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Abstract: For Satisfiability (SAT) Problem there is not a deterministic algorithm able to solve it in a polynomial 
time. Simulated Annealing (SA) and similar algorithms like Threshold Accepting (TA) are able to find very 
good solutions of SAT instances only if their control parameters are correctly tuned. Classical TA’s algorithms 
usually use the same Markov chain length for each temperature cycle but they spend a lot of time. In this paper a 
new hybrid algorithm is presented. This algorithm is in fact a TA algorithm which is hybridized with SA in a 
certain way. For this TA algorithm, the Markov chain length (L) is obtained in a dynamical way for each 
temperature. Besides, it is known that TA and SA obtain very good results whether their parameters are 
correctly tuned. Experimental tuning methods expend a lot of time before a TA algorithm can correctly be 
executed; in other hand, analytical tuning methods for TA were only completely developed for the geometrical 
cooling function. This paper also shows how TA can be tuned for three common cooling functions with an 
analytical model. Experimentation presented in the paper shows that the new TA algorithm is more efficient 
than the classical one. 
 
 
Key-Words: Simulated Annealing, Threshold Accepting, Cooling function, Dynamic Markov Chains, SAT 
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1 Introduction 
Satisfiability Problem (SAT) is an NP-complete (NP 
in short) problem which is fundamental to 
complexity theory [1, 2] and is widely studied in 
several areas such as: planning, circuit testing, 
temporal reasoning, scheduling and many others [3]. 
Besides, any instance of an NP problem can be 
transformed to a SAT instance by using a 
polynomial transformation [1, 4]. Therefore, if SAT 
can be solved efficiently with a particular algorithm, 
then similar results could be obtained for other NP 
problems using the same algorithm [5]. It other 
words, NP has the property found by Cook and 
others: “If and efficient algorithm for any problem in 
NP is found, it could be adapted to solve all the 
other NP problems as well” [5]. 
    It is common to say that a polynomial algorithm π 
solve all the instances where π in an efficient way; 
in other words polynomial and efficient algorithms 
are considered as synonyms. A polynomial 

algorithm has a temporal function t(n) (where n is 
the instance size) measuring the execution time to 
solve all the instances of π; examples of t(n) can be 
n, n2, 2n and so on. Polynomial and exponential time 
algorithms are frequently referred as “good 
algorithms” (i.e. efficient) and “bad algorithms”, 
(i.e. not efficient) respectively [6]; however this 
classification is not always correct, as can be noticed 
in the following examples [7]: 
 

• A polynomial algorithm requires n1230 steps 
to find the answer of a problem which size is 
3<n<10. An exponential algorithm designed 
for the same problem, requires 2n steps to 
find the solution. It is obvious that this 
polynomial algorithm cannot be classified as 
a good algorithm even though it is a 
polynomial one. Besides this polynomial 
algorithm has a worse performance that the 
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previous exponential one (and many other 
exponential algorithms). 

• Cook [8] shows another example of a 
particular polynomial algorithm which is not 
a good one because it requires n100 steps (it 
is impractical even for n values around 
1000). 

• It is well known than the old algorithm for 
linear programming known as Simplex [9] 
has an exponential complexity. However it 
is also well known that for many linear 
optimization problems Simplex is the best 
one [9, 10]. 

 
In the case of SAT, it is reported that by using 

complete methods (all of them being deterministic 
methods) it is very difficult to find the optimal 
solution or a solution close to the optimal one. 
Nowadays, most of the time, random methods have 
a better performance than complete methods for 
SAT instances. Therefore, in general random 
methods require less execution time to obtain good 
solutions than complete methods. Here, a “good 
solution” means the optimal one or a solution close 
to it. 

Since the seminal papers of Simulated Annealing 
algorithm (SA) [11, 12], this algorithm has shown to 
be very efficient for solving combinatorial 
optimization problems. Due to this, new algorithms 
based on SA have been proposed; this kind of 
algorithms is referred as SALA algorithms 
(Simulated Annealing Like Algorithms). The 
classical SA and Threshold Accepting algorithm 
(TA) [13] are the most popular SALA algorithms. 
TA is similar to SA except for a small modification, 
which purpose is to reduce the execution time with 
similar quality of the final solution obtained by SA. 

In this paper a new hybrid algorithm is presented. 
This algorithm is in fact a TA but hybridized with 
SA in a particular way. Besides, an analytical 
adaptive method to establish the initial and final 
temperatures and the length of each Markov chain in 
a dynamic way for TA algorithm is presented. 
Experimentation with a set of SAT instances shows 
that this new TA algorithm has a better performance 
than the classical one. This experimentation is done 
with three cooling functions. In addition, it is also 
presented analytical methods for TA tuning 
parameters for all of these cooling functions. 
 
 
 

2 Simulated Annealing Like 
Algorithms (SALA) 

A Simulated Annealing Like Algorithm (SALA) is 
an algorithm that works with a Simulated Annealing 
(SA) approach [14]. The classical SA of Kirkpatrick 
and Cerny [11, 12] and Threshold Accepting (TA) 
[13] among many others can be classified in this 
category. 

As was mention before, SA is a simple and 
effective optimization method to find near optimal 
solutions to many instances of NP problems [2]. A 
SA algorithm may be seen like a Markov chain 
sequence [17] (a homogeneous one); Lk identifies 
the length of each Markov chain and obviously Lk 
must be greater than zero (where k is the sequence 
index). The states in a Markov chain are established 
by the solution space S of the optimization problem. 
The sequence of Markov chains is built on a 
descending sequence of a control parameter (ck>0) 
commonly referred as the temperature. The output of 
a Markov chain is a solution Seq

k ∈ S, where Seq
k is a 

solution when the dynamic equilibrium or the 
stationary distribution is reached. This control 
parameter must satisfy the following property: 
 

 0lim =
∞→ kk

c  (1)

1,1 ≥∀≥ + kcc kk  (2)
 
Consecutive temperatures ck’s are setting 

through a cooling function: 
 

  )(1 kk cfc =+  (3)
 
SA does a stochastic walk on the solution space 

of the optimization problem. For each Markov chain, 
this stochastic walk is done until the stationary 
distribution is reached. During the stochastic walk, 
the accepted solutions depend on the temperature 
parameter; it should be remarked that during this 
stochastic walk, any solution with a worse cost (i.e. 
a cost deterioration) than the previous one is 
accepted with a Boltzmann distribution probability. 
It should be also taken into account that the 
acceptance probability decreases along the iterations 
(i.e. if the temperature decreases, then the 
acceptance probability is decremented).  

TA [13] also does a stochastic walk on the 
solution space and it also uses a cooling function to 
control the transition probabilities among solutions 
in order to accept solutions with a cost deterioration 
(for a minimization problem, a cost deterioration 
means a greater cost in the new iteration). The 
distribution probability (usually Boltzmann in SA) is 
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now a hidden distribution probability which handles 
a parameter known as “threshold”. It is common that 
in any iteration, the current temperature is the 
threshold parameter. 

One of the main characteristics of SALA 
alg

 publication of the seed paper of SA 
alg

approaches uses some 
exp

2.1 oblem 
roblem referred to be as NP–

1. A set of n variables x1, x2 ,…, xn 
able xi or its 

orithms is the asymptotic convergence to the 
optimal solution. For this reason SALA are 
classified as approximation algorithms. Therefore, a 
good balance between efficiency (i.e. execution 
time) and efficacy (i.e. quality solution) need to be 
established. 

Since the
orithm [11, 12], several methods and procedures 

have been proposed to reduce the execution time of 
SA. These methods have mainly been focused on the 
cooling function parameters; although developed for 
SA, some of these methods have being extended to 
SALA algorithms since many years ago. However, 
most of these methods are based on experimentation 
and usually their tuning process requires a huge 
amount of experimentation, money and time. It will 
be advantageous to find a practical tuning method 
with an experimentation time as small as possible. 
Some alternatives tuning approaches have been 
proposed: a) Analytical Markov approaches [15] and 
b) Adaptive methods [16].  

In fact both of these 
erimentation (but it is reduced) to define the 

SALA parameters. Trousset [15] presents a general 
framework to derive the SALA parameters using a 
Markov model; from them a general mathematical 
model is developed in [14]; these “analytical” 
methods use a set of formulas to derive the initial 
and final temperatures and the number of iterations 
in the metropolis cycle as well. Adaptive Methods 
adjust SALA parameters depending on the results 
obtained in the objective function; for instance the 
new temperature can be reduced in function of the 
improvement obtained in the previous metropolis 
cycle. The Hybrid SA presented here uses the 
advantages of both approaches. 

  
 
 
 SAT pr

SAT was the first p
complete [8] and is fundamental to the analysis of 
the computational complexity of many problems [2]. 
An instance of SAT is a boolean formula which 
consists on the next components: 
 

2. A set of literals; a literal is a vari
negation ¬xi. 

3. A set of m clauses: C1, C2 ,…, Cm linked by 
the logical connective AND (∧) where each 
clause consists of literals linked by the 
logical connective OR (∨). 
 

This is: 
 

Φ= C1 ∧ C2 ∧…∧ Cm (4)
 
where Φ is the SAT instance. Then the SAT problem 
can be enunciated as follows: 
 
Definition 1:  

Given a finite set { C1, C2,…, Cm } of clauses, 
determine whether there is an assignment of 
truth-values to the literals appearing in the 
clauses which makes all the clauses true. 

 
For instance, the following 4-variables SAT 

instance: 
 
Φ= (x2 ∨ x3 ∨  x4) ∧  
      (¬x1 ∨ ¬x2 ∨ ¬ x4) ∧ 
      (x1 ∨ ¬x2 ∨ x3) ∧ 
      (x1 ∨ ¬x3 ∨ x4) 
 
is formed by four clauses. Φ is made true when 

S1= {x1=false, x2=true, x3=true, x4=true}. The same 
happens with S2= {x1=false, x2=false, x3=true, 
x4=true}. S1 and S2 are known as solutions of the 
SAT instance. 
    Any SAT instance can be represented as an 
optimization problem. Hence this problem is known 
as the Maximum Satisfiability problem or MAX-
SAT problem. 
    The formulation of SAT to MAX-SAT is carried 
through by introducing the next objective function: 
 

∑
=

=
m

j
jCZ

1
max  (5) 

 
where Cj is the j-th clause of m. 
   The goal in this problem is maximize (minimize) 
the number of true (false) clauses. In this sense, Cj=1 
if the j-th clause is made true or Cj=0 if it is made 
false. 

 
 
 

3 Classic TA algorithm 
Threshold Accepting algorithm (TA) [13], is very 
similar to SA; it has been applied to many areas, 
such as Databases [18], Bin Packing [19] and many 
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others. SA and TA accept bad solutions in order to 
escape of local optima. However, TA does not use 
Boltzmann Distribution to accept bad solutions but 
the threshold deterministic parameter mention 
before. This parameter is usually the current 
temperature (c) as is shown in Fig. 1.  

TA is similar to SA since it begins with a current 
solution Si from which a new solution Snew is 
generated. In the algorithm ci and cf represent the 
initial and final temperatures respectively. Notice 
that TA has also two cycles: 

 
• The outer cycle or temperature cycle which 

is between lines 2–13. This cycle controls 
the threshold value (the current temperature 
c) 

• The inner cycle or Metropolis cycle which is 
between lines 3–11. In this cycle the 
stochastic walk discussed before is done for 
each temperature cycle. 
 

   As we can see in Fig. 1, once the algorithm 
executes the line twelve, a new temperature is 
generated using the cooling function [20]. A new 
solution is always accepted (line 7) whether the cost 
of a new solution (Z(Snew)) is lower than the 
previous one (Z(Si)) or if their difference is smaller 
than the threshold parameter c. 

The outer loop parameters define the cooling 
scheme of TA: 

 
• The initial temperature ci, 
• The final temperature cf, and 
• The cooling function (it is shown in line 12 

of Figure 1). 
 
In the experiments with each SAT instances three 
cooling functions were used [20], which are in the 
following equations:  
 

kk cc α=+1  (geometric) (6)

kk cc )exp(1 α−=+  (exponential) (7)

)ln(1 α
k

k
cc =+  (logarithmic) (8)

 
The inner or Metropolis cycle is determined by 

the length of each Markov chain L (i.e. its iterations’ 
number). 

 
 

3.1 Markov Chains Length 
As it was previously discussed, TA makes a 
stochastic walk on the solution space which can be 
modeled as a sequence of homogeneous Markov 
chains. In this sequence, every Markov chain has a 
length L, lower than the previous one; this length is 
calculated by using a function of the temperature 
control parameter c>0 which generates descending L 
values. Obviously any Markov chain length is 
always greater that zero. Therefore if Lk>0 is the 
length of a Markov chain for the temperature ck, we 
have:  
 

1,,0lim;0 1 ≥∀≥=> +
∞→

kcccL kkk
k

k  (9) 

 
1. Initialization (Si, c=ci) 
2. Repeat 
3.      Repeat 
4.          Snew = Generate (Si) 
5.          ΔZ= Z(Snew)- Z(Sj) 
6.          If Z(Snew)< Z(Sj) then  
7.                 Si = Snew 
8.          Else  
9.                 If ΔZ < c 
10.                    Si = Snew 
11.     Until the equilibrium 
12.    c = New(α,c) 
13.Until (c=cf) 

 
Fig. 1.  Pseudo–code of  TA algorithm. 
 
 

As can be observed, ck and Lk have a strong 
relation. This can be easily explained for SA and 
then for TA as follows: 

 
• First, when the process is at the beginning 

the temperature is very high. This is because 
in the Boltzman distribution the acceptance 
probability is directly related with the cost 
increment: )/exp( kA TZP Δ= ; where Tk is 
the temperature parameter ck. Therefore 

)(/ Ak PLnZc Δ−=  where 0<PA<1. 
• At the beginning of the process, PA is close 

to one and the temperature is extremely 
high. Almost any solution is accepted at this 
temperature; as a consequence the stochastic 
equilibrium of a Markov cycle is reached 
with the first guess solution. 

• Similarly, when the process is ending the 
acceptance probability and the temperature 
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are closer to zero but the Metropolis Length 
is very long. 

• The arguments described in the later 
paragraphs are represented by the next 
properties: 
 

1. when 0, →∞→ kk Lc  and 

2. when  ∞→→ kk Lc ,0
 

   The control parameter is set by a cooling function 
like . At the beginning of the process 
the temperature has a high value and the probability 
to accept one proposed solution is high. When the 
temperature decreases this probability also decreases 
and only good solutions are accepted at the end of 
the process. In this sense every Markov chain makes 
a stochastic walk in the solution space until the 
stationary distribution is reached. Because Markov 
chains are built through a neighborhood sampling 
method, the maximum number of different solutions 
rejected at when the current solution   is the 
optimal one.  The Markov chain length is the 
neighborhood size 

)(1 kk cfc =+

fc iS

iSV  (see Definition 2). In 

general  can be established as: kL
 

( )
iSk VgLL =≤ max  

(10) 

 
where ( )

iSVg  is a function that gives the maximum 

number of samples that must be taken from the 
neighborhood in order to evaluate an expected 

fraction of different solutions at .  
iSV

fc
    Usually an SA algorithm uses a uniform 
probability distribution function given by a random 
replacement sampling method to explore at any 

temperature  [21]. In this way, the probability to 

obtain the solution  in  samples is: 

iSV

kc

jS N
 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

iS
j V

NSP exp1)(
 

(11) 

 
 

The length of the Markov Chain in TA can be 
taken in the same way that SA, assuming that an 
iterative use of threshold functions emulates the 
Boltzmann distribution.  Therefore the maximum 

Markov chain Lmax at the final temperature can be 
calculated with (11): 

 

iSiR VSPLnL ))((max −=  (12)

 
Where 

iSV  represents the neighborhood size 

and is the rejection probability for a solution 
S

)( iR SP

i (or a proportion of the solution space).  
We can define ))(( iR SPLnC −= . C ranges from 

1 to 4.6 which guarantee a good exploration level of 
the neighborhood at the final temperature; for 
instance if C=4.6 then PR represents the exploration 
of 99% of the solution space. 

 Therefore ( )
iSk VgL = ; this function gives the 

maximum number of samples that must be taken 
from the neighborhood VSi in order to evaluate an 
expected fraction of different solutions in a Markov 
chain. Lk depends only on the number of elements of 
VSi that will be explored at ck. 

Because the strong relation between ck and Lk, at 
the beginning of the process (ck = ci), any solution 
has the same acceptance probability. Therefore, as in 
SA, the first Markov chain length in TA must be as 
small as possible (L1≈1). When k is increased, ck is 
decremented until it reaches cf. Therefore, for 
consecutive values of ck, TA is forced to increment 
its Markov chain length in order to reach its 
stationary probabilistic state.  

Thus, Lk is incremented since its lower value (i.e. 
one) at ci until it achieves is maximum value Lmax at 
cf. As a consequence, an incremental Markov chain 
function can be proposed for each cooling scheme 
(Equations 6, 7 and 8) as follows:  

 

kk LL β=+1  (geometric) (13)

kk LL )exp(1 β−=+ (exponential) (14)

)ln(1 β
k

k
LL =+  (logarithmic) (15)

 
Where 1>β is called incremental coefficient 

and again Lk is the length of the Markov chain at ck, 
and Lk+1 represents the length of the Markov chain at 
ck+1.  

Because the Markov chain length is incremented 
from L1 to Lmax when ck varies from c1 to cf in a 
Markov process we have:  
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1max LL nβ=  (geometric) (16)

1max )exp( LL nβ−=  (exponential) (17)

n
LL

)ln(
1

max β
=  (logarithmic) (18)

 
 

Then β can be obtained from the previous 
equations as follows: 
 
 

⎟
⎠
⎞

⎜
⎝
⎛ −

=
n

LLnLLn )()(exp 1maxβ

 
(geometric) (19)

n
LLnLLn )()( max1 −

=β
 

(exponential) (20)

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
n
L
LLn
max

1

expexpβ

 

(logarithmic) (21)

steps performed from ci to cf can be 
represented for: 

 

(geometric) (22)

(exponential) (23)

 
For each cooling scheme (Equations 6, 7 and 8) 

the n number of 

i
n

f cc α=  

i
n

f cc )exp( α−=  

n
i

f
cc

)ln(α
=  (logarithmic) (24)

alculated from Equations 22, 23 
and 24 as follows: 

 

 
Then n can be c

)(
)()(

αLn
cLncLn

n if −
=  (geometric) (25)

α
)()( fi cLncLn

n
−

=  (exponential) (26)

))(( αLnLn
c
cLn

n f

i
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

=  
(logarithmic) (27)

 
 
 
3.2  Initial and final temperatures in TA 
In TA, ci and cf are explicit bounds since they 
determine the beginning and the end of the process 
of it. At the beginning ci must be determined in such 
a way that almost all the transitions may be 
accepted. If ci is too high TA will expend a lot of 
time, but if it is too small the probability to get stuck 
on a local minimum is high.  

On the other hand, if cf is set too high TA 
probably does not have a good exploration of the 
solution space. If cf is set to a very low value a lot of 
time will be wasted at the final of the process. In this 
paper ci and cf was fixed with the method suggested 
in [21]. In this sense, the neighborhood structure can 
be defined as follows: 

   
Definition 2:  

Let 
 }:|,{ SSVVSVsetaSS

ii SSi →=⊂∃∈∀  

be the neighborhood of a solution Si, where iS∀  
is the neighborhood set of Si,   is a 
mapping and S is the solution space of the 
problem being solved.  

SSV →:

 
In this definition, it can be noticed that the 

neighbors of Si depend only on the neighborhood 
structure V from every particular problem, and then 
the maximum and minimum cost increments 
produced from this neighborhood structure are [21]: 

 

 
 
Then ci and cf are calculated as the minimum and 

maximum deterioration of the objective function: 
 

maxVi Zc Δ=  (30)

)}()({
max ijV SZSZMaxZ −=Δ

SSVS iSj i
∈∀∈∀ ,  

(28)

)}()({
min ijV SZSZMinZ −=Δ

SSVS iSj i
∈∀∈∀ ,  

    (29)
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minVf Zc Δ≤  (31)

 
 
 
3.3  Initial and final temperatures in SA 
SA (see Fig 2) like TA begins with a current 
solution Si from which a new solution Snew is 
generated. In the algorithm ci and cf represent the 
initial and final temperatures respectively. SA has 
two cycles: the outer cycle (lines 2–13) that controls 
the current temperature c and the inner cycle in lines 
3 to 11. As can be seen in line 12 a new temperature 
is generated using a cooling function. A new 
solution is always accepted (line 7) if the cost of a 
new solution (Z(Snew)) is lower than the previous one 
(Z(Si)) or if expression: rnd<exp(-ΔZ) is true, where 
rnd is a uniform distributed random number into the 
interval (0,1). 

The inner or Metropolis cycle is determined by 
the length of each Markov chain (i.e. its iterations’ 
number. 
 

1. Initialization (Si, c=ci) 
2. Repeat 
3.      Repeat 
4.          Snew = Generate (Si) 
5.          ΔZ= Z(Snew)- Z(Sj) 
6.          If Z(Snew)< Z(Sj) then  
7.                 Si = Snew 
8.          Else  
9.              If rnd<exp(-ΔZ) 
10.                    Si = Snew 
11.     Until the equilibrium 
12.    c = New(α,c) 
13.Until (c=cf) 

Fig. 2.  Pseudo–code of  SA algorithm. 

 
 
In SA the maximum Markov chain Lmax occurs at 

the final temperature, and  
iSVCL =max , where 

iSV  is the neighborhood size. 

 and is the rejection 
probability for a solution S

))(( iR SPLnC −= )( iR SP

i. C ranges from 1 to 4.6 
that guarantee a good exploration level of the 
neighborhood at the final temperature. Different 
exploration levels PR can be applied, for instance if 
99% of the solution space is going to be explored, 
then . Let and  be the 
maximum and minimum cost deteriorations of the 

objective function through the neighborhood setV . 
Then the initial and final temperatures c

6.4=C maxVZΔ minVZΔ

i and cf are 
[14]: 

 
Notice in line 9 in Fig. 2, that SA produces 

different ci and cf parameters because of Boltzmann 
distribution [21]. 
 
 
 
4 Experiments Executed 
TA can be executed with its own parameters or with 
some of them taken from SA. Therefore the 
following cases were tested: 
 

1. TA pure: ci and cf are calculated using 
Equations 30 and 31 respectively. 

2. TA with final temperature of SA: ci obtained 
by TA pure (Equation 30) but cf calculated 
as SA using Equation 33. 

3. TA with initial temperature of SA: cf 
obtained by TA pure (Equation 31) but ci 
calculated as SA (using Equation 32). 

4. TA hybridized with SA: ci and cf are 
calculated as TA (Equations 30 and 31) pure 
when c=cf then running SA with the last 
solution obtained by TA, and cf is calculated 
as SA (using Equation 33). 

 
Table 1 shows several SAT instances with 

different σ  relations of clauses/variables [22]; they 
were taken from SATLIB or generated with Hories 
algorithm [23]. 

The measurement of efficiency is based on the 
execution time; a quality solution measure is defined 
as the percentage of “true” clauses with respect to 
the total clauses in an instance at the end of the 
execution program. 

Both algorithms were implemented in a Dell Intel 
Core Duo with 2 Gb of RAM memory and Pentium 
4 processor running at 2.40 GHz. 

Each instance was executed 40 times and then the 
average execution time and the average quality 
solution were obtained. A quality solution measure 
can be defined by the equation:  

))(ln( max

max

VA

V
i ZP

Zc
Δ
Δ−

=  (32)

))(ln( min

min

VA

V
f ZP

Zc
Δ
Δ−

=   (33)
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100×=
clausestotal

trueclausesQ  (34) 

The alpha’s values used for each cooling function 
(Equations 6, 7 and 8) were obtained experimentally 
as 0.99, 0.01 and 2.745 respectively. Notice than 
once the alpha value is obtained for the geometrical 
cooling function (Equation 6), the other alpha’s 
values can be obtained by analyzing when 
equivalent results are obtained with the other cooling 
functions. 
 
Table 1. SAT instances tested. 

 
Instance Id σ Sat?

aim-100-1_6-yes1-1 a1 1.60 Yes 
aim-50-1_6-yes1-3 a2 1.60 Yes 
aim-200-1_6-no-1 a7 1.60 No 
aim-50-1_6-no-2 a8 1.60 No 
aim-50-2_0-no-4 a10 2.00 No 
g2_V100_C200_P2_I1 g1 2.00 Yes 
BMS_k3_n100_m429_161 b1 2.83 Yes 
g2_V300_C900_P3_I1 g15 3.00 Yes 
g2_V50_C150_P3_I1 g17 3.00 Yes 
BMS_k3_n100_m429_368 b2 3.08 Yes 
par8-1 p1 3.28 Yes 
aim-50-3_4-yes1-2 a4 3.40 Yes 
par8-3-c p2 3.97 Yes 
par8-5-c p3 3.97 Yes 
g2_V100_C400_P4_I1 g3 4.00 Yes 
uuf225-045 u4 4.27 No 
RTI_k3_n100_m429_150 r1 4.29 Yes 
uf175-023 u1 4.30 Yes 
uuf100-0789 u8 4.30 No 
uf50-01 u7 4.36 Yes 
uuf50-01 u9 4.36 No 
ii8a2 i3 4.44 Yes 
uf20-0235 u2 4.55 Yes 
uf20-0531 u3 4.55 Yes 
g2_V50_C250_P5_I1 g19 5.00 Yes 
ii32e1 i2 5.34 Yes 
anomaly a6 5.44 Yes 
aim-50-6_0-yes1-1 a5 6.00 Yes 
g2_V50_C300_P6_I1 g20 6.00 Yes 
jnh201 j1 8.00 Yes 
jnh215 j3 8.00 No 
medium m1 8.22 Yes 
jnh301 j2 9.00 Yes 

 
 
 

5 Experimental results 
Tables 2, 3, 4 and 5 show the results obtained for 
each cooling function; in these tables, the initial and 
final temperatures were calculated as is described in 
section 4. The quality of the solution was obtained 
from Equation 34 and the execution time was 
measured in seconds. The average of the execution 
time and quality of solution for every SAT instance 
tested here, is shown in the last row of each of the 
tables 2,3,4, and 5.  
 

Table 2. Results for TA pure: ci and cf are calculated 
using Equations 30 and 31 respectively. 

 
 Geometric Logarithmic Exponential 

Id Q(%) T(s) Q(%) T(s) Q(%) T(s) 
a1 93.8 0.34 93.9 0.39 93.8 0.37 
a10 94.6 0.01 94.5 0.01 94.6 0.01 
a2 95.6 0.08 95.5 0.08 95.8 0.08 
a4 93.1 0.02 93.0 0.02 92.7 0.02 
a5 90.4 0.00 90.6 0.01 90.4 0.01 
a6 93.4 0.80 93.1 0.89 93.2 0.79 
a7 94.5 0.35 94.6 0.39 94.6 0.36 
a8 96.4 0.08 96.8 0.08 96.4 0.08 
b1 94.5 6.81 94.5 7.53 94.4 6.66 
b2 94.1 6.30 94.1 7.19 94.2 6.42 
g1 96.4 5.67 96.4 6.34 96.2 5.60 
g15 90.6 32.54 90.7 35.54 90.6 33.51 
g17 96.7 0.66 96.7 0.70 96.8 0.64 
g19 95.0 1.09 95.0 1.17 94.9 1.06 
g20 94.3 0.98 94.2 1.05 94.4 0.92 
g3 93.7 4.15 93.7 4.74 93.7 4.24 
i2 91.1 3.64 91.1 4.28 90.7 4.07 
i3 89.1 3.18 89.0 3.45 89.5 3.23 
j1 97.0 1.47 97.2 1.69 97.1 1.44 
j2 96.9 2.08 96.9 2.32 96.9 2.03 
j3 96.4 2.25 96.5 2.39 96.5 2.17 
m1 90.0 9.93 90.3 11.37 90.3 9.78 
p1 86.7 83.51 86.7 97.09 86.8 85.36 
p2 93.0 5.19 92.8 5.95 93.0 5.27 
p3 93.1 6.63 93.1 7.44 93.0 6.56 
r1 93.7 5.08 93.7 5.74 93.6 4.81 
u1 92.5 14.93 92.5 17.32 92.5 15.18 
u2 98.9 0.14 99.0 0.14 99.0 0.13 
u3 99.0 0.20 99.0 0.23 99.2 0.18 
u4 91.9 27.95 92.0 31.08 91.8 28.11 
u7 95.8 1.35 96.0 1.51 95.8 1.37 
u8 93.9 5.29 93.9 6.00 93.6 5.16 
u9 95.3 1.16 95.3 1.33 95.3 1.19 
Avg. 94.0 7.10 94.0 8.00 94.0 7.20 
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As can be observed the results obtained for the 

quality of the solution (Equation 34) is very similar 
for each cooling function. In fact, the differences 
observed for the average of the quality of the 
solution are very small and always smaller to one 
percent. 

For the execution times analysis (reported in 
seconds), run times averages were obtained in every 
one of the four tuning schemes. 

Then the next observations are obtained: 
 
• The geometric cooling function has the best 

execution time than both of the other two (i.e. 
the exponential and logarithmic cooling 
function). 

 
• The logarithmic cooling function always 

obtains the worst execution times but again 
the difference is always very small (in fact 
smaller than one percent). Similar results were 
obtained when the solution quality is 
analyzed.  

 
Figures 3 and 4 show the results obtained for the 

execution times as well as the quality solution 
measurements. In this figures the results were 
grouped by every cooling function, whereas figures 
5 and 6 group the results obtained for every tuning 
scheme (using initial and final temperatures 
proposed in section 4). 

Now Figures 3 and 5 are showing very important 
results regarding the hybrid algorithm. As can be 
notice it is in fact TA algorithm hybridized with SA, 
because the former is taken some features from the 
second one. Particularly, these figures show the 
quality solution obtained with the hybrid TA 
algorithm but its final temperature cf  is taken from 
SA model (i.e. the final temperature of SA). 

 

 
 

Fig. 3. Averages of quality solutions using Equation 
34 grouped by each cooling function. 

 
Table 3. Results for TA with initial temperature of 
SA: cf obtained from TA pure (Equation 31) but ci 
calculated as SA (using Equation 32). 

 
 Geometric Logarithmic Exponential 

Id Q(%) T(s) Q(%) T(s) Q(%) T(s) 
a1 95.0 19.86 95.3 21.13 94.5 20.13 
a10 97.0 6.39 97.0 6.90 96.4 6.80 
a2 97.5 6.17 97.8 6.58 97.0 6.38 
a4 95.7 5.97 95.4 6.36 94.8 6.06 
a5 93.8 17.77 93.9 19.84 93.1 18.84 
a6 95.1 18.32 94.4 20.18 94.0 19.18 
a7 95.8 20.01 95.8 21.26 95.4 20.26 
a8 97.9 6.17 98.3 6.59 97.3 6.49 
b1 94.8 59.64 94.7 65.97 94.8 60.25 
b2 94.6 62.38 95.1 69.73 94.9 63.21 
g1 96.9 44.39 96.9 47.49 97.1 44.96 
g15 91.0 613.61 91.2 688.34 91.1 623.32 
g17 97.3 14.46 97.6 15.36 97.9 14.66 
g19 96.0 23.59 96.0 25.55 96.3 23.80 
g20 95.8 26.60 95.8 30.03 95.3 26.93 
g3 94.5 67.82 94.7 75.25 94.7 68.30 
i2 94.2 181.40 94.1 215.29 93.9 184.13 
i3 91.0 113.96 91.4 136.63 91.1 115.42 
j1 97.8 101.17 97.8 112.86 97.8 101.55 
j2 97.3 116.38 97.5 130.55 97.5 117.40 
j3 97.0 106.70 97.2 118.02 97.1 106.63 
m1 91.7 135.97 91.6 151.55 91.4 137.02 
p1 87.2 638.81 87.3 717.23 87.0 650.70 
p2 94.0 49.96 93.8 56.14 93.3 50.20 
p3 93.5 53.33 93.6 60.25 93.6 54.54 
r1 94.4 74.57 94.5 83.44 95.0 74.87 
u1 93.1 200.24 93.1 223.50 93.0 202.64 
u2 100.0 0.93 100.0 0.38 100.0 0.74 
u3 100.0 0.43 100.0 0.55 100.0 0.95 
u4 92.3 320.37 92.4 356.02 92.2 325.66 
u7 96.9 22.51 97.1 24.06 96.8 22.71 
u8 94.7 75.34 94.5 84.10 94.6 76.09 
u9 96.2 21.60 96.1 23.47 96.2 21.96 
Avg. 95.2 97.80 95.2 109.70 95.0 99.20 

 
 
In Figures 3 and 5 the quality solution are 

reported for all the three cooling functions. In the 
case of Figure 3, the initial temperature is taken 
directly from its own model (i.e. the initial 
temperature for TA pure, or without hybridization. 
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Fig. 4.  Averages of execution times grouped by 
each cooling function.. 
 

 
 
Fig. 5. Averages of quality of solutions grouped by 
TA algorithms versions. 
 

 
 

Fig. 6. Averages of execution times grouped by TA 
tuning schemes. 
 
 
 
 
 

Table 4. Results for TA with final temperature of 
SA: ci obtained from TA pure (Equation 30) but cf 
calculated as SA (using Equation 33). 

 
 Geometric Logarithmic Exponential 

Id Q(%) T(s) Q(%) T(s) Q(%) T(s) 
a1 94.4 3.48 94.9 3.77 94.5 3.61 
a10 97.3 0.84 96.6 0.87 96.4 0.83 
a2 96.3 0.99 96.5 1.06 97.0 1.00 
a4 95.1 1.40 94.7 1.46 94.8 1.36 
a5 92.9 2.09 93.0 2.34 93.1 2.13 
a6 94.4 3.96 94.0 4.33 94.0 3.97 
a7 95.2 3.50 95.5 3.78 95.4 3.63 
a8 97.5 0.98 97.8 1.06 97.3 1.00 
b1 94.8 18.27 94.7 19.74 94.8 18.29 
b2 94.5 17.86 94.4 20.17 94.6 18.29 
g1 97.0 14.57 96.5 15.31 96.8 14.65 
g15 91.2 143.54 90.7 160.95 90.9 144.47 
g17 97.8 3.19 97.2 3.36 97.3 3.24 
g19 95.3 5.21 95.5 5.56 95.6 5.33 
g20 94.9 5.56 95.0 6.21 94.8 5.62 
g3 94.0 16.57 94.1 18.72 94.0 16.42 
i2 92.7 32.36 92.5 40.01 92.4 33.04 
i3 89.9 22.25 90.9 26.13 90.3 21.99 
j1 97.4 17.23 97.4 19.13 97.5 17.28 
j2 97.2 20.59 97.3 23.12 97.2 20.84 
j3 96.9 19.67 96.8 21.67 96.8 19.63 
m1 91.2 35.27 90.9 39.32 91.1 35.86 
p1 86.7 212.26 86.8 238.33 86.9 210.98 
p2 93.3 14.62 93.2 16.30 93.2 14.92 
p3 93.5 16.96 93.2 18.47 93.4 17.06 
r1 94.5 19.05 94.1 21.17 94.1 19.02 
u1 92.9 52.64 92.8 59.05 92.8 53.93 
u2 99.2 0.73 99.6 0.60 99.1 0.80 
u3 100.0 0.48 99.8 0.33 100.0 0.39 
u4 92.2 89.71 92.1 100.17 92.2 89.03 
u7 96.2 5.44 96.4 5.85 96.6 5.47 
u8 94.1 19.35 94.5 21.47 94.0 19.27 
u9 96.0 5.06 95.6 5.45 95.6 5.10 
Avg. 94.7 25.00 94.7 28.00 94.7 25.10 
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  Table 5. Results for TA hybridized with SA: ci and 
cf are calculated as TA (Equations 30 and 31) pure 
when c=cf then running SA with the last solution 
obtained with TA, and cf is calculated as SA (using 
Equation 33). 
 

 Geometric Logarithmic Exponential 
Id Q(%) T(s) Q(%) T(s) Q(%) T(s) 

a1 94.8 2.00 94.6 2.15 94.5 2.07 
a10 97.3 0.67 96.4 0.69 96.6 0.66 
a2 96.6 0.61 97.3 0.63 96.3 0.61 
a4 95.1 1.10 94.4 1.14 94.8 1.08 
a5 93.1 1.93 93.1 2.03 93.1 1.9  6
a6 93.2 2.08 93.9 2.17 93.7 2.0  7
a7 95.6 2.01 95.1 2.16 95.1 2.07 
a8 97.5 0.61 97.5 0.64 97.5 0.62 
b1 94.7 9.85 94.4 10.00 94.6 9.61 
b2 94.4 9.50 94.3 9.94 94.4 9.71 
g1 96.4 7.83 96.4 8.04 96.4 7.72 
g15 90.6 75.09 90.8 76.87 90.8 74.36 
g17 96.9 1.66 97.2 1.71 97.5 1.66 
g19 95.9 2.69 95.5 2.80 95.4 2.72 
g20 94.4 2.98 94.6 3.06 94.8 2.95 
g3 93.8 8.51 94.0 9.02 93.9 8.50 
i2 91.9 18.61 93.4 21.15 92.3 18.85 
i3 90.5 12.60 89.9 13.52 89.5 12.21 
j1 97.4 10.45 97.5 10.73 97.6 10.37 
j2 97.3 12.18 97.1 12.44 97.3 12.06 
j3 96.7 11.21 96.7 11.31 96.7 11.09 
m1 90.7 18.26 90.8 18.96 90.7 18.32 
p1 86.6 112.64 86.7 121.91 86.8 114.77 
p2 93.3 7.75 93.0 8.30 93.2 7.88 
p3 93.0 9.22 92.8 9.60 93.2 9.16 
r1 94.6 9.78 94.3 10.33 93.8 9.48 
u1 92.7 26.72 92.6 28.98 92.7 27.39 
u2 99.7 0.24 99.3 0.42 99.1 0.40 
u3 99.7 0.33 99.6 0.32 99.6 0.32 
u4 91.8 46.04 92.0 48.07 92.0 46.21 
u7 96.3 2.78 96.0 2.93 95.9 2.77 
u8 93.8 9.98 93.8 10.53 93.9 9.83 
u9 95.4 2.58 95.5 2.72 95.6 2.63 
Avg. 94.6 13.30 94.6 14.10 94.5 13.40 

 
From Figures 4 and 6 can be noticed that the best 
execution times were obtained when the 
temperatures of the new algorithm were calculated 
directly from TA model (Equations 30 and 31). All 
the execution times were obtained by using tuning 
schemes three and fourth described in section 4. It 
can be noticed that all these execution times are 
really very good. 
 

 

     Figure 7 shows the averages of quality of solution 
for all cooling functions grouped by the tuning 
schemes. In Figure 7, not remarkable differences can 
be observed for the quality of solution for each 
instance. Nevertheless from Figure 8 (where the 
execution times are shown), remarkable differences 
in the values obtained for the instances: g15, p1, u1 
and u4 can be observed. 
   Based on the fact that a good criterion for 
comparing random algorithms is very good quality 
with reasonable execution time, the algorithms 
presented here are listed from the best to the worst 
as follows: 

 
1. TA hybridized with SA. 
2. TA with final temperature of SA. 
3. TA pure 
4. TA with initial temperature of SA. 

 
 
 
6 Conclusions 
In this paper a new hybrid TA method based on the 
neighborhood structure to obtain the Markov chain 
length in a dynamical way is proposed. 

Experiments showed that hybridizing TA with 
SA algorithm is an excellent option for SAT 
instances; it has an excellent performance based on 
its quality solution and its execution time. In this 
algorithm each SAT instance is executed with a TA 
algorithm but when its temperature parameter 
reaches the final temperature (i.e c=cf,) then this 
temperature cf is calculated as in TA); then once cf is 
reached an SA algorithm is executed with the better 
solution previously obtained with TA. However,  the 
tuning method is adaptive dynamically only when 
the length of the Markov chain is modified in every 
iteration. In a future research an adaptive tuning 
method where the temperature be changed according 
with the objective function is currently been 
developed.  
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Fig. 7. Averages of quality of solutions for each 
SAT instance grouped by TA tuning schemes. 

 

 

Fig. 8. Averages of execution times for each SAT 
instance grouped by by TA tuning schemes. 
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