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Abstract: - For the purpose of evaluation, a NURBS curve is used, because it is commonly used in the areas of 
CAD/CAM and Computer Graphics.  A curve with a monotone radius of curvature distribution is considered as a 
fair curve in the area of Computer Aided Aesthetic Design (CAAD).  But no official standards have been 
established.  Therefore, a criterion for a fair curve is proposed.  A quintic NURBS curve, the first derivative of a 
quintic NURBS curve, curvature vector, curvature, and radius of curvature are expressed.  The concept of radius of 
curvature specification to modify the shape of a NURBS curve is illustrated.  The difference between the NURBS 
curve radius of curvature and the specified radius of curvature is minimized by introducing the least-squares 
method to modify the shape of the NURBS curve.  As curve fairness evaluation, radius of curvature distribution is 
used as an alternative characteristic of a curve.  Algebraic functions such as linear, quadratic, cubic, quartic, quintic, 
and six degrees are applied to the radius of curvature distribution of the designed curve to specify the radius of 
curvature.  Then, the shape of the curve is modified according to the specified radius of curvature distribution.  In 
this manner, six NURBS curves whose radius of curvature are these algebraic functions are generated, and are 
predefined.  Using the correlation matching, the similarity is evaluated by comparing the radius of curvature 
distribution of the designed curve with those of six NURBS curves predefined.  The highest similarity curve to the 
designed curve among these predefined curves is selected.  The similarity evaluated of the selected curve is 
determined as fairness of the designed curve. 
 
Key-Words: - curve shape modification, fair curve, radius of curvature specification, correlation matching, fairness 
evaluation  
 
1   Introduction 
In Computer Aided Aesthetic Design (CAAD) [1], 
designers evaluate the quality of a designed curve by 
looking at its curvature or radius of curvature plots.  If 
the quality of a designed curve does not meet 
designer’s demands, they usually modify the control 
points of the curve interactively.  If the variation of the 
radius of curvature of the curve is monotone, this 
curve is considered to be a fair curve [2].  But the 
definition of a fair curve is ambiguous and no official 
standards are given.  Therefore, in this paper we have 
tried to establish criterion for a fair curve. 
     A NURBS curve, which is commonly used in the 
field of CAD･CAM and Computer Graphics, is used 
as an expression of a freeform curve.  A quadratic 
NURBS curve is used as an expression of a quadratic 
curve using its weights.  In this study, a quadratic 
curve is not used to express the shape of a curve.  
Therefore, the weights of a NURBS curve are not used.  
A cubic NURBS curve is widely used, but in this study, 
radius of curvature ranging over multi segments of a 

NURBS curve are modified based on the specified 
radius of curvature.  A smooth radius of curvature 
continuity is needed.  Therefore, a quintic NURBS 
curve is used in this study. 
     Positions and gradients are given to the NURBS 
curve equations and first derivative equations of the 
NURBS curve respectively.  Then, a NURBS curve is 
generated.  Afterwards, if necessary, the shape of this 
NURBS curve is modified according to the specified 
radius of curvature distribution. 
     Fair curve expression and fairness evaluation are 
described.  As a measure of curve fairness evaluation, 
radius of curvature distribution is used as an 
alternative characteristic of a curve.  Evaluation of 
whether the designed curve is fair or not is 
accomplished by comparing of the designed curve to a 
curve whose radius of curvature is monotone. 
     To specify the radius of curvature, six NURBS 
curves whose radius of curvature are followed to 
algebraic functions such as linear, quadratic, cubic, 
and up to six degrees are predefined based on the 
designed curve.  Then, by introducing the correlation 
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matching, the similarities of the designed curve to 
these six predefined curves are examined.  Among 
these predefined curves, the highest similarity curve to 
the designed curve is selected as an ideal fair NURBS 
curve.  Then, the fairness of the designed curve to its 
ideal fair curve is evaluated. 
     Fair curve generation algorithms related to 
curvature by modifying the control points have been 
published.  These make monotone curvature [3], use a 
clothoidal curve for specifying the curvature [4], and 
automate a curve fairing algorithm for B-spline curves 
[5, 6].  Fair curve generation algorithms related to 
energy function have been published.  These are 
smoothing of cubic parametric splines by energy 
function [7], finding the unfair portion of a curve using 
energy function [8], and introducing a low-pass filter 
to energy function [9].  Fair curve generation 
algorithms related to curvature by specifying 
curvature distribution have also been published [10].    
     Section 2 of this paper describes a quintic NURBS 
curve, the first derivative of a quintic NURBS curve, 
curvature vector, curvature, and radius of curvature.  
In section 3, generation of a quintic NURBS curve 
which passes through given point sequence and 
generation of a quintic NURBS curve using the given 
points and gradients are described.  In section 4, 
NURBS curve shape modification based on the 
specified radius of curvature is described.  Section 5 
describes fair curve expression and fairness evaluation 
giving examples.  A criterion for a fair curve is 
proposed as fairness. 
 
2  NURBS Curve Expression 
A quintic NURBS curve is used in this study.  The 
objective of freeform curve design is to design the 
framework of surface patches. 
     
 

2.1 NURBS Curve Expression 
A quintic NURBS curve consists of  segments 

 is composed of n  control points such as 
5n −

( 6n ≥ )

1, n−0 1q ,q , q and  weights such as n 0 1 1, , , nω ω ω − as in 
Eq.(1).  In this study, the weights of this NURBS curve 
are not used. 
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are NURBS basis functions. 
     These functions are called the de Boor-Cox [11] 
recursion formulas, and are recursively defined by the 

knot sequence t t  as in Eq.(2).  Knot 
spacing is fixed in this study. 
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where 0,1, , 1i n= −  and . M = 2,3, ,6
     If the knot vector contains a sufficient number of 
repeated knot values, then a division of the form 

( ) ( ), 1 1/i M i M iN t t t− + − − = 0 / 0  (for some ) may be 
encountered during the execution of the recursion.  
Whenever this occurs, it is assumed that 0/0

i

0 [12].   =
     A quintic NURBS curve consists of one segment 
with the knot vector { }4, 5, 6 5, 4, 3, 2, 1, 0, 1, 2, 3,− − − − − is 
expressed as in Eq.(3). 
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     The first derivative of a quintic NURBS curve 
shown in Eq.(3) is expressed as in Eq.(4). 

(3) 
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     Curvature vector is expressed by Eq.(5). 

( )
( ) ( )( ) ( )

( )( )4

t t
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R × R × R
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R

t
, (5) 

( )tRwhere  is the first derivative of a NURBS curve, 
and ( )tR  is the second derivative of a NURBS curve. 
     Curvature is the magnitude of the curvature vector, 
therefore curvature is expressed as in Eq.(6). 
( ) ( )t tκ = κ  (6) 

     By definition, the curvature of a plane curve is 
nonnegative.  However, in many cases it is useful to 
ascribe a sign to the curvature [13].  The choosing of 
the sign is commonly connected with the tangent 
rotation in moving along the curve in the direction of 
the increasing parameter.  The curvature of the curve 
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 is positive when its tangent rotates counter-clockwise, 
it is negative when its tangent rotates clockwise. 
     Radius of curvature is the reciprocal number of 
curvature, therefore, radius of curvature is expressed 
as in Eq.(7). 
( ) ( )

1t
t

ρ
κ

=  

 
2.2 NURBS Curve Display 
The curvature of a curve is the most significant 
descriptor of its shape [14].  To check the shape of a 
curve by displaying its curvature or radius of curvature 
plots is widely known.  This is simply the graph of 

 or ( )tκ ( )tρ . 
     Curvature information is plotted using straight 
lines drawn outward from and perpendicular to the 
curve, with the line length proportional to the amount 
of curvature at that spot.  Radius of curvature 
information is plotted using straight lines drawn 
inward from and perpendicular to the curve, with the 
line length proportional to the amount of radius of 
curvature at that spot. 
     It is hard to distinguish the two curves by just 
looking at their graphs.  If the radius of curvature plots 
are drawn for both, the difference of the two curves is 
recognized immediately.  Curve shape is judged by 
looking at the lines coming out from the curve and 
seeing how their lengths change along the path, not 
along the parameter.  Therefore, curvature or radius of 
curvature distribution must be drawn to the perimeter 
of the curve. 
     A NURBS curve with curvature and radius of 
curvature plots, and curvature and radius of curvature 
distribution are shown in Fig.1(a), (b) respectively. 
     A shape modified NURBS curve with curvature 
and radius of curvature plots, and curvature and radius 
of curvature distribution are shown in Fig.2(a), (b) 
respectively. 
     While both curves shown in Fig.1(a) and Fig.2(a) 
can hardly be distinguished by just looking at their 
curves, the curve with curvature and radius of 
curvature plots tell the two curves apart immediately.  
     Curvature distribution of a NURBS curve is not 
monotone as shown in Fig.1(b).  But curvature and 
radius of curvature distribution of a shape modified 
     NURBS curve is monotone as shown in Fig.2(b).  
This display technique provides designers with the 
ability to evaluate the quality of a designed curve.  
Seeing a NURBS curve with curvature and radius of 
curvature plots gives designers a deeper understanding 
of their design. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     The relation of curvature to radius of curvature is 
reciprocal.  Therefore, it can be seen in Fig.1(b) and 
Fig.2(b) that in a portion of a curve where the 
curvature is small, at this portion the radius of 
curvature will be large.  As shown in Fig.2(b), if the 
radius of curvature to the perimeter is linear, the 
curvature distribution will be parabolic.  On the 
contrary, if the curvature to the perimeter is linear, 
radius of curvature distribution will be parabolic.  
     In case the curve shape is close to a straight line, the 
radius of curvature becomes infinity.  Therefore, a 
limit value should be assigned to the radius of 
curvature. 
     Both curvature distribution and radius of curvature 
distribution displays are effective to examine the 
shape of a curve. 
 
 
3  Generation of a NURBS Curve 
In this section, a method to generate a quintic NURBS 
curve which passes through given points in sequence 
is shown.  Another method to generate a quintic 
NURBS curve using the given points in sequence with 
gradients is described. 
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Fig.1 NURBS curve, curvature and radius 
of curvature distribution 
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3.1 Generation of a Quintic NURBS Curve which 
Passes through Given Point Sequence 
Putting zero to the parameter of Eq.(3), Eq.(3) is 
expressed as Eq.(8) by defining the geometrical knot 
position corresponding to the knot vector.      

1 ( 26 66 26 ),
120

= + + + +i i i+1 i+ 2 i+ 3 i+4R q q q q q  

( 0,1,2,3, , 1i m= ⋅⋅⋅ − )  
where  is the number of the given points, and m

,0P ,1P ,2P ,3P , ,m -2 m -1P P  are the positional vectors of 
the given points to be assigned to  ( 0,1,2,3, , 1)i = ⋅ ⋅ ⋅ −iR m

in Eq.(8), and  are the control 
points of a quintic NURBS curve. 

,0q 1,q ,2q ,3q , ,m+ 2q m+ 3q

     When the control points of a NURBS curve are 
calculated using Eq.(8), the number of unknowns, 
which are the positions of the control points, are four 
more than the number of equations which are 
expressed by Eq.(8).  In this case, by setting the second 
derivative of the NURBS curve to zero, and setting the 
fourth derivative of the NURBS curve to zero, 
unknown variables become known.  Therefore, the 
number of equations will be equal to the number of 
unknowns.  That is, a linear system is determined [15].  
Then a NURBS curve is generated by solving this 
determined system. 
     In this study, in addition to the given point 
sequence, gradient at the given points is defined. 
     Eq.(9) is applied to the gradients by setting the 
parameter of Eq.(4) as zero. 

1 ( 10 10 ),
24

d
dt

= − − + +i
i i+1 i+3 i+4

R q q q q  

( 0,1,2,3, , 1i n= ⋅⋅⋅ − )

−

 
where  is the number of given gradients.  The i  
shown in Eq.(9) corresponds to the i  in Eq.(8) and is 
determined situationally.  As a magnitude of the first 
derivative, one third value of the distance of adjacent 
given points is assigned as a default value.  For further 
adjustment, the magnitude of the first derivative is 
determined interactively.   

n

     The defined gradients are located at the beginning 
given point and it’s adjacent point, and at the end 
given point and it’s adjacent point in general.  In this 
case, the i  are determined as 0, 1, n , 2 1n −  
respectively.  Using given point sequence and four 
location specified gradients, a linear system becomes 
determined.  That is, the number of unknowns is equal 
to the number of equations.  The concept of a quintic 
NURBS curve generation using the given point 
sequence and four location specified gradients are 
illustrated in Fig.3.  , , , , , ,0 1 2 3 m -2 m -1P P P P P

d

 
 

 are given 

points.  d d , and d  are the four location 
specified gradients.  

, ,0 1 n-2 n-1

 

P

 
 
 
 
 

     As examples of a quintic NURBS curve which 
passes through the given point sequence, three 
NURBS curves which simulate filleting curves are 
shown with their curvature plots in Fig.4.  In Fig.4(a) 
and (b), the  of Eq.(9) are determined as 0, 2, 4, and 6.  
In Fig.4(c), the i  of Eq.(9) are determined as 0, 1, 3, 
and 4.  In the case of a filleting curve note that two 
gradients are placed at the start and end points of the 
filleting curve as well as the curve beginning and end 
points. 

i

 
 
 
 
 
 
 
 
 
 
 

 
3.2 Generation of a Quintic NURBS Curve using 
the Given Points and Gradients 
In this sub-section, a NURBS curve generation using 
the given points with gradients is described. 
     The concept of generation of a NURBS curve using 
the given points with gradients is illustrated in Fig.5. 
     , , , , ,0 1 2 3 m -2 m -1P P P P P P is the given point sequence.  

, , , , , ,⋅ ⋅ ⋅0 1 2 3 n-2 n-1d d d d d d are gradients assigned to the 
given points in sequence.  A NURBS curve which 
passes through the given points and has the first 
derivatives at these given points is generated.   
     A NURBS curve is generated by solving Eq.(8) and 
Eq.(9) simultaneously by making  in Eq.(8) equal to m
n  in Eq.(9).  In this case, the i  in Eq.(8) corresponds 
to the i  in Eq.(9).  If the number of given points with 
gradients is 4, the number of NURBS curve equations 
(Eq.(8)) is 4 and the number of first derivative 
equations (Eq.(9)) is 4.  As a linear system, the total 
number of equations is 8, whereas the total number of 

(8) 

(9) 

Fig.3 Concept of a quintic NURBS curve generation using the 
ven point sequence and four location specified gradients gi

m -1Pn-1d
0P

0d

1d

1P 2P
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Fig.4 Examples of a NURBS curve which passes through the 
given point sequence 

• Point marks indicate given points. 
Arrow marks indicate given four gradients. 
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control points of a NURBS curve is 8.  Therefore, this 
linear system is determined.  That is, the rank of a 
coefficient matrix of a linear system is equal to the 
number of unknowns.  The solution to this linear 
system is exact. 

Table 1 Linear system condition 
(I) (II) (III) (IV) 
2 6 underdetermined exact 
3 7 underdetermined exact 
4 

 
 
 
 
 
 
 
 
 
     But, in case the number of given points with 
gradients is 3, the number of equations (Eq.(8)) which 
pass through the given points is 3, and the number of 
equations of the first derivative (Eq.(9)) is 3.  In this 
case, as a linear system, the total number of equations 
is 6, whereas the number of control points of the 
NURBS curve is 7.  That is, the number of equations is 
less than the number of unknowns.  Therefore, this 
linear system is underdetermined  [16]. 
     For an underdetermined system, while setting 
auxiliary function, the linear system is solved under 
the constraint condition by selecting one solution from 
infinite number of exact solutions using Lagrange's 
method of indeterminate multipliers. 
     In case the number of given points with gradients is 
5, the number of equations (Eq.(8)) is 5, and the 
number of equations of the first derivative (Eq.(9)) is 
5.  In this case, as a linear system, the total number of 
equations is 10, whereas the number of control points 
of the NURBS curve is 9.  That is, the number of 
equations exceeds the number of unknowns.  
Therefore, this linear system is overdetermined [17]. 
     For an overdetermined system, the differences 
between the right and left sides of all the equations of 
the system are minimized.  The control points 
calculated are an approximation. 
     For a system where the number of given points 
with gradients is more than 5, the linear system is 
overdetermined.  For these systems, in accordance 
with the increments of the differences between the 
number of equations and the number of unknowns, the 
status of the approximation worsens. 
     The above mentioned are summarized in Table 1.  
A determined linear system is shown by the cross 
hatching. 
 
 
 

8 determined exact 
5 9 overdetermined approximation 
6 10 overdetermined approximation 
7 11 overdetermined approximation 
8 12 overdetermined approximation 

(I)   number of given points with gradients 
(II)  number of control points of a NURBS curve 
(III) system condition (underdetermined, determined,  

overdetermined) 
(IV) solution status 
 

Fig.5 Concept of generation of a NURBS curve using the 
given points with gradients 
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     As an example, in case the number of given points 
with gradients is 3, that is,  in Eq.(8) and  in Eq.(9) 
are 3, the NURBS curve generated as an 
underdetermined system is shown in Fig.6 with its first 
derivative, which is drawn outward perpendicular to 
the curve by the straight lines.  The length of the line is 
proportional to the first derivative.  This is an unusual 
way of displaying the first derivatives.  Nevertheless, 
this helps visual recognition of the NURBS curve 
shape and its first derivative’s magnitude variation.  
The solution to this linear system is exact. 

m n

     In case the number of given points with gradients is 
4, that is, m  in Eq.(8) and n  in Eq.(9) is 4, the 
NURBS curve is generated as a determined system.  
The solution to this linear system is exact. 
     Furthermore, in case the number of given points 
with gradients is 5, that is,  in Eq.(8) and  in Eq.(9) 
are 5, the NURBS curve is generated as an 
overdetermined system and is shown with its first 
derivative vectors in Fig.7.  The solution to this linear 
system is an approximation. 

m n

     In this manner, a NURBS curve is generated based 
on the given points with gradients.   
 
 
 
 
 
 
 
 
 

 

Fig.6 NURBS curve and its 
first derivative vectors,       

in case of underdetermined 

 

 

4  Curve Shape Modification based on 
the Specified Radius of Curvature 
In this section, a method to modify a NURBS curve 
shape according to the specified radius of curvature 
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distribution to realize an aesthetically pleasing 
freeform curve is described.   

 ˆiρ

     Radius of curvature is suitable, because it conforms 
to our visual recognition of the shape of the curve.  In a 
case where curve shape is very close to a straight line, 
the radius of curvature becomes infinity.  And also, at 
the point of inflexion, curvature value becomes zero.  
Therefore, radius of curvature value becomes infinite.  
For these reasons, radius of curvature value is 
converted to curvature value for computation. 
     The concept of radius of curvature specification 
and NURBS curve shape modification based on the 
specified radius of curvature distribution is shown in 
Fig.8.  A NURBS curve and its radius of curvature 
plots are shown in Fig.8. 
     Radius of curvature plots shown in Fig.8 are drawn 
inward from and perpendicular to the curve using 
straight lines.  The length of the line is proportional to 
the radius of curvature at that spot on the curve.  
However, the straight lines are not parallel to each 
other and the beginning points of the individual 
straight lines are different.  Therefore, a curve with a 
radius of curvature display is suitable to examine the 
variation of radius of curvature as a whole.  But, it is 
not suitable to examine the length of the straight lines 
and variation of radius of curvature in detail. 
     Therefore, considering the parameter of the 
NURBS curve is different from the perimeter of the 
curve, the perimeter of a NURBS curve as a straight 
line is set to the horizontal axis, and the radius of 
curvature is set to the vertical axis as shown in 
Fig.9(a).  Then, the radius of curvature distribution to 
the perimeter is drawn.  After this, specified radius of 
curvature is superposed on the current radius of 
curvature distribution.  Linear, quadratic, cubic, 
quartic, quintic, and six degree algebraic functions are 
applied as specified radius of curvature to the current 
radius of curvature distribution to modify the shape of 
the NURBS curve. 
     To be more in detail, coefficients of the algebraic 
function are calculated by introducing the 
least-squares method using the current radius of 
curvature distribution.  Then, the radius of curvature is 
specified by the determined algebraic function. 
     As an example, the linear algebraic function as a 
specified radius of curvature specification is shown in 
Fig.9(a).  The i th of radius of curvature distribution of  
a perimetrically represented NURBS curve is denoted 
as iρ , the specified radius of curvature at the same 
spot is denoted as ˆ iρ , the difference iδ  is shown by 
Eq.(10) and is illustrated in Fig.8 and Fig.9(a). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 2 1 2 ˆ( , , , , , ) ,x x y y
i i n n iq q q qδ ρ ρ− −= ⋅⋅ ⋅ ⋅ ⋅ ⋅ −  

where 0,1,2, , 1i m= ⋅⋅⋅ − m

2n−

i

,  is the number of specified 
radius of curvature, and n  is the number of NURBS 
curve segments plus 5, which is the degree of the 
curve. 
      which is the sum of the 
squared differences for all specified radius of 
curvatures in Eq.(11) is minimized by introducing the 
least-squares method.  The radius of curvature 
expression is non-linear.  Therefore, by Taylor's 
theorem, Eq.(11) is linearlized as in Eq.(12). 
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     Eq.(12) is minimized by equating to zero all the 
partial derivatives of 

1 1( ,x xS q  q+ Δ ,⋅ ⋅⋅ 2 2 ,x x
n nq q− −+ Δ

1 1 ,y yq q+ Δ ,⋅⋅ ⋅ 2 )y y
n nq q− −+ Δ 2

 with respect to x
rqΔ  and 

y
rqΔ ( 1,r = 2, ,⋅⋅⋅ 2)n −  as in Eq.(13). 

0 ( 1,2, , 2)

0 ( 1,2, , 2)

x
r

y
r

S r n
q
S r n
q

∂ ⎫= = ⋅⋅⋅ − ⎪∂Δ ⎪
⎬∂ ⎪= = ⋅⋅⋅ −
⎪∂Δ ⎭

 

     Using these simultaneous linear equations, x
rqΔ  

and y
rqΔ  ( 1,2, , 2)r n= ⋅⋅⋅ −  are calculated.  Then, x

rq  and 
y
rq  are determined. 

(10) 

(12) 

(11) 

(13) 

Fig.8 Concept of radius of curvature specification 
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     This kind of study on the radius of curvature, or the 
curvature to realize a fair curve is called a constrained 
non-linear minimization problem [18].  For 
computation,  and ˆiρiρ  are calculated based on the 
perimeter.  Then, the perimeter used is converted to 
the parameter to calculate the position of the control 
points of the NURBS curve.  Then, a NURBS curve is 
generated.  The total length of the curve which is the 
perimeter is calculated and rescaled as 1.  Repeating 
these operations, positions of the control points of the 
NURBS curve are determined while ( 0,1, , 1)i m= ⋅⋅⋅ −iδ  
are minimized for the entire perimeter. 
     Using the above mentioned method of a linear 
algebraic function to specify the radius of curvature as 
shown in Fig.9(a), radius of curvature distribution is 
changed to the one shown in Fig.9(b), while 
modifying the shape of the curve.  The dotted line 
shown in Fig.9(b) is a linear algebraic function 
specifying the radius of curvature distribution shown 
in Fig.9(a).  It is visually recognized that the radius of 
curvature distribution of the shape modified curve 
shown in Fig.9(b) matches to the specified radius of 
curvature. 
                        
5  Fair Curve Expression and Fairness 
Evaluation 
In this section, fair curve expression and fairness 
evaluation are described.  A curve with a monotone 
radius of curvature distribution is considered as a fair 
curve in the area of Computer Aided Aesthetic Design.  
But no official standards are given.  Therefore, 
criterion for a fair curve is proposed tentatively. 
     The shape of a NURBS curve is defined by the 
number, the location of its control points, and the knot 
sequence.  The designed curve is considered fair, if the 
variation of radius of curvature is monotone for the 
same number of control points and the knot sequence. 
     As curve fairness evaluation, radius of curvature 
distribution is used as an alternative characteristic of a 
curve.  Algebraic functions such as linear, quadratic, 
cubic, quartic, quintic, and six degrees are applied to 
the radius of curvature distribution of the designed 
curve to specify the radius of curvature.  Then, the 
shape of the curve is modified according to the 
specified radius of curvature distribution by using the 
shape modification algorithm mentioned in the 
previous section.  In this manner, six NURBS curves 
whose radius of curvature are linear, quadratic, cubic, 
quartic, quintic, and six degrees are generated, and are 
predefined based on the designed NURBS curve.  

These six NURBS curves are considered as fair, since 
their radius of curvature is monotone because their 
applied algebraic function’s variation of the dependent 
variable is monotone to that of the independent 
variable.  Using the correlation matching, the 
similarity is evaluated by comparing the radius of 
curvature distribution of the designed curve with those 
of six NURBS curves which are predefined.  The 
values of radius of curvature to the perimeter are 
considered as the components of a multi dimensional 
vector for the curve.  Then, similarity between two 
curves is expressed by normalizing the dot product of 
two vectors.  This similarity is evaluated as correlation 
coefficient.  The highest similarity curve to the 
designed curve among these predefined curves is 
selected.  The correlation coefficient of the selected 
curve is determined as fairness of the designed curve. 
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     As an example of fairness evaluation, a NURBS 
curve and its radius of curvature distribution to the 
perimeter are shown in Fig.10.   
     The radius of curvature distribution shown in 
Fig.10 is specified by six algebraic functions 
mentioned above.  Then, the shape of the curve is 
modified according to the specified radius of curvature 
distribution using the shape modification algorithm.  
In this manner, six NURBS curves whose radius of 
curvature are linear, quadratic, cubic, quartic, quintic, 
and six degrees are generated and are predefined based 
on the designed NURBS curve shown in Fig.10.  
Afterwards, setting the radius of curvature 
distributions of the shape modified six curves as 
references and the radius of curvature distribution of 
the designed curve shown in Fig.10 as a match, six 
similarities are evaluated by the correlation matching.  
The correlation coefficients evaluated are summarized 
in Table 2.  Correlation coefficients in Table 2 
expresses the fairness of the designed curve to 
derivatively generated six curves.  From Table 2, the 
designed curve whose radius of curvature is shown in 

Fig.11 Radius of curvature 
distribution and a given six 
degree algebraic function    

to specify radius of curvature
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six degrees 
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Fig.10 Designed curve and its 
radius of curvature distribution 
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• Point marks indicate knot position. 
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Fig.10, is judged to be designed so that the radius of 
curvature distribution will be six degree.  This is 
shown in Fig.11 together with the radius of curvature 
distribution shown in Fig.10. 
 
 

algebraic 
function linear quadratic cubic quartic quintic six 

radius of 
curvature 
shown in 

ig.11 F

0.99772 0.99888 0.99905 0.99974 0.99981 0.99993 

 
     Giving eight sample curves, fairness is examined.  
Eight designed curves and their radius of curvature 
distributions are shown in Fig.12 (a), (b), (c), (d), (e), 
(f), (g), and (h), and are labeled curve A, B, C, D, E, F, 
G, and H respectively. 
     Applying the six algebraic functions to the radius 
of curvature distributions of these eight designed 
curves respectively, the radius of curvature 
distributions corresponding to these six algebraic 
functions are generated.  If the radius of curvature is 
negative, it is considered that this algebraic function is 
not applicable.  The original radius of curvature 
distributions of eight designed curves and those of 
modified based on the specified algebraic functions 
are shown in Fig.13. 
     The correlation coefficients are evaluated by 
setting the radius of curvature distribution according 
to these six algebraic functions as references and the 
radius of curvature distribution of the eight designed 
curves shown in Fig.12 as matches.  As described 
above, the correlation coefficient evaluated is 
considered as the fairness of the designed curve. 
     The fairness of eight curves shown in Fig.12 is 
summarized in Table 3. 
     The correlation coefficient evaluated is expressed 
in cosine.  Therefore, it is not easy to distinguish the 
small differences.  So, the correlation coefficient 
which shows similarity is expressed in degree and 
summarized in Table 4. 
     From Table 4, it is recognized that curve A, curve B, 
curve E, and curve H are designed so that their radius 
of curvature distribution will follow quintic function 
as shown by the yellow hatching.  The fairness for 
curve A is 0.998624, for curve B is 0.999627, for 
curve E is 0.997770, and for curve H is 0.997263. 
      The radius of curvature distribution of these eight 
sample curves are shown with their closest reference 
algebraic function in Fig.13. 
     It is also recognized that curve F is designed so that 
its radius of curvature distribution will follow six 

degree function as shown by the green hatching.  The 
fairness for curve F is 0.999800. 
     But it is recognized that curve C, D and G are not 
designed so that their radius of curvature distribution 
will follow one of these six algebraic functions.   

Table 2 Fairness of the designed      The radius of curvature distribution of these eight 
sample curves are shown with their closest reference 
algebraic function in Fig.13. 
     As mentioned above, fairness of the designed curve 
is proposed by correlation coefficient using the radius 
of curvature distribution.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.12 Designed curves and their radius 
of curvature distributions 
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     Algebraic functions up to six degrees are applied to 
the radius of curvature distribution in this study.  But 
the application of algebraic functions over six degrees 
should be studied as a future work. 

 perimeter 

(c) curve C 

(g) curve G 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

 
6  Concluding Remarks 
A quintic NURBS curve, the first derivative of a 
quintic NURBS curve, curvature vector, curvature, 
and radius of curvature are expressed.   
     The concept of radius of curvature specification to 
modify the shape of a NURBS curve is illustrated.  
The difference between the NURBS curve radius of 
curvature and the specified radius of curvature is 
minimized by introducing the least-squares method to 
modify the shape of the NURBS curve. 
     As curve fairness evaluation, radius of curvature 
distribution is used as an alternative characteristic of a 
curve.  Algebraic functions such as linear, quadratic, 
cubic, quartic, quintic, and six degrees are applied to 
the radius of curvature distribution of the designed 
curve to specify radius of curvature.  Then, the shape 
of the curve is modified according to the specified  
radius of curvature distribution.  In this manner, six 
NURBS curves whose radius of curvature are these six 
algebraic functions respectively, are predefined.  
These six NURBS curves are considered as fair, since 
their radius of curvature is monotone because their 
applied algebraic function’s variation of the dependent 
variable is monotone to that of the independent 
variable. 
     The similarity is evaluated by comparing the radius 
of curvature distribution of the designed curve with 
those of six predefined NURBS curves.   
     The highest similarity curve to the designed curve 
among these predefined curves is selected.   
     The similarity evaluated of the selected curve is 
determined as fairness of the designed curve.    
     In the future, we are planning to establish a 
definition of a fair curve using a lot of curve data that 
will be gathered. 
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