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Abstract: - Multi-Protocol Label Switching (MPLS) is in the process of standardization by the Internet 
Engineering Task Force (IETF). It is regarded as a technology for traffic engineering and QoS in IP-networks. 
We proposed an IETF Policy-based Network Management Framework and policies with MPLS specific classes. 
It uses a three-level policy architecture, which includes managing on device, network, and service level using 
policies for supporting Inter-serve and Diff-serve based end-to-end QoS in the Internet. A prototyping of 
policy-based management system for MPLS Traffic Engineering is operating on MPLS network elements. 
Several experiments illustrate the efficiency and feasibility in this architecture. The results show it can reduce 
the time of the setup of MPLS traffic engineering tunnel over hops and MPLS traffic engineering tunnel 
deletion. The proposed integrated policy based management architecture will allow network service providers 
to offer both quantitative and qualitative services while optimizing the use of underlying network resources. 
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1 Introduction 
The Internet Engineering Task Force (IETF) has 
proposed a number of QoS models and supporting 
technologies, including the integrated services 
(IntServ) and differentiated services (DiffServ) 
frameworks [1]. The latter has been conceived to 
provide QoS in a scalable fashion. Instead of 
maintaining per-flow soft state at each router, 
packets are classified, marked, and policed at the 
edge of a DiffServ domain. In order to achieve QoS 
guarantees, control plane mechanisms have been 
used to reserve resources on demand, but 
management plane mechanisms are also necessary 
to plan and provision the network, and manage 
requirements for service subscription according to 
available resources [2]. QoS frameworks such as 
IntServ and DiffServ have so far concentrated in 
control plane mechanisms for providing QoS. 
However, it would not seem possible to provide 
QoS without the network and service management 
support, which is an integral part of QoS-based 
telecommunications networks. Considering in 
particular the DiffServ architecture, a key issue is 
end-to-end QoS delivery. The Diff-Serv architecture 
suggests only mechanisms for relative packet 
forwarding treatment to aggregate flows, traffic 
management, and conditioning; by no means does it 

suggest any architecture for end-to-end QoS 
delivery. In order to provide end-to-end quantitative 
QoS guarantees, DiffServ mechanisms should be 
augmented with intelligent traffic engineering 
functions. 

Multi-Protocol Label Switching (MPLS) is a new 
technology to be standardized by the IETF. The 
technology enables the setup of Label Switched 
Paths (LSPs) through an IP network. Initially, the 
idea of IP label switching was to speed up the 
packet forwarding in routers via simple  table 
lookups instead of longest-matching prefix 
algorithms [3]. 

In this paper, we propose enhancing the IETF 
Policy Framework in two directions. First, we 
incorporate the management of Multi-Protocol 
Label Switching (MPLS) networks into the 
framework. MPLS is currently seen as a technology 
to influence the routing of IP networks in order to 
engineer the traffic with appropriate tools. QoS 
services are more easily and more flexible deployed 
in an IP-based network, because MPLS allows a 
network manager to pin down a route for an 
aggregate of flows. However, MPLS per se does not 
have QoS features nor mechanisms, but MPLS 
together with Differentiated Services (DiffServ) is 
the favored approach by the IETF [6] for providing 
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IP QoS. The second enhancement of the policy 
framework is dealing with network-level and 
service-level management in IP networks. 

Using MPLS networks, the notion of a Label 
Switched Path (LSP) brings network-level concepts 
into the framework which has not been dealt with in 
the device-level policy framework. Furthermore, 
using traffic engineered network, new kinds of IP 
services are possible. E.g., a service guaranteeing 
low packet loss probability can be offered using 
MPLS as mechanism to traffic engineer the IP 
network in a way that traffic is routed around hot 
spots. However, quantifying the service quality is 
very difficult. Additionally, having mechanisms for 
guaranteed services in place, advanced IP services 
need to be specified, configured, and controlled. 

The rest of this paper is organized as follows: 
Section 2 reviews MPLS technique. Section 3 
describes the IETF Policy Framework. The 
framework of the proposed network model 
including different resource classes and paths is 
outlined in Section 4. Section 5 describes the actual 
implementation and performance evaluation of the 
proposed system. Finally, Section 6 presents 
conclusions. 
 
 
2 MPLS Technology 
2.1 MPLS Label Stacking 
Figure 1 illustrated the MPLS label stack. When a 
label is added to a packet, this means that at 
minimum a 4 byte "shim" has been added to the 

packet. This shim is added between the layer 3 
header and layer 2 headers. Therefore, an IP packet 
on Ethernet would add the shim before the IP header 
but after the Ethernet header. MPLS forwarding is 
currently defined for the following implementation 
of layer 2: Ethernet, packet over SONET, ATM, and 
Frame-relay. MPLS has also been defined for any 
medium that PPP runs on top of. On most of the 
layer 2 implementation a label consists of a 20 bit 
number. The shim that is added to the packet 
contains more than just a label. Here is a diagram of 
a MPLS shim [13]. 

As you can see the label is 20 bits. This value is 
used to determine how a packet will be label 
switched. The next 3 bits are called the EXP bits. 
They are currently reserved for experimental 
purposes. The next bit is referred to as the "bottom 
of stack bit" (S bit). Due to the fact that MPLS adds 
a shim to the packet, a LSR needs to know if what 
follows this top shim is the layer 3 header or another 
shim (Multiple shims are called a label stack. The 
purpose of a label stack will be explained later). The 
S bit signifies that what follows this shim is the 
layer 3 header. For typical single shim MPLS 
forwarding the S bit is on. Finally the shim contains 
the Time To Live (TTL) counter. This is used to 
allow current layer 3 functions to occur even though 
an LSR cannot use the layer 3 header. Some 
examples of these are trace-route, loop detection, 
and multicast domains [13]. 

When an LER adds a shim to a packet, it is 
feasible that it can add more than one shim. This 
concept is called Label Stacking. The stack of shims 
is treated just as its name sake data structure. A POP 
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Fig. 1 Label stack 
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means that the top shim is removed, exposing either 
another shim or the layer 3 header (determined by 
the S bit). A PUSH adds a new shim to the top of 
the stack or on top of the layer 3 header. Therefore, 
standard label swapping is defined as a POP 
followed by a PUSH. In some cases a labeled packet 
may need to be tunneled across another MPLS 
network.  In the case the labeled packet gets another 
shim pushed on top without POPing the original 
shim off. This results in a label stack of size 2. This 
operation can occur multiple times by separate 
LSRs, or a single LSR could add more than one 
shim. In general any labeled packet has a label stack 
although most have a label stack of size 1 [13]. 
 
 
2.2 MPLS Diff-Serv-aware Traffic 
Engineering 
MPLS traffic engineering allows constraint-based 
routing of IP traffic. One of the constraints satisfied 
by CBR is the availability of required bandwidth 
over a selected path. Diff-Serv-aware Traffic 
Engineering extends MPLS traffic engineering to 
enable you to perform constraint-based routing of 
“guaranteed” traffic, which satisfies a more 
restrictive bandwidth constraint than that satisfied 
by CBR for regular traffic. The more restrictive 
bandwidth is termed a sub-pool, while the regular 
TE tunnel bandwidth is called the global pool. (The 
sub-pool is a portion of the global pool.) This ability 
to satisfy a more restrictive bandwidth constraint 
translates into an ability to achieve higher Quality of 
Service performance (in terms of delay, jitter, or 
loss) for the guaranteed traffic [5]. 

For example, DS-TE can be used to ensure that 
traffic is routed over the network so that, on every 
link, there is never more than 40 percent (or any 
assigned percentage) of the link capacity of 
guaranteed traffic (for example, voice), while there 
can be up to 100 percent of the link capacity of 
regular traffic. Assuming QoS mechanisms are also 
used on every link to queue guaranteed traffic 
separately from regular traffic, it then becomes 
possible to enforce separate “overbooking” ratios 
for guaranteed and regular traffic. Also, through the 
ability to enforce a maximum percentage of 
guaranteed traffic on any link, the network 
administrator can directly control the end-to-end 
QoS performance parameters without having to rely 
on over-engineering or on expected shortest path 
routing behavior. This is essential for transport of 
applications that have very high QoS requirements 
(such as real-time voice, virtual IP leased line, and 
bandwidth trading), where over-engineering cannot 
be assumed everywhere in the network [5]. 

DS-TE involves extending OSPF (Open Shortest 
Path First routing protocol) so that the available sub-
pool bandwidth at each preemption level is 
advertised in addition to the available global pool 
bandwidth at each preemption level. DS-TE 
modifies constraint-based routing to take this more 
complex advertised information into account during 
path computation. The MPLS traffic engineering 
Internet Protocol (IP) explicit address exclusion 
feature provides a means to exclude a link or node 
from the path for an MPLS traffic engineering label-
switched path (LSP). The feature is accessible via 
the IP explicit-path command that allows you to 
create an IP explicit path and enter a configuration 
submode for specifying the path. The feature adds to 
the submode commands the exclude-address 
command for specifying addresses to exclude from 
the path [5]. 

If the exclude-address for an MPLS traffic 
engineering LSP identifies a flooded link, the 
constraint-based shortest path first (CSPF) routing 
algorithm doesn’t consider that link when 
computing paths for the LSP. If the exclude-address 
specifies a flooded MPLS traffic engineering router 
ID, the CSPF routing algorithm doesn’t allow paths 
for the LSP to traverse the node identified by the 
router ID. However, in the meantime traffic 
engineering and QoS in IP networks became the 
dominant driving force behind MPLS [5].  

Assuming the deployment of MPLS, the key 
question arises: how do we manage large MPLS 
networks? We decided to apply policy-based 
management concepts to managing an MPLS 
network because we considered this an appropriate 
way of dealing with large sets of managed elements. 
Using policy-based management for networks and 
systems has become very popular since the early 
work on policies [2], [3], [4]. Nowadays, some 
commercial products are available, which use some 
form of policies to configure and control networks. 
In the IETF there is a Policy Framework Working 
Group [5], which aims at resolving issues related to 
policy-driven management of IP networks. It 
includes the definition of a policy framework and 
information models for DiffServ, IntServ, and IP 
Devices. 
 
 
3 IETF Policy Framework 
The IETF Policy Framework is under development 
by the IETF Policy Framework working group. The 
framework consists of Policy Enforcement Points 
(PEP), Policy Decision Points (PDP), management 
console, and a directory to store policies together 
with user/network resource information as Figure 2. 
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PEPs are basically network elements and the PDP is 
typically referred to as the Policy Server (PS). The 
components are linked by the following protocols 
and languages. 

The Common Open Policy Service (COPS) 
protocol [7] is used to forward requests from PEPs 
to the central policy server and to pass back 
corresponding policy decisions and support for 
reliability using TCP and keep-alive messages. Note 
that just recently an initiative to use policies in the 
SNMP framework has been started in the 
Configuration Management with SNMP 
(SNMPconf) working group [9]. A Policy 
Definition Language (PDL) is used to define new 
policies in terms of policy rules with condition and 
action lists [15]. 

What language to use is very controversial, and 
the IETF has not reached consensus in standardizing 
a Policy Definition Languages. Basically, each 
implementation defines its own language. The 
simple version of the X.500 directory access 
protocol called Light-Weight Directory Access 
Protocol (LDAP) is used by the policy server to 
retrieve information from the repository. Note that 
any other database may be used, but the working 
group decided to only provide a mapping of the 
policy model to a LDAP schema. The IETF policy 
framework activities are on one hand limited to 
DiffServ/IntServ based networks, and on the other 
mainly dealing with device configuration.  

In this study, we proposed enhancing the IETF 
policy framework in two directions. First, we 
incorporate the management of Multi-Protocol 
Label Switching (MPLS) networks into the 
framework. MPLS is currently seen as a technology 
to influence the routing of IP networks in order to 
engineer the traffic with appropriate tools. QoS 
services are more easily and more flexible deployed 
in an IP-based network, because MPLS allows a 
network manager to control a route for an aggregate 
of flows [14].  

However, MPLS per se does not have QoS 
features nor mechanisms, but MPLS together with 
Differentiated Services (DiffServ) is the favored 
approach by the IETF for providing IP QoS. The 
second enhancement of the policy framework is 
dealing with network-level and service-level 
management in IP networks. Using MPLS networks, 
the notion of a Label Switched Path (LSP) brings 
network-level concepts into the frame-work which 
has not been dealt with in the device-level policy 
framework. Furthermore, using traffic engineered 
network, new kinds of IP services are possible. E.g., 
a service guaranteeing low packet loss probability 
can be offered using MPLS as mechanism to traffic 
engineer the IP network in a way that traffic is 
routed around hot spots [15].  

One of the key issues in the framework is how 
policy rules are triggered by state transitions or 
events. A Policy Decision Engine (PDE) is typically 

 
Fig. 2 IETF policy framework 
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used to handle requests. For instance, in COPS for 
RSVP, the PEP issues a COPS request and the 
policy server returns a decision on whether to permit 
or deny the RSVP Path Message. A table of enabled 
policy rules is traversed at the PDE in order to find 
the matching rules for a request. The scenario is 
fairly clear for QoS signaling using the Resource 
Reservation Protocol (RSVP). RSVP path and 
reservation messages arriving at an RSVP daemon 
running on an IP router are converted by a COPS 
client component into COPS requests and sent to the 
COPS server component at the policy server [14]. 

The RSVP-related COPS request will be 
forwarded to the decision engine which makes a 
decision based on the applicable rules. A similar 
scenario can be described for the Differentiated 
Services approach, where the PDE may be triggered 
by a request for (initial) configuration issued by 
network elements. The requests contain a 
description of the element’s capabilities, which are 
used in the PDE to decide on the configuration to 
load to the element. The similarity lies in the entity, 
which initiates the communication with the policy 
server. However, in the DiffServ case, the re-
configuration of network elements may be triggered 
by new service level requests (SLS) or an operator 
manually re-configuring parts of the network. Both 
scenarios communicate in a push structure different 
from the RSVP scenario mentioned above. The 
second issue to be dealt within the policy server is 
the information model used to represent the policy 

information as well as network information [15]. 
 
 
4 Design a Policy-based Framework  
4.1 Network Topology 
We deployed a MPLS network using Cisco router 
for the testing network plane. The infrastructure of 
this inters-AS MPLS VPN for Diffserv Qos testing 
was showing in Figure 3. MPLS network include P 
(Provider) router that is responsible for label 
swapping in MPLS backbone network and PE 
(Provider Edge) router that is responsible for insert 
or pop label in the edge of MPLS network 
connecting with CE (Customer Edge) router which 
is in customer network and ASBR(Autonomous 
System Border Router) that is connected with other 
network service provider with MPLS network 
backbone. We use AS no. to distinguish with each 
other. 

As shown in Figure 4, the tunnel configuration 
involves at least three devices including tunnel head, 
midpoint, and tail. On each of those devices one or 
two physical interfaces must be configured, for 
traffic ingress and egress. Figure 4 is a Sample 
Tunnel Topology for one link failure explicit 
routing for backup. 

Figure 5 is a sample tunnel topology for unequal-
cost load-sharing solution. The tunnel configuration 
involves at least three devices including tunnel head, 
midpoint, and tail. On each of those devices one or 
two physical interfaces must be configured for 
traffic ingress and egress. We use packet generator 
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Fig. 3 Diff-serv for inter-AS MPLS VPN 
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to create traffic flow into the MPLS backbone 
network to simulate real network condition. The 
tunnel configuration is described below. 
(1). TE headend configuration 

interface Tunnel0 
ip unnumbered Loopback0 
tunnel mode mpls traffic -eng 
tunnel destination 192.168.2.4  
tunnel mpls traffic -eng autoroute announce 
tunnel mpls traffic -eng priority 1 1 

tunnel mpls traffic -eng path-option 1 explicit 
identifier 1 
tunnel mpls traffic -eng path-option 2 explicit 
identifier 2 

(2). Basic options configuration 
ip explicit-path identifier 1 enable  
 next-address 192.168.1.26 
! 
ip explicit-path identifier 2 enable  
 next-address 192.168.1.2 
 next-address 192.168.1.14 
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L0:192.168.3.1/32
192.168.1.0/30

1.2

L0:192.168.2.4/32

L0:192.168.2.1/32

PGEN 3640

L0:192.168.2.3/32

(LSR2)

(LSR4)

F/E  1.1

F/E
1.13

1.14

1.211.22

G4/0/0
1.17

G2/0
1.18

P5/0
1.26

P5/0
1.25

L0:192.168.2.2/32

1.331.34
Packet generator

(LSR1)

 
Fig. 5 Inter-serv for MPLS network backbone load-sharing 
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Fig. 4 Inter-serv for MPLS network backbone backup solution 
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 next-address 192.168.1.22 
interface POS5/0 
 description ****connect to LSR4 (1)*** 
 ip address 192.168.1.25 255.255.255.252 
 no ip redirects 
 no ip directed-broadcast 
 no ip proxy-arp 
load-interval 30 
crc 16 
clock source internal 
mpls traffic -eng tunnels 
tag-switching ip 
ip rsvp bandwidth 75000 75000 

 
 
4.2 Service-Level Agreement (SLA) 
In this section we substantiate the notion of SLA. 
The definition of SLA is the first step toward the 
provisioning of QoS. Today, QoS-based services are 
offered in terms of contract agreements between an 
ISP and its customers. Such agreements will be 
greatly simplified through a standardized set of SLA 
parameters. An SLA standard is also necessary to 
allow for a highly developed level of automation 
and dynamic negotiation of SLAs between 
customers and providers. 

The contents of an SLA include the essential 
QoS-related parameters, including scope and flow 
identification, traffic conformance parameters, and 
service guarantees. More specifically, an SLA has 
the following fields as shown in Table 1: Physical 

Link, Topology, Attribute, Add service, FlowDes, 
Qos, and MPLS backbone network guarantees for 
performance parameters, service schedule, and 
reliability. 

The scope of an SLA associated to a given 
service offering uniquely identifies the geographical 
and topological region over which the QoS of the IP 
service is to be enforced. An ingress (or egress) 
interface identifier should uniquely determine the 
boundary link or links as defined in [1] on which 
packets arrive/depart at the border of a DiffServ 
domain. This identifier may be an IP  address, but it 
may also be determined by a layer two identifier in 
case of, say, Ethernet, or for unnumbered links like 
in, for example, Point-to-Point Protocol (PPP) 
access configurations. 

The semantics allow for the description of one-
to-one, one-to-many, and many-to-one 
communication SLA models, denoted (1|1), (1|N), 
and (N|1), respectively. The network service 
attributes of an SLA associated to a given service 
offering intranet or extranet or internet indicates for 
which IP packets the QoS policy for that specific 
service offering is to be enforced. 

An SLA has only one FlowDes, which can be 
formally specified by providing one or more of the 
following attributes: FlowDes = (DiffServ 
information, source information, destination 
information, application information) Setting one or 
more of the above attributes formally specifies a 
SLS FlowDes. The DiffServ information might be 

Table 1 MPLS service level agreement table 
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the DSCP. The source/destination information could 
be a source/destination address, a set of them, a set 
of prefixes or any combination of them. The 
FlowDes provides the necessary information for 
classifying the packets at a DiffServ edge node. 

The packet classification can be either behavior 
aggregate (BA) or multifield (MF) based. The traffic 
descriptor includes traffic envelope and traffic 
conformance and describes the traffic characteristics 
of the IP packet stream identified by FlowDes. The 
traffic envelope is a set of traffic conformance (TC) 
parameters, describing how the packet stream 
should be in order to receive the treatment indicated 
by the performance parameters. The TC parameters 
are the input to the traffic conformance testing 
algorithms. 
 
 
5 Implementation and Results 
5.1 System Implementation 
Figure 6 illustrated the actual implementation of 
policy-based management framework. We 
developed a policy server prototype for the 
management of MPLS networks in order to prove 
the feasibility of our architecture. The applicability 
to large MPLS/DiffServ networks has been shown 

by using Cisco router. However, at the current stage 
of the implementation, we can only show a working 
prototype proving the concept. 

For more meaningful results many open issues in 
the area of service level agreement (SLA) request 
arrival and duration, traffic models of source etc. 
The prototype is based on the policy server, which 
was targeted to the area of IntServ and HTTP. It 
consists of a policy language together with a policy 
editor and an interface to LDAP directories. The 
server is implemented in Java. The policy language 
is a proprietary simple language, which allows an 
operator to specify policies in a human readable way. 

The mapping of the policy language to the 
objects in the implementation is straight forward 
and easy to implement. As interface to policy clients, 
the policy server uses a protocol adaptor, which 
abstracts from real policy protocols such as COPS, 
SNMP for configuration, or our proprietary one to 
the simulator. According to the policy information 
model, we extended the IETF framework by MPLS 
policies. 

MPLS policy classes are converted into a LDAP 
directory schema. Furthermore, we built Cisco 
router to a MPLS network which offers MPLS 
functionality. The policy server and policy manager 
run on different PCs. The interface is implemented 
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Fig. 6 Policy-based management framework 
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using a proprietary, COPS-like, text-based protocol 
between the real policy server and the Cisco router 
MPLS network using a TCP connection. All 
management agents send COPS-like messages to the 
real policy server. The messages from the Cisco 
router MPLS network to the policy server include 
always the network element’s address and port 
number of the management agent. 

The configuration messages from the policy 
server take the reverse way. Additionally, a 
simulation of a SLA requestor issues service 
requests to the policy server, and generates traffic. 
The service level requests are sent with the same 
mechanism described in the above paragraph. The 
source starts sending in case a SLA Permit decision 
is communicated back to it. Our policy server 
supports two kinds of policies: policies for device 
configuration and policies for deciding on service 
requests. Device configuration policies are triggered 
by devices, e.g. at start-up, while the other kind of 
policies is triggered by arriving service requests. 
 
 
5.2 Evaluation 
We describe a prototypical implementation of a 
policy-based management system for MPLS Traffic 
Engineering, operating on MPLS network elements. 
Several experiment made in our test environment 
illustrate the general efficiency and feasibility of our 
architecture. For example, the setup of MPLS traffic 
engineering tunnel over four hops is performed in 
one second, and finally, MPLS traffic engineering 
tunnel deletion also lasts about two seconds, this 
data is calculated from Cisco router history log file 
and policy server history log file. Policy repository 
is using MySQL database software to establish, and 
policy server is using simulation software of telnet 
function like manual CLI (Command Line Interface) 
to send configuration information to Cisco router. 
 
 
6 Conclusions 
We proposed a template for service-level agreement 
with a functional architecture for supporting the 
QoS required by contracted SLA, while trying to 
optimize use of network resources. The 
management plane aspects of our architecture 
include SLA subscription, traffic forecasting, 
network dimensioning, and dynamic resource and 
route management. All of these are policy-driven. 
The control plane aspects include SLA invocation 
and packet routing, while data plane aspects include 
traffic conditioning and PHB-based forwarding. The 
management plane aspects of our architecture can 
be thought of as a detailed of the policy server in the 

context of an integrated management and control 
architecture that aims to support both qualitative and 
quantitative. 

We proposed a prototyping of a policy-based 
management system for MPLS Traffic Engineering, 
operating on MPLS network elements. Several 
experiments illustrate the general efficiency and 
feasibility of our architecture. For example, the 
setup of MPLS traffic engineering tunnel over four 
hops is performed in one second, and finally, MPLS 
traffic engineering tunnel deletion also lasts about 
two seconds. 

Many of the functional blocks of this 
architectural model are also features of policy server 
the main difference being that a policy server is seen 
as driven purely by customer requests whereas in 
our approach, TE functions continually aim at 
optimizing the network configuration and its 
performance. 

This system used a number of technologies for 
communications between the policy manager and 
policy server, with Lightweight Directory Access 
Protocol for accessing the SLA and network 
repositories. The interfaces to the routers are based 
on the Simple Network Management Protocol and 
command-line interfaces with an adaptation layer 
presenting a consistent interface to the management 
plane, which is independent of whether the 
underlying router is commercial or experimental. 

Finally, the proposed DiffServ-oriented 
management and control framework was based on 
MPLS network. As such, we are fairly confident 
that the proposed architectural framework will result 
in a workable solution for end-to-end QoS in a 
DiffServ MPLS-based Internet. Diff-serv-aware 
MPLS TE is a powerful solution for improving 
network resource management. Guaranteed 
Bandwidth Services is assuring value-added 
services better availability with TE, scalable VPN 
solution. 
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