
Using Policy-based MPLS Management Architecture to Improve QoS
on IP Network

Ruey-Shun Chen1,*, Yung-Shun Tsai2, K.C. Yeh2, and H.Y. Chen2

1 Department of Information Management, China University of Technology,
530 Sec. 3 Chung Shan Road, Hukou, Hsinchu, Taiwan

2 Institute of Information Management, National Chiao Tung University,
1001 Ta Hsueh Road, Hsinchu, Taiwan

* E-mail: rschen@cc.nctu.edu.tw

Abstract: - Multi-Protocol Label Switching (MPLS) is in the process of standardization by the Internet
Engineering Task Force (IETF). It is regarded as a technology for traffic engineering and QoS in IP-networks.
We proposed an IETF Policy-based Network Management Framework and policies with MPLS specific classes.
It uses a three-level policy architecture, which includes managing on device, network, and service level using
policies for supporting Inter-serve and Diff-serve based end-to-end QoS in the Internet. A prototyping of
policy-based management system for MPLS Traffic Engineering is operating on MPLS network elements.
Several experiments illustrate the efficiency and feasibility in this architecture. The results show it can reduce
the time of the setup of MPLS traffic engineering tunnel over hops and MPLS traffic engineering tunnel
deletion. The proposed integrated policy based management architecture will allow network service providers
to offer both quantitative and qualitative services while optimizing the use of underlying network resources.

Key-Words: - Multiple Protocol Label Switching, Traffic Engineering, Quality of Service, Policy-based
Management

1 Introduction
The Internet Engineering Task Force (IETF) has
proposed a number of QoS models and supporting
technologies, including the integrated services
(IntServ) and differentiated services (DiffServ)
frameworks [1]. The latter has been conceived to
provide QoS in a scalable fashion. Instead of
maintaining per-flow soft state at each router,
packets are classified, marked, and policed at the
edge of a DiffServ domain. In order to achieve QoS
guarantees, control plane mechanisms have been
used to reserve resources on demand, but
management plane mechanisms are also necessary
to plan and provision the network, and manage
requirements for service subscription according to
available resources [2]. QoS frameworks such as
IntServ and DiffServ have so far concentrated in
control plane mechanisms for providing QoS.
However, it would not seem possible to provide
QoS without the network and service management
support, which is an integral part of QoS-based
telecommunications networks. Considering in
particular the DiffServ architecture, a key issue is
end-to-end QoS delivery. The Diff-Serv architecture
suggests only mechanisms for relative packet
forwarding treatment to aggregate flows, traffic
management, and conditioning; by no means does it

suggest any architecture for end-to-end QoS
delivery. In order to provide end-to-end quantitative
QoS guarantees, DiffServ mechanisms should be
augmented with intelligent traffic engineering
functions.

Multi-Protocol Label Switching (MPLS) is a new
technology to be standardized by the IETF. The
technology enables the setup of Label Switched
Paths (LSPs) through an IP network. Initially, the
idea of IP label switching was to speed up the
packet forwarding in routers via simple table
lookups instead of longest-matching prefix
algorithms [3].

In this paper, we propose enhancing the IETF
Policy Framework in two directions. First, we
incorporate the management of Multi-Protocol
Label Switching (MPLS) networks into the
framework. MPLS is currently seen as a technology
to influence the routing of IP networks in order to
engineer the traffic with appropriate tools. QoS
services are more easily and more flexible deployed
in an IP-based network, because MPLS allows a
network manager to pin down a route for an
aggregate of flows. However, MPLS per se does not
have QoS features nor mechanisms, but MPLS
together with Differentiated Services (DiffServ) is
the favored approach by the IETF [6] for providing

WSEAS TRANSACTIONS on COMPUTERS Ruey-Shun Chen, Yung-Shun Tsai, K.C. Yeh and H.Y. Chen

ISSN: 1109-2750 341 Issue 5, Volume 7, May 2008

IP QoS. The second enhancement of the policy
framework is dealing with network-level and
service-level management in IP networks.

Using MPLS networks, the notion of a Label
Switched Path (LSP) brings network-level concepts
into the framework which has not been dealt with in
the device-level policy framework. Furthermore,
using traffic engineered network, new kinds of IP
services are possible. E.g., a service guaranteeing
low packet loss probability can be offered using
MPLS as mechanism to traffic engineer the IP
network in a way that traffic is routed around hot
spots. However, quantifying the service quality is
very difficult. Additionally, having mechanisms for
guaranteed services in place, advanced IP services
need to be specified, configured, and controlled.

The rest of this paper is organized as follows:
Section 2 reviews MPLS technique. Section 3
describes the IETF Policy Framework. The
framework of the proposed network model
including different resource classes and paths is
outlined in Section 4. Section 5 describes the actual
implementation and performance evaluation of the
proposed system. Finally, Section 6 presents
conclusions.

2 MPLS Technology
2.1 MPLS Label Stacking
Figure 1 illustrated the MPLS label stack. When a
label is added to a packet, this means that at
minimum a 4 byte "shim" has been added to the

packet. This shim is added between the layer 3
header and layer 2 headers. Therefore, an IP packet
on Ethernet would add the shim before the IP header
but after the Ethernet header. MPLS forwarding is
currently defined for the following implementation
of layer 2: Ethernet, packet over SONET, ATM, and
Frame-relay. MPLS has also been defined for any
medium that PPP runs on top of. On most of the
layer 2 implementation a label consists of a 20 bit
number. The shim that is added to the packet
contains more than just a label. Here is a diagram of
a MPLS shim [13].

As you can see the label is 20 bits. This value is
used to determine how a packet will be label
switched. The next 3 bits are called the EXP bits.
They are currently reserved for experimental
purposes. The next bit is referred to as the "bottom
of stack bit" (S bit). Due to the fact that MPLS adds
a shim to the packet, a LSR needs to know if what
follows this top shim is the layer 3 header or another
shim (Multiple shims are called a label stack. The
purpose of a label stack will be explained later). The
S bit signifies that what follows this shim is the
layer 3 header. For typical single shim MPLS
forwarding the S bit is on. Finally the shim contains
the Time To Live (TTL) counter. This is used to
allow current layer 3 functions to occur even though
an LSR cannot use the layer 3 header. Some
examples of these are trace-route, loop detection,
and multicast domains [13].

When an LER adds a shim to a packet, it is
feasible that it can add more than one shim. This
concept is called Label Stacking. The stack of shims
is treated just as its name sake data structure. A POP

0 1 2 3 4

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Labels

Labels

S TTLExpLabel L a b e l F o r m a t

L a b e l S t a c k
Inserted

Labels

Top
Label

Mid
Label

Bottom
LabelM u l t i p l e L a b e l

Stack

PPP Header Layer 3 Header

Layer 3 Header

Layer 3 Header

Ethernet Header

F r a m e-Relay Header

PPP Header L3

Fig. 1 Label stack

WSEAS TRANSACTIONS on COMPUTERS Ruey-Shun Chen, Yung-Shun Tsai, K.C. Yeh and H.Y. Chen

ISSN: 1109-2750 342 Issue 5, Volume 7, May 2008

means that the top shim is removed, exposing either
another shim or the layer 3 header (determined by
the S bit). A PUSH adds a new shim to the top of
the stack or on top of the layer 3 header. Therefore,
standard label swapping is defined as a POP
followed by a PUSH. In some cases a labeled packet
may need to be tunneled across another MPLS
network. In the case the labeled packet gets another
shim pushed on top without POPing the original
shim off. This results in a label stack of size 2. This
operation can occur multiple times by separate
LSRs, or a single LSR could add more than one
shim. In general any labeled packet has a label stack
although most have a label stack of size 1 [13].

2.2 MPLS Diff-Serv-aware Traffic
Engineering
MPLS traffic engineering allows constraint-based
routing of IP traffic. One of the constraints satisfied
by CBR is the availability of required bandwidth
over a selected path. Diff-Serv-aware Traffic
Engineering extends MPLS traffic engineering to
enable you to perform constraint-based routing of
“guaranteed” traffic, which satisfies a more
restrictive bandwidth constraint than that satisfied
by CBR for regular traffic. The more restrictive
bandwidth is termed a sub-pool, while the regular
TE tunnel bandwidth is called the global pool. (The
sub-pool is a portion of the global pool.) This ability
to satisfy a more restrictive bandwidth constraint
translates into an ability to achieve higher Quality of
Service performance (in terms of delay, jitter, or
loss) for the guaranteed traffic [5].

For example, DS-TE can be used to ensure that
traffic is routed over the network so that, on every
link, there is never more than 40 percent (or any
assigned percentage) of the link capacity of
guaranteed traffic (for example, voice), while there
can be up to 100 percent of the link capacity of
regular traffic. Assuming QoS mechanisms are also
used on every link to queue guaranteed traffic
separately from regular traffic, it then becomes
possible to enforce separate “overbooking” ratios
for guaranteed and regular traffic. Also, through the
ability to enforce a maximum percentage of
guaranteed traffic on any link, the network
administrator can directly control the end-to-end
QoS performance parameters without having to rely
on over-engineering or on expected shortest path
routing behavior. This is essential for transport of
applications that have very high QoS requirements
(such as real-time voice, virtual IP leased line, and
bandwidth trading), where over-engineering cannot
be assumed everywhere in the network [5].

DS-TE involves extending OSPF (Open Shortest
Path First routing protocol) so that the available sub-
pool bandwidth at each preemption level is
advertised in addition to the available global pool
bandwidth at each preemption level. DS-TE
modifies constraint-based routing to take this more
complex advertised information into account during
path computation. The MPLS traffic engineering
Internet Protocol (IP) explicit address exclusion
feature provides a means to exclude a link or node
from the path for an MPLS traffic engineering label-
switched path (LSP). The feature is accessible via
the IP explicit-path command that allows you to
create an IP explicit path and enter a configuration
submode for specifying the path. The feature adds to
the submode commands the exclude-address
command for specifying addresses to exclude from
the path [5].

If the exclude-address for an MPLS traffic
engineering LSP identifies a flooded link, the
constraint-based shortest path first (CSPF) routing
algorithm doesn’t consider that link when
computing paths for the LSP. If the exclude-address
specifies a flooded MPLS traffic engineering router
ID, the CSPF routing algorithm doesn’t allow paths
for the LSP to traverse the node identified by the
router ID. However, in the meantime traffic
engineering and QoS in IP networks became the
dominant driving force behind MPLS [5].

Assuming the deployment of MPLS, the key
question arises: how do we manage large MPLS
networks? We decided to apply policy-based
management concepts to managing an MPLS
network because we considered this an appropriate
way of dealing with large sets of managed elements.
Using policy-based management for networks and
systems has become very popular since the early
work on policies [2], [3], [4]. Nowadays, some
commercial products are available, which use some
form of policies to configure and control networks.
In the IETF there is a Policy Framework Working
Group [5], which aims at resolving issues related to
policy-driven management of IP networks. It
includes the definition of a policy framework and
information models for DiffServ, IntServ, and IP
Devices.

3 IETF Policy Framework
The IETF Policy Framework is under development
by the IETF Policy Framework working group. The
framework consists of Policy Enforcement Points
(PEP), Policy Decision Points (PDP), management
console, and a directory to store policies together
with user/network resource information as Figure 2.

WSEAS TRANSACTIONS on COMPUTERS Ruey-Shun Chen, Yung-Shun Tsai, K.C. Yeh and H.Y. Chen

ISSN: 1109-2750 343 Issue 5, Volume 7, May 2008

PEPs are basically network elements and the PDP is
typically referred to as the Policy Server (PS). The
components are linked by the following protocols
and languages.

The Common Open Policy Service (COPS)
protocol [7] is used to forward requests from PEPs
to the central policy server and to pass back
corresponding policy decisions and support for
reliability using TCP and keep-alive messages. Note
that just recently an initiative to use policies in the
SNMP framework has been started in the
Configuration Management with SNMP
(SNMPconf) working group [9]. A Policy
Definition Language (PDL) is used to define new
policies in terms of policy rules with condition and
action lists [15].

What language to use is very controversial, and
the IETF has not reached consensus in standardizing
a Policy Definition Languages. Basically, each
implementation defines its own language. The
simple version of the X.500 directory access
protocol called Light-Weight Directory Access
Protocol (LDAP) is used by the policy server to
retrieve information from the repository. Note that
any other database may be used, but the working
group decided to only provide a mapping of the
policy model to a LDAP schema. The IETF policy
framework activities are on one hand limited to
DiffServ/IntServ based networks, and on the other
mainly dealing with device configuration.

In this study, we proposed enhancing the IETF
policy framework in two directions. First, we
incorporate the management of Multi-Protocol
Label Switching (MPLS) networks into the
framework. MPLS is currently seen as a technology
to influence the routing of IP networks in order to
engineer the traffic with appropriate tools. QoS
services are more easily and more flexible deployed
in an IP-based network, because MPLS allows a
network manager to control a route for an aggregate
of flows [14].

However, MPLS per se does not have QoS
features nor mechanisms, but MPLS together with
Differentiated Services (DiffServ) is the favored
approach by the IETF for providing IP QoS. The
second enhancement of the policy framework is
dealing with network-level and service-level
management in IP networks. Using MPLS networks,
the notion of a Label Switched Path (LSP) brings
network-level concepts into the frame-work which
has not been dealt with in the device-level policy
framework. Furthermore, using traffic engineered
network, new kinds of IP services are possible. E.g.,
a service guaranteeing low packet loss probability
can be offered using MPLS as mechanism to traffic
engineer the IP network in a way that traffic is
routed around hot spots [15].

One of the key issues in the framework is how
policy rules are triggered by state transitions or
events. A Policy Decision Engine (PDE) is typically

Fig. 2 IETF policy framework

WSEAS TRANSACTIONS on COMPUTERS Ruey-Shun Chen, Yung-Shun Tsai, K.C. Yeh and H.Y. Chen

ISSN: 1109-2750 344 Issue 5, Volume 7, May 2008

used to handle requests. For instance, in COPS for
RSVP, the PEP issues a COPS request and the
policy server returns a decision on whether to permit
or deny the RSVP Path Message. A table of enabled
policy rules is traversed at the PDE in order to find
the matching rules for a request. The scenario is
fairly clear for QoS signaling using the Resource
Reservation Protocol (RSVP). RSVP path and
reservation messages arriving at an RSVP daemon
running on an IP router are converted by a COPS
client component into COPS requests and sent to the
COPS server component at the policy server [14].

The RSVP-related COPS request will be
forwarded to the decision engine which makes a
decision based on the applicable rules. A similar
scenario can be described for the Differentiated
Services approach, where the PDE may be triggered
by a request for (initial) configuration issued by
network elements. The requests contain a
description of the element’s capabilities, which are
used in the PDE to decide on the configuration to
load to the element. The similarity lies in the entity,
which initiates the communication with the policy
server. However, in the DiffServ case, the re-
configuration of network elements may be triggered
by new service level requests (SLS) or an operator
manually re-configuring parts of the network. Both
scenarios communicate in a push structure different
from the RSVP scenario mentioned above. The
second issue to be dealt within the policy server is
the information model used to represent the policy

information as well as network information [15].

4 Design a Policy-based Framework
4.1 Network Topology
We deployed a MPLS network using Cisco router
for the testing network plane. The infrastructure of
this inters-AS MPLS VPN for Diffserv Qos testing
was showing in Figure 3. MPLS network include P
(Provider) router that is responsible for label
swapping in MPLS backbone network and PE
(Provider Edge) router that is responsible for insert
or pop label in the edge of MPLS network
connecting with CE (Customer Edge) router which
is in customer network and ASBR(Autonomous
System Border Router) that is connected with other
network service provider with MPLS network
backbone. We use AS no. to distinguish with each
other.

As shown in Figure 4, the tunnel configuration
involves at least three devices including tunnel head,
midpoint, and tail. On each of those devices one or
two physical interfaces must be configured, for
traffic ingress and egress. Figure 4 is a Sample
Tunnel Topology for one link failure explicit
routing for backup.

Figure 5 is a sample tunnel topology for unequal-
cost load-sharing solution. The tunnel configuration
involves at least three devices including tunnel head,
midpoint, and tail. On each of those devices one or
two physical interfaces must be configured for
traffic ingress and egress. We use packet generator

P P

PE
CE1

ASBR

ASBR

P P
P

PE

EBGP VPNV4
Routes with label
distribution

AS100

AS200

Mainland china A company

Taiwan A company

CE2

Inter-AS

Fig. 3 Diff-serv for inter-AS MPLS VPN

WSEAS TRANSACTIONS on COMPUTERS Ruey-Shun Chen, Yung-Shun Tsai, K.C. Yeh and H.Y. Chen

ISSN: 1109-2750 345 Issue 5, Volume 7, May 2008

to create traffic flow into the MPLS backbone
network to simulate real network condition. The
tunnel configuration is described below.
(1). TE headend configuration

interface Tunnel0
ip unnumbered Loopback0
tunnel mode mpls traffic -eng
tunnel destination 192.168.2.4
tunnel mpls traffic -eng autoroute announce
tunnel mpls traffic -eng priority 1 1

tunnel mpls traffic -eng path-option 1 explicit
identifier 1
tunnel mpls traffic -eng path-option 2 explicit
identifier 2

(2). Basic options configuration
ip explicit-path identifier 1 enable
 next-address 192.168.1.26
!
ip explicit-path identifier 2 enable
 next-address 192.168.1.2
 next-address 192.168.1.14

(ELSR1)

(LSR3)

172.16.1.0/30

L0:192.168.3.1/32
192.168.1.0/30

1.2

L0:192.168.2.4/32

L0:192.168.2.1/32

PGEN 3640

L0:192.168.2.3/32

(LSR2)

(LSR4)

F/E 1.1

F/E
1.13

1.14

1.211.22

G4/0/0
1.17

G2/0
1.18

P5/0
1.26

P5/0
1.25

L0:192.168.2.2/32

1.331.34
Packet generator

(LSR1)

Fig. 5 Inter-serv for MPLS network backbone load-sharing

(ELSR1)

(LSR3)

172.16.1.0/30

L0:192.168.3.1/32
192.168.1.0/30

1.2

L0:192.168.2.4/32

L0:192.168.2.1/32

PGEN 3640

L0:192.168.2.3/32

(LSR2)

(LSR4)

F/E 1.1

F/E
1.13

1.14

1.211.22

G4/0/0
1.17

G2/0
1.18

P5/0
1.26

P5/0
1.25

L0:192.168.2.2/32

1.331.34
Packet generator

(LSR1)

Fig. 4 Inter-serv for MPLS network backbone backup solution

WSEAS TRANSACTIONS on COMPUTERS Ruey-Shun Chen, Yung-Shun Tsai, K.C. Yeh and H.Y. Chen

ISSN: 1109-2750 346 Issue 5, Volume 7, May 2008

 next-address 192.168.1.22
interface POS5/0
 description ****connect to LSR4 (1)***
 ip address 192.168.1.25 255.255.255.252
 no ip redirects
 no ip directed-broadcast
 no ip proxy-arp
load-interval 30
crc 16
clock source internal
mpls traffic -eng tunnels
tag-switching ip
ip rsvp bandwidth 75000 75000

4.2 Service-Level Agreement (SLA)
In this section we substantiate the notion of SLA.
The definition of SLA is the first step toward the
provisioning of QoS. Today, QoS-based services are
offered in terms of contract agreements between an
ISP and its customers. Such agreements will be
greatly simplified through a standardized set of SLA
parameters. An SLA standard is also necessary to
allow for a highly developed level of automation
and dynamic negotiation of SLAs between
customers and providers.

The contents of an SLA include the essential
QoS-related parameters, including scope and flow
identification, traffic conformance parameters, and
service guarantees. More specifically, an SLA has
the following fields as shown in Table 1: Physical

Link, Topology, Attribute, Add service, FlowDes,
Qos, and MPLS backbone network guarantees for
performance parameters, service schedule, and
reliability.

The scope of an SLA associated to a given
service offering uniquely identifies the geographical
and topological region over which the QoS of the IP
service is to be enforced. An ingress (or egress)
interface identifier should uniquely determine the
boundary link or links as defined in [1] on which
packets arrive/depart at the border of a DiffServ
domain. This identifier may be an IP address, but it
may also be determined by a layer two identifier in
case of, say, Ethernet, or for unnumbered links like
in, for example, Point-to-Point Protocol (PPP)
access configurations.

The semantics allow for the description of one-
to-one, one-to-many, and many-to-one
communication SLA models, denoted (1|1), (1|N),
and (N|1), respectively. The network service
attributes of an SLA associated to a given service
offering intranet or extranet or internet indicates for
which IP packets the QoS policy for that specific
service offering is to be enforced.

An SLA has only one FlowDes, which can be
formally specified by providing one or more of the
following attributes: FlowDes = (DiffServ
information, source information, destination
information, application information) Setting one or
more of the above attributes formally specifies a
SLS FlowDes. The DiffServ information might be

Table 1 MPLS service level agreement table

WSEAS TRANSACTIONS on COMPUTERS Ruey-Shun Chen, Yung-Shun Tsai, K.C. Yeh and H.Y. Chen

ISSN: 1109-2750 347 Issue 5, Volume 7, May 2008

the DSCP. The source/destination information could
be a source/destination address, a set of them, a set
of prefixes or any combination of them. The
FlowDes provides the necessary information for
classifying the packets at a DiffServ edge node.

The packet classification can be either behavior
aggregate (BA) or multifield (MF) based. The traffic
descriptor includes traffic envelope and traffic
conformance and describes the traffic characteristics
of the IP packet stream identified by FlowDes. The
traffic envelope is a set of traffic conformance (TC)
parameters, describing how the packet stream
should be in order to receive the treatment indicated
by the performance parameters. The TC parameters
are the input to the traffic conformance testing
algorithms.

5 Implementation and Results
5.1 System Implementation
Figure 6 illustrated the actual implementation of
policy-based management framework. We
developed a policy server prototype for the
management of MPLS networks in order to prove
the feasibility of our architecture. The applicability
to large MPLS/DiffServ networks has been shown

by using Cisco router. However, at the current stage
of the implementation, we can only show a working
prototype proving the concept.

For more meaningful results many open issues in
the area of service level agreement (SLA) request
arrival and duration, traffic models of source etc.
The prototype is based on the policy server, which
was targeted to the area of IntServ and HTTP. It
consists of a policy language together with a policy
editor and an interface to LDAP directories. The
server is implemented in Java. The policy language
is a proprietary simple language, which allows an
operator to specify policies in a human readable way.

The mapping of the policy language to the
objects in the implementation is straight forward
and easy to implement. As interface to policy clients,
the policy server uses a protocol adaptor, which
abstracts from real policy protocols such as COPS,
SNMP for configuration, or our proprietary one to
the simulator. According to the policy information
model, we extended the IETF framework by MPLS
policies.

MPLS policy classes are converted into a LDAP
directory schema. Furthermore, we built Cisco
router to a MPLS network which offers MPLS
functionality. The policy server and policy manager
run on different PCs. The interface is implemented

P P

PP

PE CE

PE

CE
VPN_B

10.3.0.0

VPN_B
10.2.0.0

MPLS Core

Policy
Repository

Policy Manager

Policy Server
(PDP) for TE

Policy Client
(PEP)

Policy Server
(PDP) for VPN

Policy protocol
(CLI,SNMP)

SSH Server for security

LDAP

LDAP(CGI)

LDAP(CGI)LDAP(CGI)

Network
manager

SSL

Fig. 6 Policy-based management framework

WSEAS TRANSACTIONS on COMPUTERS Ruey-Shun Chen, Yung-Shun Tsai, K.C. Yeh and H.Y. Chen

ISSN: 1109-2750 348 Issue 5, Volume 7, May 2008

using a proprietary, COPS-like, text-based protocol
between the real policy server and the Cisco router
MPLS network using a TCP connection. All
management agents send COPS-like messages to the
real policy server. The messages from the Cisco
router MPLS network to the policy server include
always the network element’s address and port
number of the management agent.

The configuration messages from the policy
server take the reverse way. Additionally, a
simulation of a SLA requestor issues service
requests to the policy server, and generates traffic.
The service level requests are sent with the same
mechanism described in the above paragraph. The
source starts sending in case a SLA Permit decision
is communicated back to it. Our policy server
supports two kinds of policies: policies for device
configuration and policies for deciding on service
requests. Device configuration policies are triggered
by devices, e.g. at start-up, while the other kind of
policies is triggered by arriving service requests.

5.2 Evaluation
We describe a prototypical implementation of a
policy-based management system for MPLS Traffic
Engineering, operating on MPLS network elements.
Several experiment made in our test environment
illustrate the general efficiency and feasibility of our
architecture. For example, the setup of MPLS traffic
engineering tunnel over four hops is performed in
one second, and finally, MPLS traffic engineering
tunnel deletion also lasts about two seconds, this
data is calculated from Cisco router history log file
and policy server history log file. Policy repository
is using MySQL database software to establish, and
policy server is using simulation software of telnet
function like manual CLI (Command Line Interface)
to send configuration information to Cisco router.

6 Conclusions
We proposed a template for service-level agreement
with a functional architecture for supporting the
QoS required by contracted SLA, while trying to
optimize use of network resources. The
management plane aspects of our architecture
include SLA subscription, traffic forecasting,
network dimensioning, and dynamic resource and
route management. All of these are policy-driven.
The control plane aspects include SLA invocation
and packet routing, while data plane aspects include
traffic conditioning and PHB-based forwarding. The
management plane aspects of our architecture can
be thought of as a detailed of the policy server in the

context of an integrated management and control
architecture that aims to support both qualitative and
quantitative.

We proposed a prototyping of a policy-based
management system for MPLS Traffic Engineering,
operating on MPLS network elements. Several
experiments illustrate the general efficiency and
feasibility of our architecture. For example, the
setup of MPLS traffic engineering tunnel over four
hops is performed in one second, and finally, MPLS
traffic engineering tunnel deletion also lasts about
two seconds.

Many of the functional blocks of this
architectural model are also features of policy server
the main difference being that a policy server is seen
as driven purely by customer requests whereas in
our approach, TE functions continually aim at
optimizing the network configuration and its
performance.

This system used a number of technologies for
communications between the policy manager and
policy server, with Lightweight Directory Access
Protocol for accessing the SLA and network
repositories. The interfaces to the routers are based
on the Simple Network Management Protocol and
command-line interfaces with an adaptation layer
presenting a consistent interface to the management
plane, which is independent of whether the
underlying router is commercial or experimental.

Finally, the proposed DiffServ-oriented
management and control framework was based on
MPLS network. As such, we are fairly confident
that the proposed architectural framework will result
in a workable solution for end-to-end QoS in a
DiffServ MPLS-based Internet. Diff-serv-aware
MPLS TE is a powerful solution for improving
network resource management. Guaranteed
Bandwidth Services is assuring value-added
services better availability with TE, scalable VPN
solution.

References:
[1] S. Blake et al., An Architecture for

Differentiated Services, RFC 2475, 1998.
[2] P. Georgatsos et al., Technology Interoperation

in ATM Networks: The REFORM System,
IEEE Commun. Mag., Vol.37, No.5, May 1999,
pp. 112-118.

[3] D. Awduche et al., A Framework for Internet
Traffic Engineering, Working Paper, July 2000.

[4] E. Rosen, A. Viswanathan, and R. Callon,
Multi-protocol Label Switching Architecture,
RFC 3031, Jan. 2001.

WSEAS TRANSACTIONS on COMPUTERS Ruey-Shun Chen, Yung-Shun Tsai, K.C. Yeh and H.Y. Chen

ISSN: 1109-2750 349 Issue 5, Volume 7, May 2008

[5] P. Aukia et al., RATES: A Server for MPLS
Traffic Engineering, IEEE Network , Mar./Apr.
2000.

[6] A. Feldmann et al., NetScope: Traffic
Engineering for IP Networks, IEEE Network ,
Mar./Apr. 2000.

[7] B. Teitelbaum, Qbone Architecture (v1.0),
1999, http://www.internet2.edu

[8] K. Nichols, V. Jacobson, and L. Zhang, A Two-
Bit Differentiated Services Architecture for the
Internet, RFC2638, July 1999.

[9] D. Goderis et al., Service Level Specification
Semantics and Parameters, Working Paper,
Nov. 2000.

[10] P. Flegkas et al., On Policy-based Extensible
Hierarchical Network Management in QoS-
enabled IP Networks, Proc. Policies for Dist.
Sys. and Networks, 2001.

[11] P. Aukia et al., RATES: A Server for MPLS
Traffic Engineering, IEEE Network , Mar./Apr.
2000.

[12] K. Dave, Understanding Policy-based
Networking, Willey Computer, 2001.

[13] I. Pepelnjak, and J. Guichard, MPLS and VPN
Architectures, Cisco Press, 2001.

[14] C.K. Wang, Policy-based Network
Management, WCC-ICCT, 2000.

[15] J. Guichard, A Primer on Policy-based Network
Management, HP Company, 1999.

WSEAS TRANSACTIONS on COMPUTERS Ruey-Shun Chen, Yung-Shun Tsai, K.C. Yeh and H.Y. Chen

ISSN: 1109-2750 350 Issue 5, Volume 7, May 2008

