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Abstract: A finite-element (FE) approach combined with an efficient iterative method have been used to provide
a numerical solution of the nonlinear Poisson-Boltzmann equation. The iterative method solves the nonlinear
equations arising from the FE discretization procedure by a node-by-node calculation. Moreover, some extensions
called by Picard, Gauss-Seidel, and successive overrelaxation (SOR) methods are also presented and analyzed for
the FE solution. The performances of the proposed methods are illustrated by applying them to the problem of two
identical colloidal particles in a symmetric electrolyte. My numerical results are found in good agreement with the
previous published results. A comprehensive survey is also given for the accuracy and efficiency of these methods.
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1 Introduction

The nonlinear Poisson-Boltzmann (PB) equation de-
scribes, in some approximation, the electric poten-
tial and charge distribution in colloidal systems [1, 2].
Knowing the electrostatic potential, one can calculate
other quantities such as the free energy of a colloidal
system and the force of particle-particle interaction.
Features of inter-particle interaction are of great im-
portance in studying the stability of colloidal disper-
sions, the formation of colloidal crystals and mem-
brane separation processes [3].

To obtain numerical solutions of the PB equa-
tion, one must solve a system of nonlinear algebraic
equations resulting from a discretization by, for ex-
ample, the finite-element (FE) method. The standard
method for the solution is Newton’s method or its vari-
ant [4]. Newton’s method is a local method that con-
verges quadratically in a sufficiently small neighbor-
hood of the exact solution. It is very sensitive to initial
guesses due to its local convergence property. We pro-
pose here an iterative method which is globally and
monotonically convergent with simple upper or lower
solutions of the PB equation as initial guesses [5].

The method of monotone iterations is a classi-
cal tool for the study of the existence of the solution
of semilinear partial differential equations of certain
types [6, 7, 8, 9]. It is also useful for the numerical
solution of these types of problems approximated, for
instance, by the finite difference [10, 11, 12], finite el-
ement [13], or boundary element [14, 15, 16] method.

It is a constructive method that depends essentially on
only one parameter, called the monotone parameter
herein, which determines the convergence behavior of
the iterative process. Embedded in the widely used FE
algorithm, four monotone iterative methods, namely,
Jacobi, Picard, Gauss-Seidel, and SOR methods are
presented and analyzed in this paper.

In the next section, we state the model problem
from the colloidal system to the corresponding PB
equation and FE algorithm. The model is subject to
Dirichlet and Neumann types of conditions on various
parts of the boundary of an irregular domain. Start-
ing with the upper solution as an initial guess, it is
shown in Section 3 that maximal sequences generated
by Jacobi, Picard, Gauss-Seidel, and SOR iterations
all converge monotonically from above to the unique
solution of the resulting nonlinear system. In Sec-
tion 4, we represents a part of our extensive numer-
ical experiments on various confined and unconfined
models to demonstrate the accuracy and efficiency of
monotone properties of the proposed methods. More-
over, a short concluding remark is given in Section 5.

2 Description of the Problem

Owing to the symmetry, all of the problems consid-
ered have the same two-dimensional domainΩ which
is shown in Fig. 1. Segment CD is the wall of a cylin-
drical vessel, segment DE is the outlet, segment BC
represents a midplane for the problems with two par-
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Figure 1: The domain for the problem of two interact-
ing identical spherical particles.

ticles, segment AB is half the separation distanceL
and segment BE is the axis of rotational symmetry.

The dimensionless PB equation for electrostatic
potentialΨ outside the spheres in cylindrical coordi-
nates takes the form

∂2Ψ
∂R2

+
1
R

∂Ψ
∂R

+
∂2Ψ
∂Z2

= sinh Ψ (1)

Length, electrostatic potential, and force are respec-
tively measured in units of Debye lengthκ−1 =
(2nq2

e/εkT )−1/2, kT/qe, andε(kT/qe)2, wheren is
the concentration of any of the species in the elec-
trolyte, qe is the absolute value of electronic charge,
ε is the absolute permittivity of the electrolyte,k is
the Boltzmann constant,T is the absolute tempera-
ture, and the rationalized SI is used to express the fac-
tors.

To solve Eq. (1), it is necessary to define the po-
tential Ψ and the potential gradient∂Ψ/∂N at the
boundary∂Ω of the domainΩ. N (=κn) is the out-
ward normal direction from the boundary∂Ω. In
the present paper,Ψ = Ψs on the boundary AGF
(which refers to the sphere surface), andΨ = Ψm

on the boundary CD (which refers to the pore wall).
Axis symmetry of the geometry implies that deriva-
tives with respect to the coordinatesR on the line EF
are assumed to be zero. Also, on the line DE natural
boundary condition of the Neumann type is satisfied.
The electric potentials within the spheres and the ma-
terial surrounding the pore are constant.

The electric field is related to the potential by the
equationE = −∇Ψ. The force of interaction of the
particles is obtained by means of direct integration
of the total stress tensor over the appropriate surface.
There are at least two possible ways of integrating:
over the surface of the particle and over the midplane.

The dimensionless force obtained by integrating over
the surface of the particle is calculated according to
the expression

Fs = (κa)2
∫ π

0
|∇Ψ|2 cos θ sin θ dθ, (2)

whereκa is the dimensionless sphere radius. For the
integration over the midplane, sayM , the dimension-
less force is

Fm =
∫

M

[
2(cosh Ψ− 1) +

(
∂Ψ
∂R

)2

−
(

∂Ψ
∂Z

)2
]

R dR, (3)

The latter case is more accurate since different pieces
of the midplane contribute with the same sign.

3 Monotone Iterative Methods
Let T be a FE partition of the domainΩ such that
T = { τj : j = 1, ...,M , Ω̄ = ∪M

j=1τ̄j} and the sys-
tem of nonlinear algebraic equations resulting from
FE discretization is

ηiψi −
∑

k∈V (i)

ηkψk = −Ri(ψi) + R∗
i (4)

where the setV (i) of degrees of freedom satisfies
ηk 6= 0 , ∀k ∈ V (i), k 6= i, the functionR(·,Ψ)
is nonlinear inΨ describing the PB equation andR∗
is prescribed in the boundary∂Ω. The diagonal domi-
nance of the resulting matrices (i.e., M-matrices [17])
of the model problems provides not only stability of
numerical solutions (i.e., no non-physical oscillations)
but also convergence of iterative procedures. This
is a basic hypothesis for the development of various
monotone iterative schemes for (4).

Definition 1 A vectorΨ̃ ≡ (ψ̃1, . . . , ψ̃N ) ∈ IRN is
called an upper solution of (4) if it satisfies the fol-
lowing inequality

ηiψ̃i −
∑

k∈V (i)

ηkψ̃k ≥ −Ri(ψ̃i) + R∗
i , (5)

andΨ̂ ≡ (ψ̂1, . . . , ψ̂N ) ∈ IRN is called a lower solu-
tion if

ηiψ̂i −
∑

k∈V (i)

ηkψ̂k ≤ −Ri(ψ̂i) + R∗
i , (6)

for 1 ≤ i ≤ N whereN is the total number of node
points.
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Given any ordered lower and upper solutionsΨ̂ and
Ψ̃, we define the solution sections by

〈Ψ̂, Ψ̃〉 ≡ {Ψ ∈ IRN ; Ψ̂ ≤ Ψ ≤ Ψ̃}
〈ψ̂i, ψ̃i〉 ≡ {ψi ∈ IR; ψ̂i ≤ ψi ≤ ψ̃i}.

3.1 Jacobi Method

Now we introduce the maximal sequence. LetV
(0) =

Ψ̃ be an initial iterate. We construct a sequence

{V (m+1)} by solving the linear system

ηiv̄
(m+1)
i −

∑

k∈V (i)

ηkv̄
(m)
k + γ̄

(m+1)
i v̄

(m+1)
i

= γ̄
(m+1)
i v̄

(m)
i −Ri(v̄

(m)
i ) + R∗

i , (7)

for m = 0, 1, 2, . . . , 1≤ i ≤ N and the monotone
parameter̄γ(m+1)

i is defined by

γ̄
(m+1)
i ≡ ∂Ri(v̄

(m)
i )

∂ψi
. (8)

For the maximal sequence we have the following
properties [18, 12].

Lemma 2 Assume the nonlinear functionRi(ψi) is
monotone increasing and concave up with respect to
ψi, i.e.,∂2Ri/∂ψ2

i > 0. Then the maximal sequence

{V (m)} given by (7) withV
(0) = Ψ̃ possesses the

monotone property

Ψ̂ ≤ V
(m+1) ≤ V

(m) ≤ Ψ̃, m = 0, 1, 2, . . . . (9)

Moreover, for eachm, V
(m)

is also an upper solution.

Proof. Let e(0)
i ≡ v

(0)
i − v

(1)
i = ψ̃i − v

(1)
i . By (7) we

have

(ηi + γ
(1)
i )e(0)

i = (ηi + γ
(1)
i )ψ̃i

− [
∑

k∈V (i)

ηkv
(0)
k + γ

(1)
i v

(0)
i −Ri(v

(0)
i ) + R∗

i ]

= ηiψ̃i −
∑

k∈V (i)

ηkψ̃k + Ri(ψ̃i)−R∗
i ≥ 0.

In view of e
(0)
i ≥ 0 for all 1 ≤ i ≤ N . This leads to

V
(1) ≤ Ψ̃.

Assume, by induction, thatv(m)
i ≤ v

(m−1)
i for

somem > 1. By (7) e
(m)
i ≡ v

(m)
i − v

(m+1)
i satisfies

(ηi + γ
(m+1)
i )e(m)

i =
∑

k∈V (i)

ηk(v
(m−1)
k − v

(m)
k )

− Ri(v
(m−1)
i ) + Ri(v

(m)
i ) + γ

(m)
i v

(m−1)
i

− γ
(m)
i v

(m)
i .

By ∂2R/∂Ψ2 ≥ 0 and the mean value theorem, we
have

Ri(vi
(m−1))−Ri(vi

(m)) ≤ ∂Ri(v
(m−1)
i )

∂ψi

(v(m−1)
i − v

(m)
i ),

Ri(v
(m−1)
i )−Ri(v

(m)
i ) ≤ γ

(m)
i v

(m−1)
i − γ

(m)
i v

(m)
i .

This yieldse(m)
i ≥ 0 which shows thatv(m+1)

i ≤ v
(m)
i

and hence monotone property (9) thus follows by in-
duction.

To show that̂Ψ ≤ V
(m+1)

, we assume, by induc-
tion, thatψ̂i ≤ v

(m)
i for somem > 1. By (6) and (7)

we have

(ηi + γ
(m+1)
i )(v(m+1)

i − ψ̂i) = −(ηi + γ
(m+1)
i )ψ̂i

+ [
∑

k∈V (i)

ηkv
(m)
k + γ

(m+1)
i v

(m)
i −Ri(v

(m)
i ) + R∗

i ]

≥
∑

k∈V (i)

ηk(v
(m)
k − ψ̂k)

+
[
γ

(m+1)
i v

(m)
i − γ

(m+1)
i ψ̂i + Ri(ψ̂i)−Ri(v

(m)
i )

]
.

By the concave up property ofRi(ui) and the mean
value theorem again, we have

γ
(m+1)
i v

(m)
i − γ

(m+1)
i ψ̂i + Ri(ψ̂i)−Ri(v

(m)
i ) ≥ 0.

This yields(ηi + γ
(m+1)
i )(v(m+1)

i − ψ̂i) ≥ 0 which
shows

v
(m+1)
i ≥ ψ̂i.

To show thatV
(m+1)

is an upper solution for each
m, we observe from (7) and the monotone property of

{V (m)} that

ηiv̄
(m+1)
i =

∑

k∈V (i)

ηkv̄
(m)
k − γ̄

(m+1)
i v̄

(m+1)
i

+ γ̄
(m+1)
i v̄

(m)
i −Ri(v̄

(m)
i ) + R∗

i ,

≥
∑

k∈V (i)

ηkv̄
(m+1)
k +

[
−γ̄

(m+1)
i v̄

(m+1)
i

+ γ̄
(m+1)
i v̄

(m)
i −Ri(v̄

(m)
i )

]
+ R∗

i .

By the concave up property ofRi(ui) and the mean
value theorem, we have

γ̄
(m+1)
i

[
v̄

(m)
i − v̄

(m+1)
i

]
≥ Ri(v̄

(m)
i )−Ri(v̄

(m+1)
i ).

Therefore,

ηiv̄
(m+1)
i ≥

∑

k∈V (i)

ηkv̄
(m+1)
k −Ri(v̄

(m+1)
i ) + R∗

i .

This shows thatV
(m)

is an upper solution.
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Theorem 3 Assume conditions in Lemma 2 hold.
Then the sequence{V (m)} generated by solving (7)

with V
(0) = Ψ̃ converge monotonically to the solu-

tion V of (4). Moreover

Ψ̂ ≤ V ≤ V
(m+1) ≤ V

(m) ≤ Ψ̃, m = 1, 2, . . . .
(10)

and ifΨ∗ is any solution of (4) in〈Ψ̂, Ψ̃〉 then

Ψ̂ ≤ Ψ∗ ≤ V .

Proof. By Lemma 2 and the completeness property,

the limit limm→∞ V
(m) = V exists and satisfies the

relation (10). Now ifΨ∗ ∈ 〈Ψ̂, Ψ̃〉 is a solution of (4)
thenΨ̃ andΨ∗ are ordered upper and lower solutions.

UsingV
(0) = Ψ̃, Lemma 2 implies thatV

(m) ≥ Ψ∗
for everym. Letting m → ∞ givesV ≥ Ψ∗. This
proves the theorem.

3.2 Picard and Gauss-Seidel Methods
LetA be the matrix obtained by FE discretization. It
can be written in the split formA = D − L − U ,
whereD,L andU are the diagonal, lower-off diago-
nal and upper-off diagonal matrices ofA, respectively.
The elements ofD are positive and those ofL andU
are nonnegative. UsinĝΨ andΨ̃ as the initial iterates
we can construct the three maximal sequences by the
three iterative schemes defined as follows:

(a) Picard method

(A+Γ(m+1)
P )V (m+1)

P

= Γ(m+1)
P V

(m)
P −R(V (m)

P ) + R∗, (11)

(b) Gauss-Seidel method

(D − L+Γ(m+1)
G )V (m+1)

G = UV
(m)
G

+Γ(m+1)
G V

(m)
G −R(V (m)

G ) + R∗, (12)

(c) Jacobi method

(D+ Γ(m+1)
J )V (m+1)

J = (L+ U) V
(m)
J

+Γ(m+1)
J V

(m)
J −R(V (m)

J ) + R∗, (13)

where

Γ(m+1)
P ≡ diag(γ(m+1)

P,i ), γ(m+1)
P,i ≡ ∂Ri(v

(m)
P,i )

∂ψi
,

(14)

Γ(m+1)
G ≡ diag(γ(m+1)

G,i ), γ(m+1)
G,i ≡ ∂Ri(v

(m)
G,i )

∂ψi
,

(15)

Γ(m+1)
J ≡ diag(γ(m+1)

J,i ), γ(m+1)
J,i ≡ ∂Ri(v

(m)
J,i )

∂ψi
,

(16)
and the initial guesses areV

(0)
P = V

(0)
G = V

(0)
J = Ψ̃.

The following lemma gives the monotone property of
these sequences.

Lemma 4 Assume the conditions in Lemma 2 hold.
Then the maximal sequence{V (m)} given by either

one of the iterative schemes (11)-(13) withV
(0) = Ψ̃

possesses the monotone property (10).

Theorem 5 Assume the conditions of Lemma 2
hold. Then each of the maximal sequences

V
(m)
G , V

(m)
J , V

(m)
P converges monotonically to the so-

lution V of (4) and satisfies the relation (10). More-
over,

V
(m)
P ≤ V

(m)
G ≤ V

(m)
J , (17)

for everym = 1, 2, 3, . . ..

3.3 SOR Method
Typically for the linear systemAx = b overrelax-
ation is base on the splitting

ωA = (D − ωL)− [(1− ω)D + ωU ],

and the corresponding successive overrelaxation
(SOR) method is given by the recursion

(D − ωL)x(m+1) = [(1− ω)D + ωU ]x(m) + ωb,

where ω is called the acceleration parameter. For
the nonlinear system solved by the monotone iterative
method we define

(D + Γ(m+1)
S − ωL)V (m+1)

S

=
[
(1− ω)(D + Γ(m+1)

S ) + ωU
]
V

(m)
S

+ ω
[
Γ(m+1)

S V
(m)
S −R(V (m)

S ) + R∗
]
,(18)

where the monotone parameterΓ(m+1)
S is defined by

Γ(m+1)
S ≡ diag(γ(m+1)

S,i ), γ(m+1)
S,i ≡ ∂Ri(v

(m)
S,i )

∂ψi
.

(19)

Lemma 6 Assume the conditions in Lemma 2 hold.
Moreover, if

0 < ω ≤ 1. (20)

Then the maximal sequence{V (m)
S } given by the it-

erative scheme (18) withV
(0)
S = Ψ̃ possesses the

monotone property (10). Moreover, for eachm, V
(m)
S

is also an upper solution.
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Proof. Let E(0) ≡ V
(0)
S − V

(1)
S = Ψ̃− V

(1)
S . By (18)

we have

(D + Γ(1)
S − ωL)E(0)

= (D + Γ(1)
S − ωL)(Ψ̃− V

(1)
S )

= (D + Γ(1)
S − ωL)Ψ̃

−
[
(1− ω)(D + Γ(1)

S ) + ωU
]
V

(0)
S

− ω
[
Γ(1)

S V
(0)
S −R(V (0)

S ) + R∗
]

= ω
[
(D − L− U)Ψ̃ + R(Ψ̃)−R∗

]
.

HereΨ̃ is an upper solutionω > 0 and(D + Γ(1)
S −

ωL)−1 exists and is nonnegative (cf. [17]). Therefore

E(0) ≥ 0, i.e.,V
(1)
S ≤ Ψ̃.

Assume, by induction, thatV
(m)
S ≤ V

(m−1)
S for

somem > 1. By (18)E(m) ≡ V
(m)
S − V

(m+1)
S satis-

fies

(D + Γ(m+1)
S − ωL)E(m) = (Γ(m+1)

S − Γ(m)
S )V (m)

S

+ (D+Γ(m)
S −ωL)V (m)

S −(D+Γ(m+1)
S −ωL)V (m+1)

S

= (Γ(m+1)
S − Γ(m)

S )V (m)
S

+
[
(1− ω)(D + Γ(m)

S ) + ωU
]
V

(m−1)
S

+ ω
[
Γ(m)

S V
(m−1)
S −R(V (m−1)

S ) + R∗
]

−
[
(1− ω)(D + Γ(m+1)

S ) + ωU
]
V

(m)
S

− ω
[
Γ(m+1)

S V
(m)
S −R(V (m)

S ) + R∗
]

= (Γ(m+1)
S − Γ(m)

S )V (m)
S

+ [(1− ω)D + ωU ] (V (m−1)
S − V

(m)
S )

+ Γ(m)
S V

(m−1)
S + ω[−R(V (m−1)

S )]

− Γ(m+1)
S V

(m)
S − ω[−R(V (m)

S )]

= [(1− ω)D + ωU ] (V (m−1)
S − V

(m)
S )

+ ω
[
Γ(m)

S V
(m−1)
S −R(V (m−1)

S )

−Γ(m)
S V

(m)
S + R(V (m)

S )
]
.

Similarly, we can use (20), concave up property of
R(·) and the mean value theorem to have

(D + Γ(m+1)
S − ωL)E(m) ≥ 0.

ThereforeE(m) ≥ 0, i.e.,V
(m+1)
S ≤ V

(m)
S .

To show thatV
(m+1)
S is an upper solution, we

consider (18),

(D + Γ(m+1)
S − ωL)V (m+1)

S

= (D + Γ(m+1)
S )V (m)

S + ω(−D − Γ(m+1)
S + U)V (m)

S

+ ω
[
Γ(m+1)

S V
(m)
S −R(V (m)

S ) + R∗
]
.

After moving the terms,(D + Γ(m+1)
S )V (m+1)

S , to the
right-hand side and using (20), we obtain

−ωLV
(m+1)
S = −DV

(m+1)
S + (1− ω)DV

(m)
S + ωUV

(m)
S

+Γ(m+1)
S ( V

(m)
S − V

(m+1)
S ) + ω

[
−R(V (m)

S ) + R∗
]

≥ − D V
(m+1)
S + (1− ω)DV

(m)
S + ωUV

(m)
S

+ω
[
Γ(m+1)

S ( V
(m)
S − V

(m+1)
S )−R(V (m)

S ) + R∗
]
.

By the mean value theorem andV
(m)
S ≥ V

(m+1)
S we

have

−ωLV
(m+1)
S ≥ −DV

(m+1)
S + (1− ω)DV

(m)
S

+ ωUV
(m+1)
S + ω

[
−R(V (m+1)

S ) + R∗
]

After adding the term,ωDV
(m+1)
S and using the fact

ω ≤ 1, we obtain

ω(D − L)V (m+1)
S ≥ (1− ω)D(V (m)

S − V
(m+1)
S )

+ωUV
(m+1)
S + ω

[
−R(V (m+1)

S ) + R∗
]

≥ ωUV
(m+1)
S + ω

[
−R(V (m+1)

S ) + R∗
]
.

Therefore, we move the term,ωUV
(m+1)
S , to the left-

hand side and cancel theω to have

(D − L− U)V (m+1)
S ≥ −R(V (m+1)

S ) + R∗.

This proves thatV
(m+1)
S is an upper solution.

4 Results and Discussions

4.1 Interaction of Two Identical Charged
Spherical Particles

This problem deals with two identical colloidal par-
ticles immersed in symmetrical 1:1 electrolyte. It
was studied in several works and can serve as a test
[1, 19, 20]. In the present paper, the force of interac-
tion of two particles of the radiusκa = 10.0 and5.0
were calculated for the separation distanceL = 1.0
and 0.5 respectively. The constant potentialΨS on the
surfaces of both particles was equal to 2.0. The Neu-
mann boundary conditions∂Ψ/∂n = 0 are implied
on the other boundaries of the domain.

A typical mesh and solution are shown in Fig. 2
and 3 for a case of two interacting spherical particles
with κa = 5, Ψs = 2 andL = 0.25. Table 1 shows re-
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Figure 2: The mesh for the problem of two interacting
identical charged spherical particles.
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Figure 3: The numerical solution for the problem of
two interacting identical charged spherical particles.

sults for the dimensionless electrostatic force between
two identical spherical particles for given conditions,
which compared with some previously published pa-
pers. The results are in good agreement of ours.

Table 1
The Dimensionless Force between Two Particles

κa Fm Fp1 Fp2 Fp3

10.0 19.852 20.101 19.892 20.048
5.0 15.509 15.509 15.476 15.545

Note thatFm is the force on the midplane,Fp1 is the force
from previous results [1],Fp2 is the force from previous
results [21], andFp3 is the force from previous results
[19].

4.2 Interaction of Two Identical Charged
Spherical Particles Confined within a
Charged Cylindrical Pore

This problem deals with the long-range electrostatic
interaction of two charged spheres confined in a like-
charged cylindrical pore. The same parameters are
used, e.g., the 1:1 electrolyte, the constant potential
on the cylindrical poreΨP = 5.0, and the constant
potential on the spheresΨS = 3.0. The radius of the
particles isκa = 1.185 and the sphere radius to pore
radius ratio isλ = 0.13. Fig. 4 shows the isopoten-
tial plot for two isolated spheres (ΨS = 3.0) and two
spheres confined in a pore (ΨS = 3.0 andΨP = 5.0).
They are found in good agreement with the published
results, see, e.g., [22]. Fig. 5 shows the numerical
solution for the confined case.

In order to observe the behavior of the er-
ror reduction for various iterative schemes the error
||e(m)||∞ ≡ ||v(m) − v(m−1)||∞ is defined and the
stopping criterion for these iterations is determined
from the condition||e(m)||∞ ≤ 1.0E−6. Fig. 6 shows
the typical phenomena of monotone convergence in
various schemes for the confined case (ΨS = 3.0
and ΨP = 5.0). The behaviors of the residual,
||AV

(m)+R(V (m))||∞, of various methods are shown
in Fig. 7. Since the solution figure and the conver-
gence behavior are similar, we skip the unconfined
case (ΨS = 3.0).

Table 2
TheNit and CPU Time Versus Various Methods

ΨS = 3.0 Picard (G) Picard (S) GS Jacobi SOR
nit 7 7 874 1707 252

Time (Sec) 377 27 13 20 8
ΨS = 3.0 Picard (G) Picard (S) GS Jacobi SOR
ΨP = 5.0

nit 9 9 942 1767 256
Time (Sec) 385 30 14 21 8

In the table,nit denotes the number of iterations,
Time is the CPU time (Intel Pentinum D 820), Picard
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Figure 4: Calculated isopotential lines for the prob-
lem considered in subsection 4.2. A half-section of
the physical geometry is shown, with the line of sym-
metry lying at the bottom. On the top of the graph,
isolated spheres; on the bottom of the graph, spheres
confined in a pore. The pore wall is at the top.
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Figure 5: The numerical solution for the case of
spheres confined in a pore.
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Figure 6: The residual versus the number of iterations
for the case of two isolated spheres. Solid line: Ja-
cobi method, dotted line: Gauss-Seidel method and
dashed line: Picard method. Solid line with triangles:
SOR method withω=0.8, Solid line with circles: SOR
method withω=1.6.

(G) means Picard method with Gaussian elimination
for the linear solver, Picard (S) means Picard method
with Gauss-Seidel method for the linear solver, GS
is the Gauss-Seidel method and SOR is successive
overrelaxation method withω = 1.6. The conver-
gence of the Picard method is the fastest, then the SOR
method, and then the Gauss-Seidel method and the Ja-
cobi method follows accordingly. On the one hand the
iterative behavior of the Picard method is remarkable
for its fast convergence. It is finished after seventh
(ΨS = 3.0) and ninth (ΨS = 3.0 ΨP = 5.0) itera-
tive step and more faster than Gauss-Seidel and Jacobi
methods. This phenomenon verifies Theorem 5. On
the other hand the memory storage and the CPU time
consuming in Gaussian elimination are the drawbacks
of the Picard method. Fig. 8 shows the number of it-
erations versus the acceleration parameter for the case
of spheres confined in a pore. The best value ofω is
1.8.

Remark 7 In literature, reordering rows and
columns is one of important ingredients used in
parallel implementations of both direct and iterative
solution techniques. The type of reordering used
in applications depends on whether a direct or an
iterative method is being considered. In 1972, George
[23, 24] observed that reversing the Cuthill-McKee
(RCM) ordering yields a better scheme used to
enhance the effectiveness of sparse Gaussian elimina-
tion. We implement the RCM algorithm to survey the
influence on the monotone iterative schemes. Figs.
9 and 10 show a more compact pattern produced
by RCM scheme. However, the iteration numbers
and CPU times do not be reduced for all monotone
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Figure 7: The error versus the number of iterations
for the case of spheres confined in a pore. Solid line:
Jacobi method, dotted line: Gauss-Seidel method and
dashed line: Picard method. Solid line with triangles:
SOR method withω=0.8, Solid line with circles: SOR
method withω=1.6.
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Figure 8: The number of iterations versus the acceler-
ation parameter for the case of spheres confined in a
pore.
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Figure 9: The matrix pattern before RCM ordering.
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Figure 10: The matrix pattern after RCM ordering.

schemes. The incomplete LU factorization and
multigrid methods should be considered to speed up
the convergence in the future.

5 Conclusion

An iterative method for finite-element solutions
named as the monotone iterative method is proposed
for the study of the nonlinear Poisson-Boltzmann
equation. With the help of the special nonlinear
property we can construct the maximal sequences
which converge decreasingly to the solution of the PB
equation. These iterative methods are globally and
monotonically convergent with simple upper solutions
of the PB equation as initial guesses. Picard, Gauss-
Seidel, Jacobi and SOR monotone iterative methods
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are completely presented for the FE solutions. Sev-
eral numerical examples are also given and found in
good agreement with the previous published results.
However, it is worthy pointing out that the theoretical
analysis of convergence for the SOR method in the
case1 < ω < 2 is still open, and it, we hope, will
come in the near future.
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