97-
0007, Dept. of Computer Science, Tokyo Inst.
of Tech. (1997) (Available from CS Dept. TR
Archive; the extended abstract appeared in
Proc. ISAAC'97, Lecture Notes in Computer
Science 1350)

WSEAS TRANSACTIONS on COMPUTERS Felix Martinez-Rios and Juan Frausto-Solis

ISSN: 1109-2750 386 Issue 5, Volume 7, May 2008

