
Extending the Equivalent Transformation Framework to Model 
Dynamic Interactive Systems 

 
*COURTNEY POWELL, KIYOSHI AKAMA 

Information Initiative Center, 
Hokkaido University, 

Kita 11 Nishi 5, Sapporo, 060-0811, 
JAPAN 

*kotoni@uva.cims.hokudai.ac.jp, akama@iic.hokudai.ac.jp 
http://assam.cims.hokudai.ac.jp/laboe/eti.html  

 
 
Abstract: - Conceptualizing, visualizing, analyzing, reasoning about and implementing Dynamic Interactive 
Systems (DISs) are difficult and error-prone activities. To conceptualize and reason about the sorts of 
properties expected of any DIS, a formal framework that most naturally facilitates conceptualization and 
modelling of DISs is essential. In this paper we propose and explain why extending the Equivalent 
Transformation Framework to conceptually model DISs satisfies this ideal. The benefits to be derived from 
using this framework include a simplified and intuitive conceptualization process, mathematically sound 
models, guaranteed system correctness, high level abstraction, clarity, granular modularity, and an integrated 
framework for reasoning about, manipulating, and optimizing the various aspects of DISs. 
 
Key-Words: - Conceptual Modelling, Dynamic Interactive Systems, Equivalent Transformation, Correctness, 
Formal Methods. 
 
1 Introduction 
Dynamic Interactive Systems (DISs) consist of 
independent objects interacting with each other and 
changing states dynamically over time. The 
interactions comprise both object-to-object and 
environment-to-object interactions. Practical DISs 
consist of multiple independent objects interacting 
concurrently.  

Even though a variety of techniques such as 
process algebras and UML can be used to model 
interactive systems (of which DISs is a subset); they 
tend to be fraught with various challenges including 
high-learning curve, high generality, high 
complexity, and low reasoning facility. In addition 
considerable planning effort is usually required and 
expert knowledge of the modelling system assumed. 
As a result, there is a lack of a coherent framework 
for systematically developing robust DISs.  

The framework required must be able to provide 
a structured, simple, and intuitive means by which 
an idea can be easily converted to a model in small 
increments; eliminating the need to mentally juggle 
various different aspects of the idea all at once.  
This would serve to neutralize errors and difficulties 
due to conceptualization of the idea (widely 
regarded as the most challenging part of 
programming) [1, 2]. The model thus created must 
also conform to Formal Methods [3, 4], providing a 
logical structure able to facilitate rigorous analysis 

before decision is taken to write the actual 
implementation in which it holds. 

The DIS model construction challenge can be 
summed up in one question. How can we get from 
an idea for a DIS to a rigorously analyzable model 
in a way that is intuitive, systematic, speedy, 
minimizes errors, facilitates easy manipulation and 
modification and allows us to build intellectually 
manageable systems? 

The ET Framework (ETF) [5] has already been 
used to extend reasoning to UML [6], and XML [7], 
and also to develop correct databases [8]. It is very 
close to how humans actually think and, not only 
supports interaction and dynamism directly, but is 
also amenable to rigorous mathematical analysis. As 
a result, we believe that it is the ideal framework for 
resolving the DIS model construction challenge. 
This paper describes the ease with which the ETF 
can be used to create robust and intellectually 
manageable models of DISs that can be rigorously 
analyzed. 

In this paper we first give an overview of DISs, 
including relevant features, concepts and the state of 
the art (section 2). An overview of the ETF is given 
in section 3 and details of how it is extended for 
modelling DISs are given in section 4. In section 5 
we delve into the declarative side of the ETF, 
explain its computation method and outline its 
correctness. In section 6 we explain in detail some 

WSEAS TRANSACTIONS on COMPUTERS
 

Courtney Powell, Kiyoshi Akama 

ISSN: 1109-2750
235

Issue 4, Volume 7, April 2008



of the reasons why we think the ETF is ideal for 
modelling DISs. We demonstrate practically how 
models are constructed in the ETF by using the 
example of a ping-pong game (section 7), and 
compare and contrast some other approaches to DIS 
modelling in section 8. 

 
 

2 Dynamic Interactive Systems Scope 
We think of Dynamic Interactive Systems (DISs) as 
event-driven systems in which independent entities 
interact with each other and their environment 
concurrently, and change states dynamically over 
time. They are capable of accommodating and 
processing multiple concurrent inputs, and 
generating multiple concurrent outputs 
simultaneously. The complexity of DISs can be 
quite formidable as a result of the interactive 
processes occurring concurrently over multiple 
interaction streams     

Independence, concurrency, and dynamism are 
three major features of DISs and each entity is 
totally self-contained and has its own domain and 
sphere of influence. In the traditional design and 
implementation of DISs, five important concepts 
are: 1) Object; 2) Event; 3) State; 4) Message 
passing and; 5) Interaction.  

A climate system is an example of a natural DIS; 
in which there are entities such as land, atmosphere, 
and oceans interacting. Another example of a DIS is 
a Web application such as an airline reservation 
system. These systems usually have a database 
backend which is accessed, viewed, and modified 
by multiple concurrent users. As a result of the 
access and modification by multiple users the data 
in the database is constantly changing and is thus 
dynamic. Interaction takes the form of users 
interacting with the data. In such a system 
correctness is very essential. A Ping-pong game is a 
simple example of a recreational DIS.   
 
 
2.1 DIS – State of the Art 
Much research has been done, and is still ongoing, 
in the modelling of Interactive Systems (ISs) in 
general. Some of the approaches taken are relevant 
only to static ISs – ISs whose states change only in 
response to an input. Others however, can be related 
to DISs – ISs whose internal states are always in 
flux. These approaches can be grouped into three 
basic categories, roughly similar to those outlined in 
[9], as :1) User-centric ;2) System-centric and ;3) 
Hybrid.    

The User-centric approach is based on Human-
Computer Interaction (HCI) and employs devices 
such as task models and storyboards. User Action 
Notation (UAN) (a user and task oriented notation) 
and the fairly recent graphical notation Concur Task 
Trees (CTT) [10] are some of the notations used. 
User-centric approaches include [11] and novel 
approaches such as that done using Stochastic 
Methods [12]. In the System-centric approach, the 
focus shifts from the user to the underlying 
dynamics of the system itself. The focus on status 
and events in [13] exemplifies this approach. 
Examples of the hybrid approach include [14] 
(which provides a framework and a language 
(IMML) in which models constructed from both 
HCI and Software Engineering (SE) can be 
combined) and [15] (in which both HCI and SE are 
developed synergistically).  
 
 
3 The Equivalent Transformation 
Framework 
The Equivalent Transformation Framework (ETF) 
[5] is a rule-based framework in which sets of 
rewriting rules generated from specifications are 
used to carry out semantic preserving clause 
transformations. The ETF has mathematically 
defined syntax and semantics and is therefore 
amenable to Formal Methods – which is essential 
for the creation of models that can be rigorously 
analyzed. 

An ET rule describes methods of rewriting 
various clauses into other clauses (or sets of 
clauses), and has the general form: 
 

head, {condition} ==> {execution}, body. 
 
This rule reads: if the pattern of atomic formulas 
specified by head matches the target expression (in 
the body of a clause) and the condition(s) specified 
by condition is satisfied then the built-in or user-
defined operation(s) specified in the execution 
section are performed and the expression(s) 
specified in body replaces the target expression. The 
actual computation of the solution to a problem is 
accomplished by the repeated application of ET 
rules. 

There are two types of ET rules. These are: 1) D-
Rules (deterministic) and, 2) N-Rules (non-
deterministic). Non-deterministic ET rules can have 
multiple heads, bodies, and execution sections. As a 
direct result of their non-deterministic nature, N-
rules can be used to express several forms of 
parallel processing [16]. 

WSEAS TRANSACTIONS on COMPUTERS Courtney Powell, Kiyoshi Akama 

ISSN: 1109-2750
236

Issue 4, Volume 7, April 2008



An ET variable is immutable, and exists only in 
the rule in which it was created; as a result, variable 
communication takes place only within the rule in 
which the variable was created. Since ET uses 
pattern matching, instead of determination of input 
clauses by unification, inter-rule communication is 
in the form of values, not names. After a particular 
rule has been applied to a clause, the variables (and 
by extension the values they contain) in that rule, 
are destroyed. In the next computation cycle, new 
variables are created and new values assigned. In 
this way, values are changed in ET rules. 

One of the many features unique to the ETF is 
the concept of ‘Information-attached’ (‘information-
bound’) variables or ‘I-vars’, which allow the 
specification of information in a variety of ways. 
This type of variable has the format: 
*x~(information) - where ‘*x’ represents the 
information-attached variable; and (information) is 
the attached information. 
 
 
3.2 Model Creation in the ETF 
A model in the ETF consists of a set of equivalent 
transformation rules and conditionalities for the 
control of the application of these rules. One ET rule 
is an independent and executable unit component of 
an ET model. Thus a model can be made by simply 
writing each rule separately and then adding them 
one by one to construct the complete model, as 
illustrated in Fig. 1. In addition, since all rules are 
independent of each other, they can be mixed and 
matched in any combination to give the most 
efficient output. 

In the ETF we take a “top-down” approach to 
model building. The model is constructed starting 
from the highest level of abstraction; which is 
represented by the global ET rule (such as those in 
section 7). Lower level (second level) ET rules are 
then written for each section of the global rule that 
calls a sub-computation. For each sub-computation 
of these second level rules, more rules are written; 
and so on until only built-ins are called by a rule. 

 
   

Fig. 1. Model creation in the ETF 

4 Modelling DISs in the ETF 
In this section we will explain the process of 
extending the ET Framework (ETF) to model 
Dynamic Interactive Systems (DISs). 
 
 
4.1 DIS Representation in the ETF 
In the ETF a problem is formulated as a declarative 
description, represented by a pair of clauses (D, Q). 
Here D represents general knowledge about an 
application domain and description of particular 
domain instances, and Q specifies a question 
regarding the content of the definition.  

From the definition part D, a set of ET rules is 
prepared. The problem is then solved by 
transforming the query part Q successively, using 
the ET rules, into another set of definite clauses 
from which the answers to the specified question 
can be obtained easily and directly. The query part 
Q can be used to represent a DIS.  
 
 
4.1.1 ET and Event-driven Semantics 
ET rules easily satisfy event-driven semantics and 
also provide intrinsic meaning to the events. We 
regard events as inputs from the environment 
(inputs originating outside of a rule). Thus, an ET 
rule that possesses a condition section is inherently 
event driven. That is, the condition section has to be 
satisfied before the rule can be executed. An event-
driven rule has the form: 
 
atom1, atom2, {event} ==> {specialization}, atom3, atom4. (1) 
 
 
4.2 Modelling using ET 
DISs comprise a number of objects, interaction 
between objects and, interaction between objects 
and their environment. In the ETF, these are realized 
by means of information-attached variables, atoms, 
rules, and events (installed predicates). 
 
 
4.2.1 DIS Representation and Manipulation 
If we use the query clause Q (described in section 
4.1) to represent a DIS, the internal components of 
this DIS will be represented by the body atoms of 
the definite clause as shown in (2): 
 

head ←  atom1, atom2, atom3, …, atomn.          (2) 
 
Here, each body atom represents the domain of an 
object. As a result, object domains (and by 

WSEAS TRANSACTIONS on COMPUTERS Courtney Powell, Kiyoshi Akama 

ISSN: 1109-2750
237

Issue 4, Volume 7, April 2008



extension objects) can be easily added or deleted by 
simply adding or removing the relevant body atoms. 

Actual objects are represented by information-
attached variables (explained in section 3). The 
attached information can contain any user-defined 
data relevant to the object, such as object definition, 
flags, state, etc. 

To manipulate these objects in the system and 
describe their interactions with each other and the 
environment, rules are used. Typical rules are of the 
forms depicted in (1) and (3); and both rules may or 
may not have an execution (specialization) section. 
 
atom1, atom2 ==> {specialization},  atom3, atom4. (3) 

 
Some of the ways in which these rules can be 

used are: (1) Changes in atoms appearing in the rule 
are expressed by means of atom replacement and 
specialization (atoms that are changed without the 
changes appearing in the rule - i.e. changes are not 
transparent to the rule – are expressed by 
specialization); (2) changes influenced by the 
environment are received and examined via events. 
 
 
4.2.2 ETF Computation and State Transitions 
In the ETF a given complex problem is transformed 
successively and equivalently into a simpler 
problem until a problem from which answers can be 
directly or easily obtained is reached. Computation 
takes the form of state transitions, in which each 
problem is regarded as a state. A final state is a 
problem that consists of only unit clauses, which is 
of the form: 
  
  head  ← . 
 
    The computation of a program prg on a problem 
prb is a nonempty finite or infinite sequence com = 
[st0, st1, st2, …] of states such that st0 = prb and the 
following conditions are satisfied: (1) for any two 
successive states sti, sti+1 in com, sti is not a final 
state and prg transforms sti into sti+1 in one step; (2) 
if com is finite, then last(com) is the final state or 
prg is not applicable to last(com), where last(com) 
denotes the last element of com. 
    If com is finite and last(com) is the final state, 
then the answer set obtained from com is the set  
   
{g | ((a ← ) ∈ last(com)) & (g is a ground instance of a)}, 
 
and is undefined otherwise.  

As a result, each state transition carried out by 
the ET program will result in a change in state of the 
object (an instance of the object). This is 

represented by the state of the definite clause at each 
successive transformation stage during the 
application of ET rules. 
4.2.3 Analysis of Interaction 
In the modelling of interactions in DISs we can 
divide its domain into two parts – object and 
environment. Interaction between objects is 
represented using ordinary rules; with the format of 
rule (3). Interaction between objects and the 
environment is expressed by means of event-driven 
rules; such as rule (1). Interaction is achieved 
through: 1) Change based on replacement with rule 
(head and body); 2) change based on specialization 
with rules (through the medium of variables, or even 
other atoms); 3) through the use of getContext it is 
possible to obtain the status of atoms that are not 
head atoms and; 4) through the use of events 
influences from the environment can be 
accommodated. 
 
 
4.2.4 Advantages of the Description Methods  
Some of the advantages of these description 
methods are: 1) The model used is a combination of 
the clause and rule models, which are both well 
known models; as a result, it has clarity and 
significance and is general purpose; 2) the 
modification being expressed by each rule is 
localized so efficient execution is possible; 3) as a 
result of their high level of independence, rules are 
very easy to write and; 4) events are handled 
uniformly as installed predicates. In addition, the 
notation format is intuitively understandable. 
 
 
5 The Declarative Side: Correct      
Problem Solving 
In this section we will explain some of the features 
of the declarative side as it relates to ET and DISs. 
 
 
5.1 Definite Clause Set and its Meaning 
In the ETF a problem is represented as a set of 
definite clauses. A definite clause, C, is an 
expression of the form h ← b1, b2, …, bn, where  n ≥ 
0. h is called the head of C and is denoted by 
head(C).  The set {b1, b2, …, bn} is called the body 
of C and is denoted by body(C). When n = 0, C is 
said to be a unit clause. If all atoms appearing in C 
are ground then C is a ground clause. The set of all 
definite clauses is denoted by Gclause. A 
declarative description is a set of definite clauses, P. 
Its meaning, M(P), is defined as: 

WSEAS TRANSACTIONS on COMPUTERS Courtney Powell, Kiyoshi Akama 

ISSN: 1109-2750
238

Issue 4, Volume 7, April 2008



 
1

( ) [ ] ( ),P

def
n

n
P T θ

∞

=
= ∪M  

Where: 
( )

{ ( )| , , , ( )

PT x

head C C P S C Gclause body C xθ θ θ θ

=

∈ ∈ ∈ ⊆ }.

 
Here x is an arbitrary set of ground atoms, θ a 
specialization, S a set of specializations. M(P) is a 
least fix point of TP , and agrees with a least model 
when a definite clause is regarded as a logical 
formula. 
 
 
5.2 Solving the Intersection Problem 
Let D be a set of definite clauses. Let Q  be the set 
of atoms which represent the set of all queries for D. 
Then a problem is given in the form of the pair (D, 
Q ). Let be the set of all sets of definite clauses, 
where each set consists of ans-clauses whose bodies 
are composed of atoms on D. Let S and S′ be 
arbitrary sets of definite clauses in . A rule r : 

on D is defined as the relation between S 
and S′. This rule r is an ET rule on D, iff 

S

S
S → S

 
′ ∈ ⇒ ∪ = ∪( , ) ( ) ( ).S S r D S D SM M ′  (4) 

 
In the ETF a program is created by the accumulation 
of a set of these rules. Thus, a program on D is 
defined as a program comprising rules on D. 

Given D and R (a program on D), computation in 
the ETF finds solution set A which satisfies A = 
M(D) ∩ rep(q) for a query q ∈  Q ; where rep(α) 
denotes the set of all ground instances of α. 
 
Theorem 1. For an atom q representing a query on 
D: 
 
( ) ( ) { | ( ) ( { ( ) })}.D rep q g ans g D ans q q∩ = ∪ ←∈M M

 
Theorem 2. For an arbitrary set F of unit clauses, 
denoted by ans(b) ← . , where b represents an 
arbitrary term: 
 

( ( ) )
{ | ( ) ( )} ( ).

ans a F
g ans g D F rep a

← ∈
∪ =∈ ∪M  

 
Theorem 3. If there exists a set of ET rules R on D 
such that under the domain knowledge D, the 
answer set A  is obtained for query q by using 

transformation rules in the set R (given as 
⎯⎯⎯→: RD q A ) ; then  ∩ =( ) ( ) .D rep q AM

 
Theorem 3 follows from the proof outlined as 

follows. For , let Q∈ ≤ < ∞0, ..., (0 )nQ Q nS 0 
→…→ Qn   be a transformation sequence 
within ⎯⎯⎯→: RD q A , where Q0 = {ans(q) ← q} 
and Qn is a set of unit clauses. Then from Theorems 
1, 2, and (4): 
 

0

( ( ) )

( ) ( ) { | ( ) ( { ( ) })}

{ | ( ) ( )}

{ | ( ) ( )}

( ).

.
n

n

ans a Q

D rep q g ans g D ans q q

g ans g D Q

g ans g D Q

rep a

A
← ∈

∩ = ∈ ∪ ←

= ∈ ∪

= ∈ ∪

=

=

∪

M M
M

M

 
A program in the ETF is a set of rules which 

executes equivalent transformation such that: 
 

Q0 →…→ Qn
 

M(D ∪ Q0)  = … = M(D ∪ Qn) 
 
starting from Q0  = {ans(q) ← q} for all q ∈ Q, and 
finally computes the solution set A [17]. 
 
 
5.3 Correctness 
Discussions of correctness must take into 
consideration the intended meaning of a program. 
An intended meaning of a program is a set of 
ground goals. A program P is correct with respect to 
an intended meaning M iff M(P) is contained in M.    
That is, the program should do only what we 
intended it to – no more and no less. Proving 
mathematically that a program is correct goes a long 
way in guaranteeing absence of program errors. 

In a Rule-based Equivalent Transformation 
(RBET) framework, such as the ETF, the 
correctness of computation relies solely on the 
correctness of each transformation step. Given the 
declarative description D ∪ Q, the query part Q is 
said to be transformed correctly in one step into a 
new query part Q′,  by the application of a rewriting 
rule, iff the declarative descriptions D ∪ Q and D ∪ 
Q′  have the same declarative meaning. A rewriting 
rule is considered to be correct, iff its application 
always results in a correct transformation step. 
 
 

WSEAS TRANSACTIONS on COMPUTERS Courtney Powell, Kiyoshi Akama 

ISSN: 1109-2750
239

Issue 4, Volume 7, April 2008



5.4 ET Computation and Correctness 
A rewriting rule is an ET rule iff after rewriting a 
declarative description P into P′  the meaning M(P) 
of P is equivalent to the meaning M(P′) of P′, i.e., 
M(P) = M(P′).  A program in the ETF is a set of 
these rewriting rules and program computation 
consists of successive rule application.  

In the ETF, a program prg is partially correct 
with respect to a specification S = (D, Q) iff for 
each q ∈ Q, prg yields the correct answer set to q 
whenever it transforms q into a set of unit clauses in  
a finite number of transformation steps. It is totally 
correct with respect to S iff it is partially correct 
with respect to S and it always terminates with a set 
of unit clauses when executing each problem in Q  
[5]. 
 
 
6 Reasons why the ET Framework 
can Effectively Model DISs 
The following features of the ETF are among the 
many reasons why it is ideal for modelling DISs: 
1. Clarity - ET rules are intuitively 

understandable by humans and the state of the 
computation can be observed and analyzed. 
This type of clarity allows us to check whether 
or not the behavior of an object, such as state 
changes, etc., is valid.  

2. Rich Expressivity - The status, properties and 
interactions associated with an object are richly 
expressed in the ETF using information-
attached variables and ET rules. 

3. Nondeterminism and Parallelism – In order to 
reliably model independent concurrent objects 
and their interactions the ability to simulate 
parallel processes is invaluable. The inherent 
nondeterministic nature of the ETF gives us the 
ability to simulate either of three types of 
parallelism. These are: (1) OR-parallelism; (2) 
AND-parallelism and; (3) Rule-parallelism 
(unique to the ETF) [16]. 

4. High Level Abstraction - An abstraction is an 
idea reduced to its essential form [18]. Without 
abstractions systems tend to be overly complex 
and intellectually hard to manipulate. 
Languages that support abstraction are needed 
in order to create intellectually manageable 
models. The ETF operates at the conceptual 
level and so provides a high level of 
abstraction. As a result an ETF model can be 
freely manipulated and optimized without the 
restrictions associated with concrete 
implementation details such as type 
declaration, memory allocation, etc.  

5. Independent Rules - The highly independent 
nature of ET rules eases the rule-writing task. 
Since each rule can be written and focused on 
exclusively, rules are very easy to write. 
Additionally, because each rule is a standalone 
component; it can be executed immediately 
after being written in order to check that it 
carries out the intended operation. This enables 
us to construct highly decomposable models. 

6. Rule Priority – Each rule can be given an 
execution priority – with the highest priority 
rule being the one executed first and so on. 
This allows the rule selection strategy of the 
program to be controlled; example for 
efficiency improvement. 

7. Multi-head Rules – These rules facilitate easy 
representation and manipulation of object 
interactions.  Each head atom can be used to 
represent the domain of an object. 

8. Dynamic Addition and Deletion of Rules - In 
the ETF, rules can be dynamically added and 
deleted. This enables real-time modification of 
the model at runtime; such as the replacement 
of one rule by another in order to check its 
effect on the model, and thereby further 
improve it. Another benefit is the facilitation of 
real-time representation of new information and 
the dynamic addition and deletion of objects. 

9. Standard Treatment of Events – In the ETF all 
events are processed in a standardized way. 
Events are accommodated via the condition 
section of a rule and processing is transparently 
carried out by means of lower level rules 
invoked for the purpose. As in all ET rules, 
these rules are very easy to write.  

10. Natural Connection to Aspects of Database 
Systems - The ETF connects naturally to the 
semantics and reasoning underlying database 
systems. Atoms can be used to represent tables 
(entities); clauses represent queries and; ET 
rules carry out query evaluations. 

11. Guaranteed Correctness –“Testing can show 
the presence of errors, but not their absence” 
(E.W. Dijkstra). Thus guaranteeing program 
correctness goes a long way to relieve 
uncertainty and program testing time. The 
structure of the ETF guarantees correct 
operation of the system. This was outlined in 
sections 5.3 and 5.4. Detailed proofs can be 
found in [5]. 

12. Declarative Semantics - DISs are required to 
accommodate new information at random 
points in time, while maintaining the 
consistency of their computations. This is 
easily done in the declarative paradigm. The 

WSEAS TRANSACTIONS on COMPUTERS Courtney Powell, Kiyoshi Akama 

ISSN: 1109-2750
240

Issue 4, Volume 7, April 2008



underlying declarative semantics of the ETF 
provides us with a means of connecting directly 
to this underlying nature of DISs and thus 
enables us to visualize and model all of its 
various aspects.  

13. Integrated System - The ETF is an integrated 
modelling system, i.e., it is able to model the 
entire DIS spectrum (sections 2 to 4) without 
the need for any component external to the 
framework. 

 
 
7 Analysis of an Example 
In this section we will use the example of a simple 
ping-pong game [19] to illustrate our model 
construction technique. 

The basic idea for the game is: 1) an independent 
dynamic ball (Ball); 2) one paddle moves in sync 
with the mouse (HPM); 3) the other paddle moves 
in sync with the pressing of the up and down arrow 
keys (HPK) and; 4) the interface is updated 
periodically to display current game status (Show). 

We start by first describing the overall system 
using an ET N-Rule (the global rule) as: 

(Game) ==>  
(Ball *ball), (HPM *mou), (HPK *key), (Show *disp)  (5) 

 
Here Ball, HPM, HPK, and Show represent the 
domains of the ball, paddles, and display entities, 
respectively. The second level rules are derived by 
examining the conditions for manipulation in each 
domain. In the Ball domain, the ball entity is 
dynamic and so it should move at specified time 
intervals. This is represented by the recursive ET 
rule: 
 
(Ball *ball), {(TimeInt1)} ==>  

{(moveBall *ball)}, (Ball *ball) . (6) 
 
In this rule *ball is an I-var representing the actual 
ball entity. TimeInt1 is the time condition that has to 
be satisfied before the rule can be applied. The 
(moveBall *ball) atom represents a specialization 
and will call sub-computations (other rule sets) that 
will do the actual ball movement.  

The HPM domain requires that the mouse event 
occurs before the *mou entity can move. As a result, 
the rule is written as:  
 
(HPM *mou), {(OnMouseMove *msg)} ==>  

{(moveHPM *mou *msg)}, (HPM *mou) . (7) 
 
In this rule, the *msg variable is a message from the 
mouse to the *mou entity. The actual manipulation 

of the *mou entity is carried out by the moveHPM 
ruleset (invoked by the {(moveHPM *mou *msg)} 
specialization section. The rules for the other 
domains are derived in a similar fashion, resulting 
in: 
 
 
(HPK *key), {(OnKeyPress *kmsg)} ==>  

{(moveHPK *key *kmsg)}, (HPK *key) . (8) 
 

(Show *disp), {(TimeInt2)} ==>  

{(display *disp)}, (Show *disp) .  (9) 
 
We can write a multi-headed rule to describe the 

interactions of our entities of interest by writing 
each entity domain as one head and one body atom 
of the rule, to give rule (10). The specialization 
section {(doInteract *ball *mou *key)} invokes the 
rules that will carry out the actual interactions. 
 
(Ball *ball), (HPM *mou), (HPK *key) ==>  

{(doInteract *ball *mou *key)},                        
(Ball *ball), (HPM *mou), (HPK *key) .       (10) 

 
The advantage of using a multi-headed rule such 

as (10) to carry out entity interactions is that 
representation of additional entities’ interactions 
(e.g. more balls and paddles) can be done by simply 
adding the domains of those entities to the head and 
body of the rule, then inserting the entities into the 
specialization section (as arguments). For example, 
if we wanted another ball entity (let’s call it ball2), 
we would write the rule for this ball as: 
 
(Ball2 *ball2), {(TimeInt3)} ==>  

{(moveBall *ball2)}, (Ball2 *ball2) . (11) 
 

We would then modify the global and interaction 
rules, (5) and (10), by adding the ball domain to the 
rules; resulting in rules (12) and (13). 

(Game) ==>  
(Ball *ball),  (Ball2 *ball2),  (HPM *mou), 
(HPK *key), (Show *disp) .                   (12) 

 

(Ball *ball),  (Ball2 *ball2),  (HPM *mou), (HPK *key) ==>  
{(doInteract *ball *ball2 *mou *key)}, 

        (Ball *ball), (Ball2 *ball2),  (HPM *mou), 
 (HPK *key) .                           (13) 

 
The rules for the manipulation of the entities are 

written separately (as in (6), (7), (8), (9), and (11)), 
then added to the model. Rules (6), (7), (8), (9), 
(11), the new global rule (12), and the new 

WSEAS TRANSACTIONS on COMPUTERS Courtney Powell, Kiyoshi Akama 

ISSN: 1109-2750
241

Issue 4, Volume 7, April 2008



interaction rule (13) represent the global and second 
level rules for the ping-pong game system and are 
gathered together, along with their respective event-
processing and lower level (specialization) rule sets 
to form the complete model for the system.   

An example of the rule set for capturing events is 
shown in Fig. 2. This particular rule set represents 
the event section of rule (7). The rules are all ET D-
Rules. The first rule gets a mouse message *m 
which is then processed by the mouseHandle 
ruleset. Variables *mx and *my specify the x and y-
coordinates of the mouse. As we are only interested 
in the y-coordinate, only that value is passed to the 
*msg variable.  
 

 
Fig. 2. The onMouseMove rule set 

 
The execution (specialization) section of rule (7) 

calls the sub-computations shown in Fig. 3. The 
moveHPM rule first retrieves the information 
attached to the *mou entity (i-var), then calls 
another sub-computation, (checkLimits *msg 
*NewHPy), to process the value received from the 
mouse against predefined constraints imposed on 
the movement of the paddle; and to generate a new 
y-coordinate for the paddle. The changed 
information is then stored as an i-var and reattached 
to the *mou entity. It should be noted that the 
difference in variable names of the arguments used 
for the checkLimits atom in the moveHPM rule and 
the actual checkLimits ruleset is of no significance 
since the ETF uses pattern matching to transfer 
values across rules. 
 

 

(moveHPM *mou *msg) -->  
(getInfo *mou (*HPx *HPy *HPw *HPh)),  
(checkLimits *msg *NewHPy),  
(putInfo *mou  (*HPx *NewHPy *HPw *HPh)).  

(checkLimits *paddley *Npaddley), {(< *paddley 25)} -->  
(= *Npaddley 25). 

(checkLimits *paddley *Npaddley), {(> *paddley 280)} -->  
 (= *Npaddley 280). 

(checkLimits *paddley *Npaddley) -->  
(= *Npaddley *paddley). 

Fig. 3. The HP and checkLimits rule sets 
(onMouseMove *msg) --> 

(eg:GetMessage *m), (mouseHandle *m *msg). 

(mouseHandle (WM_MOUSEMOVE *mx *my) *msg) -->  
(= *msg *my). 

(mouseHandle (WM_MOUSEMOVE *mx *my ?) *msg) --> 
(= *my *my). 

 
The events and sub-computations for the other 

rules are written in a similar manner. The entire 
model is constructed incrementally in this way. 

 
 

8 Related Work 
A lot of research has been done on the modelling of 
Interactive Systems (ISs) in general. However in 
this section we will take a look specifically at those 
works which we feel can actually apply to the 
modelling of DISs (i.e. DISs as defined earlier by us 
- your humble authors).   

In [11] hand-drawn sketches on an electronic 
board are used to develop the design cycle then 
converted into an XML-based CTT specification. 
This method is highly intuitive but it concentrates 
only on task modelling aspects, as opposed to 
integration with system aspects. In addition, the 
method and language used do not support Formal 
Methods. 

The method outlined in [20] uses a language 
based on UML 2.0 to model interactive multimedia 
applications. This method is non-intuitive and also 
not amenable to Formal Methods. Integration of 
User-centric and System-centric methods is the 
main focus of [14]. However the foundation of the 
models is not mathematical and the framework does 
not support concurrency. In addition, the semantics 
of the language used (IMML) can be prone to 
ambiguity.  

The novel approach of [12] uses stochastic 
techniques, is amenable to Formal Methods, and 
integrates both approaches. However the notation 
may be a bit too complex for non-expert users.   

Our method may be considered closest to [15] 
and [21]. The method of [15] is based on a form of 
equivalent transformation called Petri-Nets. It uses a 
formal framework to integrate both task and system 

WSEAS TRANSACTIONS on COMPUTERS Courtney Powell, Kiyoshi Akama 

ISSN: 1109-2750
242

Issue 4, Volume 7, April 2008



activities in an iterative process. However the 
notation and model creation process are complex 
and non-intuitive. Geared specifically towards data-
driven Web applications, [21] uses a form of first 
order logic to model ISs. As in several of the others 
cited so far, the language may be too complicated 
for anyone less than a seasoned mathematician. 

One major fundamental difference between our 
me

option of 
Fo

 Conclusion 
ed at some of the problems that 

eferences: 
onnell, Code Complete, 2nd Edition, 

[2] cal Introduction to 

[3] omputer 
Science: Modelling and Reasoning about 

[4] 
ods, Computer, Vol. 23, No. 9, 

[5] 
of the Equivalent 

[6] 
Modelling Language Diagrams 

[7] 
 with First-Order Logical 

[8] 
ent Information 

[9] 
ctive 

[10]
tic Notation for Specifying Task 

n
[11]

, Interactive 

[12]
 Proceedings 

[13]
 Behaviour of Interactive Systems, 

[14]
ystem using IMML,  Task 

[15]
stems Using 

thodology and the works cited lies in the fact that 
in our method all development and transformation 
(from idea to model construction) are carried out 
using one language - called ETL, and in an 
integrated framework – the ETF. As a result, the 
foundation of the model can be guaranteed correct, 
reliable, and intellectually manageable since all 
transformation steps can be certified. Another major 
difference lies in the highly decomposable nature of 
the ETF.  In addition, the notation system used in 
the ETF is simple and intuitive enough to be quickly 
understood by even novice programmers. 

A major obstacle to the wide-scale ad
rmal Methods in system development has been 

the complicated proofs and notations required. We 
believe that a simple, intuitive, mathematically 
based framework such as the ETF will help to 
remove this obstacle. The advantage of the ETF is 
that it provides a simple, yet mathematically 
powerful framework, in which a formal model of a 
DIS can be intuitively constructed in increments. 
This model is easily comprehensible to both expert 
and novice programmers alike.  
 
 
9
In this paper we look
currently obtain in the construction of formal, 
rigorously analyzeable models for Dynamic 
Interactive Systems (DISs); and examined why and 
showed how the ET framework (ETF) can be 
extended to overcome these difficulties. We also 
explained how the ETF can give a comprehensive 
conceptual model for DISs, which is intuitive, 
robust, correct, and intellectually manageable. In 
addition we demonstrated our concept of model 
creation using a simple ping-pong game. 
 
 
R
[1] S. McC

Microsoft Press, 2004. 
B. Mills, Theoreti
Programming, Springer-Verlag, 2006. 
M. Huth and M. Ryan, Logic in C

Systems, 2nd Edition, Cambridge University 
Press, 2004. 
J.M. Wing, A Specifier's Introduction to 
Formal Meth
1990, pp. 8-23. 
K. Akama and E. Nantajeewarawat, 
Formalization 
Transformation Computation Model, Journal 
of Advanced Computational Intelligence and 
Intelligent Informatics, Vol. 10,  No. 3,  2006,  
pp. 245-259. 
E. Nantajeewarawat et al., Toward Reasoning 
with Unified 
Based on Extensible Markup Language 
Declarative Description Theory, International 
Journal of Intelligent Systems, Vol. 19, 2004, 
pp. 89-98. 
C. Anutariya et al., XML Declarative 
Description
Constraints, Computational Intelligence, Vol. 
21, No. 2, 2005, pp. 130-156. 
V. Wuwongse et al., A Data Model for XML 
Databases, Journal of Intellig
Systems, Vol. 20, No. 1, 2003, pp. 63-80. 
M.D. Harrison and D.J. Duke, A Review of 
Formalisms for Describing Intera
Behaviour, ICSE Workshop on SE-HCI, 1994, 
pp. 49-75. 
 F. Paternò et al., ConcurTaskTrees: A 
Diagramma
Models, Proceedings of IFIP TC13 
International Conference on Human-Computer 
Interactio , 1997, pp. 362-369. 
 F. Paternò and M. Volpe1, Natural Modelling 
of Interactive Applications
Systems, Lecture Notes in Computer Science, 
Vol. 3941/2006, 2006, pp. 67-77. 
 G.J. Doherty et al., Reasoning about Interactive 
Systems with Stochastic Models,
of the 8th International Workshop on 
Interactive Systems: Design, Specification, and 
Verification-Revised Papers, Lecture Notes In 
Computer Science, Vol. 2220, 2001, pp. 144-
163. 
 A. Dix and G. Abowd, Modelling Status and 
Event
Software Engineering Journal, vol. 11, No. 6, 
1996, pp. 334 -346. 
 J.C. Leite, A Model-based Approach to 
Develop Interactive S
Models and Diagrams for Users Interface 
Design, Lecture Notes in Computer Science, 
Vol. 4385/2007, 2007, pp. 68-81. 
 P. Palanque and R. Bastide, Synergistic 
Modelling of Tasks, Users and Sy

WSEAS TRANSACTIONS on COMPUTERS Courtney Powell, Kiyoshi Akama 

ISSN: 1109-2750
243

Issue 4, Volume 7, April 2008



Formal Specification Techniques, Interacting 
with Computers, Vol. 9, No. 2, 1997, pp. 129-
153. 
 K. Akama et al., Generation of Correct Parallel 
Progr

[16]
ams Based on Specializer Generation 

[17]
tion 

[18]
006. 

Transformations, Proceedings of the 7th  
international Conference on Intelligent 
Technologies (InTech'06), pp.90-99, 2006 
 S. Miyajima et al., Detecting Incorrect Rules 
Automatically in Equivalent Transforma
Programs, Proceedings of the 2nd International 
Conference on Innovative Computing, 
Information and Control (ICICIC 2007). 
 D. Jackson, Software Abstractions: Logic, 
Language, and Analysis, The MIT Press, 2

[19] C. Powell and K. Akama, Structured 
Development of DHTML Programs from 

Abstract Ideas Based on the Equivalent 
Transformation Framework, Proceedings of the 
2nd International Conference on Innovative 
Computing, Information and Control (ICICIC 
2007). 

 

[20] A. Pleuß and H. Hußmann, Integrating 
Authoring Tools into Model-driven 
Development of Interactive Multimedia 
Applications, Human-Computer Interaction. 
Interaction Design and Usability, Lecture 
Notes in Computer Science, Vol. 4550/2007, 
2007, pp. 1168-1177. 

[21] A. Deutsch et al., A System for Specification 
and Verification of Interactive, Data-driven 
Web Applications, Proceedings of the 2006 
ACM SIGMOD International Conference on 
Management of Data, 2006, pp. 772-774.

WSEAS TRANSACTIONS on COMPUTERS Courtney Powell, Kiyoshi Akama 

ISSN: 1109-2750
244

Issue 4, Volume 7, April 2008


	 

