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Abstract: - In this paper we focus on computational aspects of network reliability importance measure 
evaluation. It is a well known fact that most network reliability problems are NP-hard and therefore there is a 
significant gap between theoretical analysis and the ability to compute different reliability parameters for large 
or even moderate networks. In this paper we present two very efficient combinatorial Monte Carlo models for 
evaluating network reliability importance measures. 
 
Key-Words: - Network, Reliability, Importance Measure, Monte Carlo, Combinatorial Approach 
 
1  Introduction 
One of the main goals of network reliability analysis 
is to identify the weak spots in the system and to 
quantify the impact of component reliabilities and 
their failures on the network reliability and its 
failure probability. The so called "reliability 
importance measures" are used for these purposes. 
The importance measures provide numerical 
indicators for determining which components are 
more important to network reliability improvement, 
or more critical for system failure.  In spite of the 
fact that several well-known component importance 
measures exist in literature already many years, 
there is a wide gap between the theoretical analysis 
and the ability to compute component importance 
measures for large or even moderate networks.  The 
reason for having this gap is that all theoretical 
important measures use an analytic expression for 
system (network) reliability as a function of its 
component reliabilities. In practice, obtaining such 
expressions in a closed form is an impossible task,  
except for several  simple structures, such as series-
parallel networks or k-out –of-n systems. In all other 
cases the reliability analysis relies mainly on various 
modifications of the Crude Monte Carlo (CMC) 
method. The main drawback of CMC is that it is 
very inefficient in two extreme (and probably most 

interesting) cases: highly reliable and highly 
unreliable networks (the so called rare event 
phenomenon). 
Our purpose in this paper is to describe two very 
efficient Monte Carlo (MC) models   for evaluating 
network reliability importance measures. The 
common feature for these two models is that the 
appropriate simulation schemes are homogeneous. 
Let us explain the latter notion in plain words. 
Consider an urn U with a large number of balls b in 
it. Suppose that each ball b is marked with some 
value and we want to calculate the sum of 

over b in U:  
( )z b

( )z b

                               1 ( )
b UU

Z z b
∈

= ∑

( )z b

                        (1) 

This completely matches the computation of 
network reliability. In this case, the balls b are the 
states, and are defined as 0 for any Bad state 
and equals the probability of the state if it is Good. 
Therefore, Z becomes the reliability of the network. 
Since the number of balls in U is very large, the 
whole sum cannot be computed precisely, and we 
are forced to estimate Z by some MC scheme. We 
say that MC scheme is homogeneous, if the balls are 
drawn from the urn with probability which does not 
depend on the probabilities of the states (more on 
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homogeneous schemes see in [1]). The important 
feature of homogeneous schemes is that the relative 
error is bounded (a basic example of a non-
homogeneous scheme is the CMC and its 
variations).  
The paper is organized as follows. In Section 2, we 
give some basic notions and definitions. In Section 
3, we present an efficient computation  model [1,2] 
for evaluating reliability gradient vector, which is  
used for computing Birnbaum Importance Measure 
for a  general case of networks with non-identical 
elements. As we mentioned above, our method 
allows obtaining   numerical values of the 
component important measures without deriving 
the analytic expression for the network reliability 
function.  
In Section 4, we propose a highly efficient spectrum 
approach [3-5] for networks with identical 
components. It's worth noting that this approach 
provides easily implemented computations and 
allows obtaining, with minimal difficulties, various 
topological features of the network. Section 5 
presents a series of numerical examples. 
 
 
2  Basic notions and definitions 
 
2.1  Network and its reliability 
All networks have vertices (nodes) and edges. There 
are many types of networks varying in their 
performance definitions and therefore with different 
concepts of their reliability. Let K-network be an 
undirected graph ( , , )N V E K=  with a node-set V , 
an edge-set E  and a set K V⊆ of special nodes 
called terminals. Also let |  and ||V m= |E n= .  In 
our model, nodes can never fail, while edges can. 
Note that all of our results are valid also for the case 
of reliable edges and unreliable nodes. If an edge 
fails, we say that it is down; otherwise we say it is 
up. By state of a network we call a binary 
vector 1( ,.., )nx x , where each component 1ix = if an 
edge is up and   otherwise. Denote by 

the network induced by its state, i.e. with the 
same node-set V  and   the edge-set consisting of 
all edges being up. A state of the network N is 
defined as being Good if any two terminals in the 
induced network are connected by some path of 
its edges.    Otherwise it is Bad. The terminal 
connectivity criterion has the property of being 
monotone: each subset of a Bad state is a Bad state 
and each superset of a Good state is a Good state. 

There are two network reliability models: static and 
dynamic. In this paper we restrict our attention to 
static networks.   Each edge  is associated with 
probability

ie 0ix =
*N

*E

*N

ie
ip of being up and a probability 

1iq ip= −  of being down. We say that   edges are 
identical if they all have the same probability of 
being up, that is for each i we havej≠ i jp p p= = . 
We define the network reliability 1( ,..., )nR R p p= as 
the probability that the network is in a Good state.  
 
2.2   Reliability importance measures (IM's)    
IM's aim at quantifying the contribution of 
components to the measure of system performance, 
which in our case is system reliability. We present 
below  a short description of several prevalent  IM's 
proposed in literature. IM's were first introduced by 
Birnbaum [6].  The Birnbaum Importance Measure 
(BIM) of element  is defined as ie

                           1( ,..., )B n
i

i

R p pI
p

∂=
∂

                      (2) 

It expresses the rate of increase of the network 
reliability with respect to the  i-th element reliability 
increase.    

Remark. For equal ip p≡ , first the derivatives 
i

R
p
∂

∂
 

are computed and only afterwards all ip  set to be 
equal p . 
Fussel and Vesely [7]  later proposed another 
importance measure termed  as Fussel-Vesely 
Importance Measure  (FVIM): 

              1 1 1

1

( ,..., ,0, ,..., )1
( ,..., )

FV i i
i

n

nR p p p pI
R p p

− += −          (3) 

It quantifies the decrement in system reliability 
caused by a particular component failure.  
Among  other popular important measures let us 
note the following two: CIM and JIM. The 
Criticality Importance Measure (CIM) [8, 9] is a 
natural extension of BIM and includes the 
component unreliability whereas the BIM does not. 
The three above measures (BIM, FVIM and CIM)  
are  functionally different and measure slightly 
different properties of  system behavior, and one can 
infer different information from each one of them 
[10].These IM’s are united by the fact that  quantify  
the importance rank of individual components.  
Contrary to them,  the   Joint Importance Measures 
(JIM's)   quantify the importance           of groups of 
components. They   are very useful and have  many 
applications [11, 12, 13]. Recently they became 
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popular in risk-informed applications [14, 15]. All 
the above mentioned IM’s are  of universal nature 
with respect to the object of their application.  
Another  direction is a more detailed study of IM's 
characteristics for specific systems. Recently, the 
most studied systems were the so called 
consecutive-k-systems [16, 17]. 
As a rule, the use of IM’s rests on the assumption 
that we have at our disposal the functional form of 
system reliability function. The fact  that in practice 
we often don’t have this functional description, 
especially for complex systems, stimulated the 
interest in developing computational and numerical  
methods for evaluating IM's, see for example [18, 
19, 20, 21].  These works, however,  demand  
computing system  reliability parameters. The 
method we develop in the present paper is based on 
system structural description and  allows 
components ranking by their IM's without knowing 
the analytic form of the reliability function.    
 
 
3  Using Reliability Gradient Vector 
for BIM evaluation  
 
3.1  Gradient and border states 
The numerical evaluation of BIM will be done using 
some special properties of the reliability gradient 
vector. In this section we describe a special form of 
the gradient vector which allows using a highly 
efficient Graph Evolution Model [2] for its 
computation. Similar form of the gradient was 
outlined in [1].  
Let us consider a monotone system [22] of n 
elements. Suppose that each element may be in 
two states: up with probability

ie

ip  and down with 
probability . The state of a system is defined as a 
binary vector 

iq
1( ,.., )nx x , where each component 

if is up and  otherwise. All binary 
states are divided into two classes: Good and Bad. 

1ix = ie 0ix = 2n

Definition 1. Reliability gradient vector R∇  is 

defined as
1

( ,..., )
n

R RR
p p
∂ ∂∇ =
∂ ∂

, i.e. component i of 

the reliability gradient vector is the BIM of element 
.   ie

Definition 2.  System state is 
called direct neighbor or simply neighbor of state 

if w differs from v in exactly 
one position (i.e. the Manhattan distance between 
vectors w and v equals 1). The set of all neighbor 
states of Bad is called the border set and is denoted 

as DN*. Obviously,  

1( ,..., )nw w w Bad= ∈

1( ,..., )nv v v Good= ∈

* .DN Bad⊆
Surprisingly, it turns out that the reliability gradient 
vector is intimately related to the border states. To 
reveal this connection, we introduce an artificial 
evolution process on system elements. At 0t = all 
elements are down. Element  is "born" after 
random time

ie
~ exp( )i iτ λ , where iλ  is chosen so that 

the following equality takes place: 
( 1) 1 i

i ip P e λτ −= ≤ = − . After the "birth", element  
remains up forever. Consider two system states 

ie

1 1 1... ,...( , , ,0, , )i iv v v v v− + n= and . 
Suppose that at time t the system is in state v. We 
look for the probability that during a small time 
interval

1 1 1,( ,..., ,1, ..., )i i nw v v v v− +=

tΔ the system moves from v to w. 
Obviously, it will happen iff the element is born 
during this interval, and all other components which 
are in state 0 will not become alive during the same 
interval. The first event has 
probability

ie

( )i t o tλ ⋅Δ + Δ , and the second event has 
probability1 ( )o t− Δ . Then the probability that 
during [ , ]t t t+ Δ there will be the transition  
equals

v w→
( )i t o tλ ⋅Δ + Δ . Let be a border state of the 

system, i.e. 
v

*v DN∈ . Denote by  the sum of ( )vΓ

iλ over the set of all indices i such that 
(0,...,1 ,...0)iv Good+ ∈ . Call the flow from v 

into Good. Formally, 
( )vΓ

*{ , (0,...,0,1 ,0,...,0) }
( ) iv DN v Goodi
v λ

∈ + ∈
Γ = ∑ . We need two 

other notations. Let 1( ( ),..., ( ))nR p t p t  be the 
probability that the system is in Good state at the 
instant t. Let be the probability that the 
system is in state v at time t. Now let us consider the 
event "the system is in Good state at time t t

( ; )P v t

+ Δ ". 
This event takes place if at time t the system was 
already in the Good set or at time t it was in one of 
its border states and went during this interval from a 
border state to Good. All other possibilities which 
involve more than one transition during 
[ , ]t t t+ Δ have probability . Formally, ( )o tΔ

1( ( ),..., ( ))nR p t t p t t+ Δ + Δ

1
*

( ( ),..., ( )) (
=

; ) ( ) ( )
v

n
DN

R p t p t P v t v t o t
∈

= + ⋅Γ ⋅Δ + Δ∑ .  

Transfer 1( ( ),..., ( ))nR p t p t to the left-hand side, 
divide both sides by tΔ and set . We arrive 
at the following relationship:     

0tΔ →

                 1

*

( ( ),..., ( )) ( ; ) ( )n

v DN

dR p t p t P v t v
dt ∈

= Γ∑ .   (4) 

Now, represent the left-hand side of (4) in an 
alternative form: 
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1

1

( )( ( ),..., ( )) n jn

j j

dp tdR p t p t dR
dt dp dt

1
( ( ) 1 , ( ) )

nt tj j
j j

j j

dR
p t e q t e q

dp j j

                               1 1{ ,..., }n nR q q .                  (5) 
Comparing (4) and (5) we arrive at the desired 
relationship between the gradient vector and the 
border state probabilities: 
             1 1

*
{ ,..., } ( ; ) ( )n n

v DN

R q q P v t v          (6) 

From the latter formula we can get the expression 
for BIM of system elements in the following 
manner. It follows from the above proof that if we 
set 1 1{ ,..., }n nq q equal to{0,..., ,...,0}i iq , then we 
arrive at the following important formula:

{0,..., ,...,0}i i i i
i

R
q R q

p
               *{ , (0,...,1 ,...,0) }

( ;1) iv DN v Goodi
P v              (7) 

This relationship says that the sum of the 
probabilities of all border states which  make a 
transition into the Good state by “activating” edge 

 is equal, up to a multiplier , to the BIM of 
component  i.

ie iq

This formula will be the principal tool for the Monte 
Carlo evaluation of  the gradient vector. 
Example 1.  Let us take the network given in Fig. 1 
and compute the BIM for edge e . The 
corresponding border states v such that 

are: , ,
. Then by (7) we get:

1

(1,0,0,0)v Good 1 (0,1,0,0)S 2 (0,1,1,0)S

3 (0,1,0,1)S

1 1
1

R
q

p
= 1 1 2 3( ( ) ( ) ( )P S P S P S ) =

1 2 1 3 4 2 3 1 4 2 4 1 3( )p q q q p p q q p p q q .
Dividing the both sides of the latter expression 
by 1 1q , we arrive at the BIM of .1e

The above example demonstrates computations via 

formula (6). It is obvious that the main technical 
difficulty lies in identifying the border states and 
finding their probabilities. Computations similar to 
shown in the above example are difficult to carry 
out for large or even moderate networks. There 
exists,  however a powerful computational Monte 
Carlo technique based on introducing a special 
scheme called Evolution and Merging process, 
which allows an efficient estimation of expressions 
of type (6). It was first suggested in the principal 
work [2].  

3.2 Lomonosov's turnip 
To make  the appropriate Monte Carlo scheme  for 
evaluating BIM more transparent, we give here a  
short   description of the Evolution and Merging 
process (EMP or Lomonosov's turnip) [1] which 
will be adopted to our needs. Let us consider the 
case of unreliable edges and reliable nodes The 
EMP uses two basic ideas. The first one is 
introducing an artificial random process associated 
with each edge. The second is defining the 
trajectories of a random process built on network 
states. Introduce now for each edge an artificial
creation process, as it was described above in 3.1. 
Remind that the probability of being down at 0 1t
for each edge coincides with the static down-
probability . At ( )q e 0t the network is in Bad set 
(there are no edges). 
Denote by ( )N  network's "birth" time, i.e. at 
random instant ( )N the network becomes Good
and remains Good forever. Let us denote 
by { ( ) 1}P N the probability that at moment 0 1t
in the creation process the network  is Good.
Then we have:

N

                         ( ) { ( ) 1}R N P N                      (8)       
In words: the static probability ( )R N  that the 
network is Good coincides with the probability that 
in the edge creation process network state is Good at 
the instant t0 1

3eS
, i.e. N enters the Good  set before 

or at 0 1t . On Fig. 2  we present the creation 
process for the  network of Fig 1. The operational 
criterion is the two terminal connectivity with 
terminal nodes S and T.

4e
1e

Initially all edges are in the down state (the zero
level of the turnip). The first level shows all possible 
evolution results from the zero level which appear 
as a result of a birth of a single edge. There are four 
such states. The second level of the turnip shows
what happens when a second edge is born. We

2e T

Fig. 1 
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 Fig. 2 
 
distinguish six states, two of which are border states. 
At the second level, one of the states is Good and 
five others are border states. At the third level one of 
the states is a border state and the other three states 
belong to Good.  
An important feature of the turnip is that simulating 
the transitions from one state to the following is 
very easy. Compute, for example, the 
probability 11 21(P )σ σ→ . Let the birth rate of edge k 
be ( ),  1,...4k kλ = . Then, by the well known 
property of the exponential distribution, we have: 

11 21
11 21

11

( ) ( )(2)
( )

(2) (3) (4) ( )
P

λ σ λ σλ
σ σ

λ λ λ λ σ
−

→ = =
+ +

,                                                                                        

                                   (9) 
where )( ijσλ  denotes the total birth rate for the 
state .ijσ  Indeed, the transition 11 21σ σ→  takes place 
if and only if edge 2 is born out of three possibilities 
of the birth of edges 2, 3 or 4. Actually, the "turnip" 
diagram describes an artificial creation process, and 

the probability that the network in this process is in 
Good set at some moment t coincides with the 
corresponding static probability of the network. For 
a more detailed description of the evolution process 
see [1,2].  

0

Remark. The description of the creation process is 
given here in an elementary form, without using the 
closure operation. Closure [1] is one of most 
important advantages of the approach. Roughly 
speaking, the closure of some state E is an union of 
the state itself and all irrelevant edges (for given 
operational criterion). For example, in Fig. 2 the 
edge 4 is irrelevant for the state 21σ  since the nodes 
associated with edge 4 are already connected by a 
path formed by edges 1 and 3. Therefore, the set 

31σ is the closure for the state 21σ  (and also for the 
states 22σ  and  24σ ). Using the operation of closure 
allows introducing so called super-states instead of 
the “microscopic” states, which extremely 
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accelerates the evolution process on turnip. For 
instance, if we have a network with 100 vertices and 
2000 edges, using the super-states will result in a 
trajectory of maximal length 99. Without the closure 
operation the maximal length can be up to 2000.    
Consider a random process ( )tσ whose states are the 
states of the described creation process. It was 
proved in [1] (for the super-states too) that  
(i) ( )tσ  is a Markov process; 
(ii) The time spent by ( )tσ  in a particular state σ ′ is 
distributed as exp( ( ))λ σ ′ . 
Define now a trajectory, which plays the central role 
in the described process and in the corresponding 
Monte Carlo scheme.   
Definition 3. A trajectory is a sequence 

0 1( , ,..., )ru σ σ σ= of states such that 0σ  is the initial 
trivial state, each iσ  is the direct successor of 1iσ − , 
and  rσ  is the first state belonging to Good. For 
example, the sequence 0 11 21 31 4( , , , , )σ σ σ σ σ on the 
Fig. 2,  is a trajectory. 
Now, in terms of the trajectories, the network is 
Good at moment t if there exists at least one 
trajectory that reaches Good before t. It is easy to 
calculate the probability p(u) of the trajectory    :u
                     .                     (10) 

1

1
0

( ) ( )
r

i i
i

p u P σ σ
−

+
=

= →∏

Denote by the probability that the Good state 
will be reached before time t given that the creation 
process goes along trajectory u. Then by the above 
mentioned property,  the process is sitting in each 
state 

( | )P t u

jσ an exponentially distributed random time 
( )jτ σ . Due to the Markov property, the total time 

along the trajectory u is a sum of the respective 
independent random variables, and 
             0 1( | ) ( ( ) ... ( ) | ).rP t u P t uτ σ τ σ −= + ≤        (11) 
Note that  is a convolution and can be 
computed analytically [1] or simulated [23]. Now 
the probability that at moment t the creation process 
reaches Good equals: 

( | )P t u

              ( ) ( ( ) ) ( ) ( | ),
u U

R N P N t p u P t uξ
∈

= ≤ = ⋅∑       (12) 

where U is the set of all trajectories. The expression 
(12) has the  form of an expectation and opens the 
way to estimating  ( )R N by means of a Monte Carlo 
algorithm described in [1,2]. 
 
 
3.3  Numerical evaluation of BIM's 
Let us now use the turnip for evaluating BIM. 
Remind that by the formula (6) we have 

1 1
*

{ ,..., } ( ) ( )n n
v DN

R q q P v vλ λ
∈

∇ ⋅ = Γ∑ , 

or using the turnip notations :   
               

1 1
*

{ ,..., } ( ) ( )n n j
DNj

R q q P v
σ

λ λ σ
∈

∇ ⋅ = ∑ Γ ,      (13) 

where *{ , (0,...,0,1 ,0,...,0) }
( ) iDN v UPj i
v

σ
λ

∈ + ∈
Γ = Σ . Now, for each 

border state σ we have following formula: 
( ) ( ( ) 1) ( ( ) 1).P P P Nσ ξ σ ξ= ≤ − ≤  

Here the first term is the probability that the creation 
process is at 0 1t =  in the state σ or is in Good. The 
second term is the probability that the Good state 
was reached before . The difference is 
therefore the desired probability that at 

0 1t =

0 1t = the 
process is inσ . Considering all trajectories leading 
from 0σ   into Good, we obtain the following 
formula: 

0 0( ) ( )( ( ( ) | ) ( ( ) | ).
u U

P p u P t u P N t uσ ξ σ ξ
∈

= ≤ − ≤∑   

 Substituting the latter expression into (13), we get: 
1 1

*

0 0
*

{ ,..., } ( ) ( )

( )( ( ( ) | ) ( ( ) | ) ( ).

n n j
DNj

j
u UDNj

R q q P v

p u P t u P N t u
σ

σ

λ λ σ

ξ σ ξ
∈

∈∈

σ

∇ ⋅ = Γ =∑

≤ − ≤ Γ∑ ∑
 

Changing the order of summation we arrive at the 
following formula: 

1 1{ ,..., }n nR q qλ λ∇ ⋅ =

( , ),

                                                 (14) 

1  such that ( )

( ( )
m

i
i u U e ui

p u f u
σ

λ σ
+= ∈ ∈

⋅∑ ∑  

where ( )uσ  is the border state defined by the 
trajectory , u ( )uσ +  is a set of all edges which 
"transfer" ( )uσ to the Good state and ( , )f uσ =   

0 0( ( ) | ) ( ( ) | )P t u P N t uξ σ ξ≤ − ≤ . 
The sum in (14) has the form of the expectation, 
which is the key for Monte Carlo numerical 
procedures on the turnip. We use the following 
simulation scheme to evaluate BIM's values 
simultaneously for all network edges. Define by 
ArB an array of size n so that ArB[i] will denote the 
BIM of edge i.  
Simulation scheme. 
Step1. Put [ ] 0,  1 .ArB i i n= ≤ ≤  
Step2. Generate trajectory u leading from the trivial 
state to the state in Good. 
Step3. Let jσ  be a border state on this trajectory 
and let edge ( )i je uσ +∈ . Then  

0 0[ ] [ ] ( ( ( ) | ) ( ( ) | ).jArB i ArB i P t u P N t uξ σ ξ= + ≤ − ≤  
Step4. Repeat steps 2 and 3 K times. 
Step5. For all i (1 i n≤ ≤ ) put  [ ] [ ]/ .ArB i ArB i K=
(For the calculation of the difference of two 
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convolutions (Step 3 ) see [1] and [11]). 
 
 
4  Spectral approach to computing 
network reliability importance  
measures    
In this section we will derive the BIM and the FVIM  
for networks with identical elements by means of so 
called network combinatorial spectrum. This notion 
was introduced in [3] and [4,5] to estimate network 
lifetime distribution and /or its static reliability. For 
reader’s convenience we remind shortly the 
principal idea of network combinatorial 
characteristic called spectrum. For simplicity we 
demonstrate the method for the case of reliable 
nodes and unreliable edges. It was shown in [4] that 
this approach is applicable also to the case of 
reliable edges and unreliable nodes, or – which is 
more complicated – to the case of both unreliable 
nodes and edges. 
Let EΠ be the set of all edge permutations in E. Let  
π  be a particular permutation. By sub-permutation 

(1... )iπ of π we denote a sequence constructed of 
the first i edges in π . For each sub-
permutation (1... )iπ  we define a network 
state ( (1... ))S iπ , where all the edges in (1... )iπ are up 
and all other edges in π  are down. For each edge 

je and permutation π denote by ( )jeπ the index of 
this edge in π .  
Example 2.  Let us take the network in Fig.1 and let 
our permutation be (1,3,2,4)π = . Then, for example, 

(1...3) (1,3,2)π =  and ( (1...3))S π is a state in which 
edges 1,3,2  are up, and edge 4 is down. We have 
also: 1( ) 1eπ = , 2( ) 3eπ = , 3( ) 2eπ = , 4( ) 4eπ = .  
Next we define an anchor. This notion plays a 
central role in our reasoning. 
Definition 4. Let ( )r r π= be the first index in 
permutation π so that ( (1... ))N rπ  is Good. We say 
that ( )r π is the anchor of the permutation π . 
Definition 5. Denote by ix  the number of all 
permutationsπ such that  is the anchor ofi π . We 
say that the set 

              SP={{ },1 }ix i n≤ ≤                               (15) 
is the combinatorial spectrum of the network. 
Example 3. We demonstrate these definitions on a 
network given in Fig. 1. The total number of 
permutations of 4 edges in the network is 24. Let 

(3,1,2,4)π = . We see that the first index such that 
the network state becomes Good is 3. Therefore 

( ) (3,1,2,4) 3r rπ = =  is the anchor of this 
permutation. After going over all permutations we 
arrive at the following combinatorial spectrum of 
the given network: 
                            i | 1     2     3     4 
                           ix | 0     4   14     6 
It was shown in [4] that given a network spectrum 

{{ },1 }iSP x i n= ≤ ≤ , the network reliability may be 
expressed in the following form:  

                         
1 ! ( )!

i n in n

r
r i r

p qR x
i n i

−

= =

⋅= ∑ ∑
⋅ −

                    (16) 

In our example, the network reliability is: 
4 4

1 ! (4 )!

i n i

r
r i r

p qR x
i i

−

= =

⋅= =∑ ∑
⋅ −

4 3 23p p q p q+ ⋅ + ⋅ 2 . 

Remark. Sometimes it is more convenient to use 
the cumulative form of the spectrum:  
                   *

1
{ : ,1 }

i

i i i
k

SP y y x i n
=

= = ≤ ≤∑            (17) 

The value expresses  the number of permutations iy
π such that ( )r iπ ≤ , or, in other words, that 

( ( ))N iπ is Good.  
Example 4. For the network on Fig. 1, we have 
from the above example that there are 14 
permutations with anchor and 4 permutations 
with anchor 

3r =
2r = . So, we get  .  3 18y =

It is easy to check from (16) that in the case of the 
cumulative spectrum the network reliability is given 
by  

                             
1 ! ( )!

i n in

i
i

p qR y
i n i

−

=

⋅= ⋅∑
⋅ −

                  (18) 

Clearly, in the case of large or moderate networks 
we can not get the exact values of the spectrum. We 
can however try to estimate them by a Monte Carlo 
simulation [3,4]. It is worth to mention the main 
advantages of this combinatorial approach: 
(a) eliminating the rare event phenomenon. This fact 
results in bounding the relative error, so the method 
is especially efficient for highly reliable networks.  
(b) once computed, the combinatorial spectrum 
serves for as many values of nodes or edge failure 
probabilities as needed.  
(c) possibility to use for solving different reliability 
problems in dynamic networks. 
Definition 6. Denote by  the number of all 
permutations 

,i jz
π  such that ( (1... ))S iπ  is Good and 

( )je iπ ≤ . We call the set - 
the BIM spectrum. 

,{ ,1 ,1 }i jz i n j≤ ≤ ≤ ≤ n

Definition 7. Denote by the number of all 
permutations

,i jv
π  such that ( (1... ))S iπ is Good and 
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( )je iπ > .We call the set  - 

the FVIM  spectrum. 
,{ ,1 ,1 }i jv i n j≤ ≤ ≤ ≤ n

We see from these definitions that . , ,i j i j iz v y+ =

 
i 1y  ,1iz  ,2iz  ,3iz  ,4iz  
1 0 0 0 0 0 
2 4 4 4 0 0 
3 18 12 18 12 12 
4 24 24 24 24 24 

 
Table 1 

 
Example 5. Let us take the edge from the 
network in Fig. 1 and let us compute . It is easy 
to see that there are 6 permutations 

1e

3,1z
π such that 

( (1...3))S π is Good and 1( ) 3eπ > . So we get 
.  From the previous example, 3 3,1 6y z− = 3 18y = . 

Hence, we get that . The BIM spectrum for 
the network is given in Table 1. 

3,1 12z =

Claim 1.   
(a) The BIM for edge j is given by the following 
formula: 

      
1 1

, ,

1

( )
! ( )!

i n i i n i
n i j i i jB

j
i

z p q y z p q
I

i n i

− − − −

=

⋅ ⋅ − − ⋅ ⋅
= ∑

⋅ −
    (19) 

(b) The FVIM for edge j is given by the following 
formula: 

                   
1

,

1

11
( ) ! ( )!

i n i
n i jFV

j
i

v p q
I

R p i n i

− −

=

⋅ ⋅
= − ∑

⋅ −
         (20) 

Proof. (a) Remind that BIM for edge je equals 

1 1( ,...1 ,..., ) ( ,...,0 ,..., )j n j
j

R
nR p p R p

p
∂ = −
∂

p  

(see[12 ]). 
The value , by the definition 5, is the number of 
permutations 

,i jz
π such that ( (1... ))S iπ is Good and the 

edge je is up. For fixed permutationπ the probability 
of an appropriate state with je being up, 
equals . Take into account that a specific 
state with i edges being up and n-i edges being down 
we obtain  times (from different 
permutations). Then the summary probability of all 
Good states with i edges being up and n-i edges 

being down equals 

1i np q− ⋅ i−

! ( )!i n i⋅ −

1
,

! ( )!

i n
i jz p q
i n i

− −⋅ ⋅

⋅ −

i

.  For the case of 

the edge je being down we get the expression of the 

appropriate probability as 
1

,( )
! ( )!

i n i
i i jy z p q

i n i

− −− ⋅ ⋅

⋅ −
, and 

(a) follows. 
(b) Using (a), the definition of  FVIS  and the above 
mentioned fact that , ,i j i j i jz v y ,+ =  we arrive at the 
desired expression.   
In order to rank the elements according to their 
importance measure there is no need to compute the 
partial derivatives. The following simple claim takes 
place.  
Claim 2. Let { ,1 }ijz i n≤ ≤ and be the 
BIM spectrum elements for the edges 

{ ,1 }isz i n≤ ≤

je and se  
respectively. Then: 
(a)   If for all 1 i n≤ ≤  the inequality holds, 

then 

ij isz z≥

j s

R R
p p
∂ ∂≥
∂ ∂

 . Moreover, if for at least one index 

i a strong inequality holds, thenij isz z>
j s

R R
p p
∂ ∂>
∂ ∂

. 

(b)   Suppose that the condition of (a) does not take 
place. Then let  be the maximal index such 
that

k
ij isz z≠ . Suppose that . Then there exists 

some value
kj ksz z>

0p such that for all 0p p≥ the inequality 

j s

R R
p p
∂ ∂>
∂ ∂

 holds. 

Proof. (a) From (12) we have: 

j s

R R
p p
∂ ∂− =
∂ ∂

 
1 1

, ,

1

( )
! ( )!

i n i i n i
n i j i i j

i

z p q y z p q
i n i

− − − −

=

⋅ ⋅ − − ⋅ ⋅
−∑

⋅ −
 

1 1
, , , ,

1

( ) ( )
! ( )!

i n i i n i
n i j i s i s i j

i

z z p q z z p q
i n i

− − − −

=

− ⋅ ⋅ − − ⋅ ⋅
=∑

⋅ −
 

1 1
, ,

1

( )
! ( )!

i n i
n i j i s

i

z z p q
i n i

− − −

=

− ⋅ ⋅
∑

⋅ −
 and (a) follows. 

(b) From the definition of k and the latter expression 
we obtain: 

1 1
, ,

1

( )
! ( )!

i n i
k i j i s

i

z z p q
i n i

− − −

=

− ⋅ ⋅
=∑

⋅ −

, ,1 1

1

( )
( (

! ( )!
k i j i sk n k k i

i

z z qp q
i n i p

− − − −

=
) )

−
⋅ ⋅ ⋅∑

⋅ −
 and for , 

the assertion follows. 

1p →

We use the following Monte Carlo scheme to obtain 
unbiased estimates for the , and .   iy ,i jz ,i jv
Simulation scheme. 
Step1. Initialize all ,  and to be 0.  ia ,i jb ,i jc
Step2. Simulate the permutationπ ∈Π . 
Step3. Find ( )r r π= - the minimal index of edge 
inπ  so that the state ( (1... ))N rπ is Good.  
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Step4. Let . : 1r ra a= +
Step5. For all j such that ( )je rπ ≤ let . , ,: 1r j r jb b= +
Step6. For all  s such that ( )se rπ > let . , ,: 1r s r sc c= +
Step7. Let . If  Go to Step4. : 1r r= + r n≤
Step8. Repeat steps 2-7 M times.     

 Computing , ,
, ,

! !!ˆ ˆˆ, ,i j i ji
i i j i j

b n c na ny z v
M M M

⋅ ⋅⋅= = =  we 

can  from (18), (19), (20) obtain, respectively, the 
unbiased estimates for R , BI  and  FVI . 
 
 
5  Numerical examples 
In this section we present several examples, which 
explain how we can rank network elements (edges 
and nodes) in accordance to their BIM's by using 
spectrum approach. For this purpose we choose 
some hypercubes (note that hypercube 
configurations are widely used in computer 
networks [24]).  
Example 6. Consider a four-terminal hypercube  
with =16 nodes and 32 edges. This hypercube is 
shown on Fig. 2. Let its terminals be nodes 1, 8, 9 
and 16. Edges will be denoted by (k,s) , where k and 
s are node numbers.  

4H
42

 

 
 

Fig. 3 
 
Table 2 presents a fragment of simulation results, 
based on  replications. By  we marked the 
simulated value of spectrum and by  - the 

simulated value of BIM spectrum 

410 ia

,( , )i k sb
BIS for edge (k,s). 

Remind that for edge ranking there is no need to 
compute their BIM's. We see from Table 2 that the 
values of BIS  for edges (1,9) and (8,16) are very 
close  to each  other. On the other hand, these values 
are consistently greater than the BIM spectrum 
values for edge (1,2) and the latter – than those of 
(3,4). So, we rank the edges by their importance in 

the following order (read table 2 in horizontal 
direction) (1,9) (8,16) (1,2) (3,4)= > > .  
 
 
 

i ia  ,(1,9)ib  ,(8,16)ib  ,(1,2)ib  ,(3,4)ib  
6 2 2 1 0 1 
7 15 14 14 2 3 
8 59 51 50 12 12 
9 154 129 128 40 38 
10 350 286 267 109 91 
11 679 501 492 235 206 
12 1333 886 904 525 438 
13 2385 1478 1492 996 892 
14 3723 2187 2210 1625 1547 
15 5230 3012 3042 2502 2363 

 
Table 2 

 
Note that from the whole data array (not presented 
here)  one can infer that in our network there are 
three, by their BIM's, different groups of edges. The 
first consists of edges (1,9) and (8,16), which 
connect the pairs of terminals. The second is the 
group consisting of all other edges incident to one of 
the terminals 1, 8, 9 and 16, and the third – all other 
edges. The edges within each group have equal 
BIM’s, the first group dominates the second, and the 
second dominates the third. This conclusion may 
seem to be intuitively obvious, but for the same 
hypercube with nonsymmetrical terminals, or for 
other nonsymmetrical networks, similar conclusions 
are not so obvious.  More involved cases may need 
to use special statistical analysis for better 
discrimination between edges with close BIM’s 
spectra.. 
Example 7.  Consider now the same hypercube, but 
with three terminals: 1, 10 and 16. Table 3 presents 
a fragment of simulation results, based on  
replications. The notation is the same as in the Table 
2. This case is less obvious due to the non-
symmetrical terminals. We can, by the results, rank 
the edges in the following order: 
(1,9)>(9,10)>(8,16)>(3,4)>(7,8). (A simulation run 
with 100,000 replications leads to the same 
conclusion). An interesting feature of the data in 
Table 3 is that here we can not unite in one group 
(as it was in Example 6) all edges incident to one of 
the terminals. For example, edge (1,9) is ranked 
higher than the edge (9,10).  Note also that there 
exist edges which are not incident to any terminal 
and do not belong to one rank group (this was not 

410
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the case of the previous example). Such edges, for 
example, are (3,4) and (7,8).          
 

i ia  ,(1,9)ib  ,(9,10)ib  ,(8,16)ib  ,(3,4)ib  ,(7,8)ib

6 13 11 11 2 0 2 
7 41 33 29 8 5 4 
8 99 78 72 37 23 20 
9 193 163 159 93 79 68 
10 322 311 310 208 167 150 
11 547 583 553 441 356 320 
12 795 970 923 818 660 614 
13 1195 1576 1527 1416 1173 1123 
14 1351 2288 2234 2151 1845 1777 
15 1435 3027 3033 2969 2681 2590 

 
Table 3 

 
Example 8. Our initial hypothesis was that the type 
of inequality between BIM's of two elements 
remains unchanged  for all values of i (see Claim 
2(a)). We'll  see from the following example that it 
is not so. Consider the same hypercube with 
three terminals: 1, 10, 16, but with reliable edges 
and unreliable nodes. (Remind that the terminal 
nodes are supposed to be reliable).  Table 4 presents 
the results (also based on  replications). As it is 
seen from this table, the nodes 2, 9 and 15 are 
ranked as follows: (2) = (9)>15. It is interesting that 
all these three nodes are the "neighbors" of 
terminals, but the node 15 is less important than the 
first two.   

4H

410

 
i ia  ,(2)ib  ,(9)ib  ,(15)ib  ,(7)ib  ,(6)ib  
6 1161 800 805 208 140 208 
7 2045 1712 1718 964 837 812 
8 2483 2926 2926 2307 2088 1986 
9 2052 4161 4165 3821 3569 3497 

10 1097 5200 5204 5038 4889 4871 
11 450 6091 6088 6028 5970 5964 
12 158 6912 6904 6894 6909 6879 
13 49 7696 7694 7688 7694 7692 
14 0 8460 8460 8458 8465 8459 
15 0 9232 9228 9227 9230 9228 

 
Table 4 

 
Let us now pay attention to the last two columns, 
related to nodes 7 and 6. We see that , 
but for all the inequalities become reversed. 
We have checked this fact by increasing the number 
of simulation replications and got the same results. 

We have also combinatorial explanation: the 
number of  short paths is greater for node 6, but the 
number of longer paths is greater for node 7. Here 
the conditions of the Claim 2(b) hold and therefore 
starting with some 

1,(7) 1,(6)b b<

1i >

0p , node 7 is more important 
than  node 6.       
Example 9. One of the important characteristics of 
Monte Carlo computations is the convergence rate 
of parameter estimates to their true values. 
Numerous simulation experiments reveal that the 
estimates of component importance rapidly become 
stable and change very little as the number of 
simulation runs increases. For example, BIM’s were 
estimated for a hypercube  with 128 nodes (5 of 
them were terminals) and 448 edges .  Nodes are 
subject to failures and edges are reliable. Table 5 
presents the estimated BIM's spectrum for node 2, 
divided by number of replications K, for K= , 

, ,see columns 2,3,4, respectively.  

7H

410
510 610

 
i 4

,(2) /10ib 5
,(2) /10ib  6

,(2) /10ib

20 0 0 0.00005 
30 0.01500 0.01610 0.01854 
40 0.13500 0.13270 0.13559 
50 0.29900 0.28900 0.29929 
60 0.41300 0.41660 0.42126 
70 0.51200 0.51400 0.51752 
80 0.60100 0.60650 0.60722 
90 0.69400 0.68610 0.69079 
100 0.76500 0.77090 0.77191 
110 0.84400 0.85160 0.85211 
120 0.93800 0.93430 0.93405 
125 0.97500 0.97580 0.97583 

 
Table 5 

 
6  Conclusions 
(1) We have developed a new method of computing 
network component importance measures, for 
networks with different component reliabilities. (We 
deal with Birnbaum importance measure-the BIM). 
Our method is based on a connection between the 
so-called border state probabilities and the reliability 
gradient vector. The network component importance 
measures are the coordinates of the reliability 
gradient vector. Using a specially constructed 
evolution process on the network components, we 
have developed an efficient numerical procedure for 
estimating the border state probabilities and 
obtaining, therefore, the BIM’s.  Our numerical 
procedure avoids the rare event phenomenon and 
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allows obtaining all gradient coordinates in one 
simulation run.  
(2) For the case of networks with equally reliable 
components (nodes, or edges or both), we have 
developed a new efficient computation scheme for 
evaluating the BIM’s. Its main idea is based on 
calculating, via a  Monte Carlo scheme,  network 
combinatorial invariant called spectrum and on the 
connection between the spectrum  and the 
component BIM’s.   
Spectrum based BIM computations allow obtaining 
results without calculating the gradient vector.   
(3) The techniques developed in this paper can be 
viewed as a first step toward developing an 
algorithm for optimal network reliability design, 
since the latter has to be based on computing 
network reliability gradient vector. 
 
References: 
[1] T. Elperin, I. Gertsbakh, M. Lomonosov, An 

evolution model for Monte Carlo estimation of  
equilibrium network renewal parameters, 
Probability in the Engineering and 
Informational Sciences, Vol. 6, 1992, pp. 457-
469. 

[2] T. Elperin, I. Gertsbakh, M. Lomonosov, 
Estimation of network reliability using graph 
evolution models, IEEE Transactions on 
Reliability, Vol. 40, No.5, 1991, pp. 572-581. 

[3] Gertsbakh and Y. Shpungin, Combinatorial 
approaches to Monte Carlo estimation of 
network lifetime distribution,  Appl. Stochastic 
Models Bus. Ind., Vol 20, 2004, pp. 49-57. 

[4] Y. Shpungin, Combinatorial Approach to 
Reliability Evaluation of Network with 
Unreliable Nodes and Unreliable Edges, 
International Journal of  Computer Science, 
Vol.1, No.3, 2006, pp. 177-183. 

[5] Y. Shpungin, Networks with unreliable nodes 
and edges: Monte Carlo lifetime Estimation, 
International Journal of Applied Mathematics 
and Computer Sciences,  
Vol. 4, No. 1, 2007, pp. 168-173. 

[6] Z. W. Birnbaum, On the importance of 
different components in a multicomponent 
system, Multivariate Analysis 2, New York, 
Academic Press, 1969. 

[7] J. Fussel, How to calculate system reliability 
and safety characteristics, IEEE Transactions 
on Reliability, Vol. 24, No.3, 1975, pp. 169-
174. 

[8] F. C. Meng, Comparing the importance of  
system elements by some structural 

characteristics, IEEE Transctions on 
Reliability, Vol 45, No 1, 1996, pp. 59-65. 

[9] L. M. Leemis, Reliability – Probabilistic 
models and Statistical Methods, Prentice Hall, 
Inc, 1995. 

[10] J. F. Espiritu, D. W. Coit and U. Prakash, 
Component Criticality Importance Measures 
for the Power Industry, Electric Power Systems 
Research, Vol. 77, Issues 5-6, 2007, pp. 407-
420. 

[11] E. Zio and L. Podofillini,  Accounting for 
components interactions in the differential 
importance measure, Reliability Engineering & 
System Safety, Vol. 91, Issues 10-11, 2006, pp. 
1163-1174. 

[12] J.S. Hong and C. H. Lie, Joint reliability-
importance of two edges in an undirected 
network, IEEE Trans. on Reliab., Vol. 42, 
No.1, 1993, pp. 17-23. 

[13] M. J. Armstrong, Joint reliability-importance of 
 elements, IEEE Trans. on Reliab., Vol. 44, No. 
3, 1995, pp 408-412. 

[14] Bogronovo E., Apostolakis G. E., A new 
importance measure for risk-informed decision 
making, Reliab. Eng. And Sys. Safety, Vol. 72, 
2001, pp. 193-212. 

[15] Youngblood R. W., Risk significance and 
safety significance, Reliab. Eng. And Sys. 
Safety, Vol. 73, 2001, pp. 121-136. 

[16] Hsun-Wen Chang, Jun-Da Chen, Joint 
Structural Importance in Consecutive-k- 
Systems, Proceedings of 7th WSEAS 
International Conference on Applied Computer 
Science, 2007, pp. 95-100. 

[17] H. W. Chang, R. J. Chen and F. K. Hwang, The 
structural Birnbaum importance of consecutive-
k systems, Journal of Combinatorial 
Optimization, Vol. 6, 2002, pp. 183-197. 

[18] Yung-Ruei Chang, Amari S.V, Sy-Yen Kuo, 
OBDD-based evaluation of reliability and 
importance measures for multistate systems 
subject to imperfect fault coverage, IEEE 
Transactions on Dependable and Secure 
Computing, Vol. 2, Issue 4, 2005, pp. 336-347. 

[19] Bogronovo E., Differential, criticality and 
Birnbaum importance measures: An 
applicationn  to basic event, groups and SSCs 
in event trees and binary decision diagrams, 
Reliability Engineering & System Safety, Vol. 
92, Issue 10, 2007, pp. 1458-1467. 

[20] Hae Sang Lee, Chang Hoon Lie, Jung Sik 
Hong, A computation method for evaluating 
importance measures of gates in a fault tree, 

WSEAS TRANSACTIONS on COMPUTERS Ilya Gertsbakh, Yoseph Shpungin 

ISSN: 1109-2750
226

Issue 4, Volume 7, April 2008



IEEE Transactions on Reliability, Vol. 46, 
Issue 3, 1997, pp. 360-365. 

[21] G. Rubino, Sensitivity analysis of network 
reliability using Monte Carlo, Proceedings of 
the 37th conference on Winter simulation, 
Orlando, Florida, 2005, pp. 491-498. 

[22] I. Gertsbakh, Reliability Theory with 
Applications to Preventive Maintenance, 
Springer, 2000. 

        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[23] I. Gertsbakh and Y. Shpungin, Product-Type   
       Estimators of Convolutions, Semi-Markov  
       Models and Applications, Kluwer Academic     
        Publishers, 1999, pp. 201-206. 
[24] M. Mitzenmacher, E. Upfal, Probability and      
        Computing . Randomized Algorithms and    
        Probabilistic Analysis, Cambridge University   
        Press, 2005. 

WSEAS TRANSACTIONS on COMPUTERS Ilya Gertsbakh, Yoseph Shpungin 

ISSN: 1109-2750
227

Issue 4, Volume 7, April 2008


	Abstract: - In this paper we focus on computational aspects of network reliability importance measure evaluation. It is a well known fact that most network reliability problems are NP-hard and therefore there is a significant gap between theoretical analysis and the ability to compute different reliability parameters for large or even moderate networks. In this paper we present two very efficient combinatorial Monte Carlo models for evaluating network reliability importance measures. 



