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Abstract: - In this paper novel compression techniques are developed for portable heart-monitoring equipment 
that could also form the basis for more intelligent diagnostic systems thanks to the way the compression 
algorithms depend on signal classification. There are two main categories of compression which are employed 
for electrocardiogram signals: lossless and lossy. Design of an optimal Wiener filter is implemented to remove 
noise from a signal, considering that the signal is statistically stationary and the noise is a stationary random 
process that is statistically independent of the signal. Two programs for compression and Wiener optimal 
filtering are realized in MATLAB. The main idea of optimal filtering is to give bigger weight coefficients to 
signal spectra parts where signal noise has less power and true signal spectral components have bigger power. 
A Savitzky-Golay filtering is applied to a noisy electrocardiogram and a comparison is done between the four 
methods Wiener, Butterworth, Savitzky-Golay and synchronized averaging. 
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1. Introduction 
The electrocardiogram (ECG) is one of the most 
important and widely used quantitative diagnostic 
tools in medicine. It is extremely useful for the 
diagnosis and management of heart abnormalities 
such as heart attacks and offers helpful clues to the 
presence of generalized disorders that affect the rest 
of the body, such as electrolyte disturbances and 
drug intoxication. ECGs can show long-term effects: 
previous cardiac events such as heart attacks that 
can result in permanent modification to the 
morphology of the ECG. Commercial ambulatory 
recorders typically have sample rates up to        
360 samples per second with a resolution of        
10 or 12 bit giving a bit rate of around 4000bit/s. A 
typical commercial sample rate of 256 samples per 
second with 10bit resolution on two channels over 
seven days implies a memory requirement of close 
to 400MB of data [3].  

   
   

   The ECG is a real-world signal and is generally 
acquired from a relatively noisy electrical 
environment. Any lossless compression scheme has 
to reconstruct this random signal perfectly. This 
severely limits the effective compression ratio of 
lossless schemes when applied to ECG data. 
Lossless compression schemes may offer 
compression ratios of two or less. However, if 
restrictions on perfect reconstruction of the noise are 
relaxed, there is considerable scope for enhancing 
performance by utilizing knowledge concerning the 
morphology of the ECG and its cycle-stationary 
characteristics. 

   On top of the storage issue, there is increasing 
interest in remote monitoring, using real-time or off-
line transmission of complete records. As a result, 
compression is a key concern for makers of ECG 
equipment.  
   There are two main categories of compression 
which are employed for ECG signals: lossless and 
lossy. Lossless compression refers to any scheme 

whereby the signal reconstructed after compression 
is identical in every respect to the original signal. By 
contrast, lossy schemes allow differences between 
the original and the reconstructed signal. 

   Having established that lossy compression 
schemes offer the greatest scope for achieving useful 
compression ratios, two further categories may be 
identified within that class: direct and indirect 
transformation processes. Direct compression 
schemes are generally less computationally intensive 
and operate on the time-domain ECG signal, using 
relatively simple approaches such as piece-wise 
linear approximation. The highest compression ratio 
with the best reconstruction quality can only be 
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achieved using indirect compression methods, also 
called transform methods. 
   The recognizing beats techniques generally exploit 
the cycle-stationary nature of the ECG record. The 
nature of the beats within the ECG must be 
understood. More specifically deviations from the 
typical beat must be explicitly or implicitly 
recognized in order to represent them efficiently. A 
typical recording consists of a series of ECG beats 
separated by periods of inactivity as illustrated in 
Fig.1. 

   
Fig.1. A typical ECG recording of a normal subject, 

clearly showing the cycle-stationary nature of the 
ECG beat. 

 

 
Fig.2. Idealized ECG beat, showing the P-wave, 

QRS-complex and T-wave. 
 

 
Fig.3. Generic ECG indirect compression scheme. 

 
Note that even when the heart rate varies, the basic 
morphology and temporal extent of the beat are 
relatively unchanged; the main difference appears 
with the gap between beats. Important sections of 
the beat are labeled as the P-wave, QRS complex, 
and the T-wave, as shown in the idealized waveform 
of Fig.2. In practice there will often be two or more 
groups of beats, with each group having its own 
distinct morphology. These differences may be 
clinically diagnostic. Similarities within a group are 
exploited using indirect compression schemes. 

   Fig.3 shows the generic strategy used in many 
indirect compression methods, though a variant 
exists where the local DC removal step is omitted or 
carried out before triggering [4]. First, the ECG 
record is processed to locate the centre of each beat, 
thus allowing individual beat vectors to be extracted. 
These are then passed to the compression unit itself, 
which may be based on wavelet transforms and 
artificial neural networks, Principal Component 
Analysis - PCA or Non-Linear Principal Component 
Analysis -  NLPCA. 
   ECG data compression algorithms are important 
for storage, transmission and analysis. An essential 
requirement of the compression algorithms is that 
the significant morphological features of the signal 
should not be lost upon reconstruction. 
   PCA is one of the most established techniques in 
multivariate statistical analysis and has been applied 
to ECG compression. If each beat consisted of N 
samples and each time-sample were allocated an 
axis in N-dimensional space, each beat could be 
plotted as a single point in N-dimensional space, 
with each sample voltage amplitude simply 
indicating the distance to plot along the 
corresponding axis. A collection of M beats may 
thus be plotted as a set of M points in this 
multidimensional space. It should be noted that all 
axes are equally important in this representation, as 
they are all involved in reconstruction of a beat. 
Also, the variables are not independent since there 
will be some correlation between adjacent samples 
and also with corresponding samples in other beats. 
This is a key feature that is exploited in PCA 
compression. 
 
 
2. Neural Networks for Data 
Compression 
   Compression is achieved by restricting the number 
of hidden-layer neurons in the neural network 
compared with the number of input nodes and 
output neurons. This effectively forces the neural 
network during training to learn how to represent 
each ECG difference waveform [2] with fewer 
coefficients than the number of raw samples in the 
difference ECG. As autoassociative neural networks 
are selflearning, we do not specify how they 
represent the compressed data, although detailed 
examination of the weights indicates they learn by 
extracting something akin to the eigenvectors of 
principal components decomposition, another key 
technique for ECG compression. An alternative to 
neural-network compression is through the use of 
the wavelet transform and its derivatives [4]. In 
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contrast to the infinite-duration sinusoids 
encountered in Fourier analysis, a wavelet’s 
oscillations dampen down to zero after a few cycles, 
and the function is localized in time, lasting only for 
a few cycles. 
   Using PCA compression, recognizable 
reconstruction of a given beat may be achieved by 
summing the contributions of just the first few basis 
vectors as these contain most of the energy. The 
eigenvectors themselves form part of the overhead 
but need to be stored only once for the whole set, 
which may have thousands of beats. The quality of 
the compression and reconstruction depends on how 
many of the PCA coefficients are used. Good 
reconstruction may be achieved using 10 or fewer 
coefficients [2], [3], [6].    
   As we can see in [2], [3], [6] Table 1 compares the 
performances of various compression techniques. 
PCA gives optimal compression performance and 
exceeds wavelet transform performance, though it 
requires marginally more processing overheads. The 
performance is slightly poorer than neural-network 
compression but the processing overhead is 
significantly lower. Non-linear PCA has 
significantly lower processing overheads than neural 
networks but provides comparable compression 
performance and fidelity. The fidelity is also 
selectable through the number of stored coefficients. 
Additional benefits indicate this approach to be 
suitable as the basis for a complete ECG analysis 
and classification system. 
 

Table 1 Comparison of different ECG 
compression techniques. 

 
 
   After a study concerning Table 1 it can be seen 
that the autoassociative neural network compression 
technique has a very good to excellent 
reconstruction quality. 
    We make a short presentation concerning the 
auto-associative neural networks because this 
compression technique is also implemented in 
MATLAB. 
    A network compression ratio τ on an originally   
D-dimensional vector means that the middle hidden 
layer must have D/τ neurons [2], [5], [6]. For a 
linear network it represents D-dimensional inputs 
with a D/τ dimensional hidden layer. For a non-

linear network, there is the added freedom to choose 
the dimensionality of the second and the fourth 
layers. We have chosen to keep the compression 
ratio between two layers constant. Therefore, second 
layers will have a dimensionality of D/τ0,5, 
representing a τ0,5 times compression from the input 
layer. The same compression ratio is also applied 
from the second layer to the third layer (the 
bottleneck). Therefore, once again, the bottleneck 
layers take a dimensionality of D/τ. This architecture 
for the non-linear networks is illustrated in Fig.4.   

 
 

Fig.4. A five-layer non-linear autoassociative
network with bottleneck layer. The areas in 

red and green indicate respectively the  
compressing layers and the decompressing  
layers. The activation functions for the blue 

neurons are linear and those for the neurons in 
orange are sigmoidal. 

 
The neural-network scheme to be used in this paper 
is the multilayer perceptron (MLP) model as in 
Fig.5. 
 

Fig.5. A five-layer architecture with 
reduced dimensionality at the hidden layers.

 
Multilayer neural networks have the ability to map 
inputs in a non-linear manner. There we use an MLP 
neural network for finding the non-linear relations 
between inputs. To achieve data compression, the 
hidden layers must have a lower dimensionality than 
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the input and output layers. With a bottleneck at the 
hidden layers, the MLP is forced to find suitable 
relations between each input with a lower 
dimensionality. The data appears at the hidden layer 
with the lowest dimensionality, therefore, is a 
compact representation of the input data. The 
remaining parts of the MLP would reconstruct and 
expand non-linearly the compressed signal to the 
original dimensionality.  
   The entire compression process is in Fig.6 
described. 
 

Fig.6. The  complete compression system. 
 
The locations of the R peaks are first determined and 
boundaries between beats are determined. The time-
varying beats are then pre-processed to become 
fixed-dimensional input vectors. The input vectors 
are applied to a neural network with a bottleneck 
middle layer. Finally, the output vectors are post-
processed to produce a reconstruction of the original 
time-series format. 
   Mathematically, we can describe the original ECG 
heartbeat as xn, for the n-th beat. The length of the 
vector is equal to the number of data points the 
heartbeat occupies in the original time-series format 
and the elements take the values of the normalized 
amplitude. Throughout the complete compression 
and reconstruction process, information is lost in 
two major ways: the linear interpolation of the pre-
processing and post-processing stages and the 
reduction of dimensionality at the neural network 
bottleneck. It is useful to have two definitions of 
error so that we can quantify the different 
contributions from the above two sources. We 
therefore propose to evaluate both the overall error, 
which is a measure including both error sources and 
the network error, which provides information on 
the second error source only. The network error is 

also used to evaluate the progress of learning when 
the network is being trained. The network error and 
the variance ratio reach minimum at roughly the 
same time. It can be shown that the global minimum 
of the sum-of-square error occurs at the point when 
the network regresses to the average vector of the 
training set, hence reconstructing the same average 
vector for all input patterns [2]. Therefore, the 
network has learnt the average of the training set for 
the global minimum of the sum-of-square error; this 
effect can be shown visually by snapshooting the 
reconstruction during the training process in Fig.7. 

Fig.7.The network compression ratio is 1.5:1. 
(a) the original ECG;  
(b) a snapshot after 20 iterations of  the learning  
algorithm: the reconstructed pattern is the average
training set;  
(c) after 300 iterations; 
(d) after 5000 iterations.     

 
Two implications can be drawn: the criterion for 
terminating the training process shall not be based 
solely on network error. It should be possible to 
improve the training algorithm by modifying the 
error criterion and including the variance ratio as 
part of the cost function. 
 
 
3. The Wiener Filter 
   The filters described in literature [1], [5] can take 
into account only limited information about the 
temporal or spectral characteristics of the signal and 
noise processes. They are often labeled as ad hoc 
filters: one may have to try several filter parameters 
and settle upon the filter that appears to provide a 
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usable result. The output is not guaranteed to be the 
best achievable result, because it is not optimized in 
any sense. For designing an optimal filter there is 
necessary to remove noise from the signal, given 
that the signal and noise processes are independent, 
stationary and random processes. We have to 
assume that the desired or ideal characteristics of the 
uncorrupted signal are known. The noise 
characteristics may also be assumed to be known. 
Wiener filter theory provides for optimal filtering by 
taking into account the statistical characteristics of 
the signal and noise processes. The filter parameters 
are optimized with reference to a performance 
criterion. The output is guaranteed to be the best 
achievable result under the condition imposed and 
the information provided. The Wiener filter is a 
powerful conceptual tool that changed traditional 
approaches to signal processing [1]. 
   Considering the application of filtering a 
biomedical signal to remove noise, let us limit 
ourselves to a single-input, single-output, FIR filter 
with real input signal values and real coefficients. 
Fig.8. shows the general signal-flow diagram of a 
transversal filter with coefficients or tap weights wi, 
i=0,1,2, ... M-1, input x(n) and output ( )nd~ [1]. The 
output is usually considered to be an estimate of 
some desired signal d(n) that represents the ideal, 
uncorrupted signal, and is, therefore, indicated as 
( )nd~ . If we assume for the moment that the desired 

signal is available, we could compute the estimation 
error between the output and the desired signal as 

( ) ( ) ( ).~ ndndne −=

( )nd
    (1)

Since ~  is the output of a linear FIR filter, it can 
be expressed as the convolution of the input x(n) 
with the tap-weight sequence wi as: 

Fig.8. Block diagram of the Wiener filter. 
 

( ) ( ).~ 1

0
knxwnd

M

k
k −= ∑

−

=
 

      (2)

For easier handling of the optimization procedures, 
the tap-weight sequence may be written as an Mx1 
tap-weight vector: 

w=[w0, w1,w2,…,wM-1]T,       (3)
where the bold-faced character w represents a vector 
and the superscript T indicates vector transposition. 
As the tap weights are combined with M values of 
the input in the convolution expression, we could 
also write the M input values as an Mx1 vector: 

[( ) ( ) ( ) ( )]TMnxnxnxnx 1,...,1, +−−=       (4)

The vector x(n) varies with time, at a given instant n 
the vector contains the current input sample x(n) and 
the preceding (M-1) input samples from x(n-1) to 
x(n-M+1). The convolution expression in equation 
(2) may now be written in a simpler form as the 
inner or dot product of the vectors w and x(n): 

( ) =nd~ wTx(n)=xT(n)w=<x,w>.            (5)
 The estimation error is then given by 

( ) ( ) −wTx(n).            (6)= ndne
     Wiener filter theory estimates the tap-weight 
sequence that minimizes the MS (mean square) 
value of the estimation error; the output could then 
be called the minimum mean-squared error (MMSE) 
estimate of the desired response, the filter being then 
an optimal filter. The mean-squared error (MSE) is 
defined as 

J(w) = E[e2(n)]=E[{d(n)-wTx(n)} 
{d(n)-xT(n)w}]= E[d2(n)]-wTE[x(n)d(n)]-

-E[d(n)xT(n)]w + wTE[x(n)xT(n)]. 

 (7)

Note that the expectation operator is not applicable 
to w as it is not a random value. Under the 
assumption that the input vector x(n) and the desired 
response d(n) are jointly stationary, the expectation 
expressions in the equation above have the 
following interpretations [1]: E[d2(n)] is the variance 
of d(n), written as σ2

d with the further assumption 
that the mean of d(n) is zero; E[x(n)d(n)] is the 
cross-correlation between the input vector x(n) and 
the desired response d(n), which is an Mx1 vector: 

( ) ( )[ ].ndnxE    (8) Θ =

[ ( ) ( ) ( )] ,1,...,1,0 TM−−=Θ θθθ where Note that 
( ) ( ) ( )[ ] ,...,2,1,0,     (9).1−=−= MnxEk kndkθ −

E[d(n)xT(n)] is simply the transpose of E[x(n)d(n)]; 
therefore 

( ) ( )[ ]      (10).nxndE=Θ

( ) ( )

TT

E[x(n)xT(n)] represents the autocorrelation of the 
input vector x(n) computed as the outer product of 
the vector with itself, written as 

[ ]      (11).nxnxE TT =Θ
Setting this expression to zero, we obtain the 
condition for the optimal filter as 
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Θ=Φ 0w .     (12)
This equation is known as the Wiener-Hopf 
equation. It is also known as the normal equation as 
it can be shown that [1], for the optimal filter, each 
element of the input vector x(n) and the estimation 
error e(n) are mutually orthogonal and furthermore, 
that the filter output ( )nd~ and the error are mutually 
orthogonal. The optimal filter is obtained as 

ΘΦ−1

( ) ( ) ( ),

=0w .     (13)
Applying the Fourier transform to the equation 
above, we get 

ωωω xdxx SSW =      (14)
Which may be modified to obtain the Wiener filter 
frequency response ( )ωW as 

( ) ( )
( )ω
ωω xdSW =

( ) ( ) ( )

xxS
 

    (15)

where Sxx(ω) is the power spectral density (PSD) of 
the input signal and Sxd(ω) is the cross-spectral 
density (CSD) between the input signal and the 
desired signal.  
   The frequency response of the Wiener filter may 
be obtained by modifying equation (15) by taking 
into account the spectral 
relationships ωωω ηSSS dxx += ( ) and ( )ωω dxd SS =  
which leads to 

( ) ( ) ( )
( )

( )
( )

.1
ω

ωω dSW ==
1

ω
ωω ηη

d

d

S
SSS ++

 
    (16)

where ( )ωdS ( ) and ω
η

S  are the PSDs of the 

desired signal and the noise process, respectively. 
Designing the optimal filter requires knowledge of 
the PSDs of the desired signal and the noise process. 
   We have designed a Wiener filter to remove the 
artifacts in the ECG signal. The equation of the 
desired filter is given in equation (15). The required 
PSD model may be obtained as follows. We created 
a piece-wise linear model of the desired version of 
the signal by concatenating linear segments to 
provide P, QRS and T waves with amplitudes, 
durations and intervals similar to those in the given 
noisy ECG signal.  
   We computed the PSD of the model signal. We 
selected a few segments from the given ECG signal 
that are expected to be iso-electric; we computed in 
MATLAB their PSDs and obtained their average. 
The selected noise segments should have zero mean 
or have the mean subtracted out. Finally, we 
compared the results of the Wiener filter with those 
obtained by synchronized averaging 
and lowpass filtering. We have obtained following 
characteristics Fig.9, Fig.10, Fig.11, Fig.12. 

Fig.9. Initial noisy ECG signal. 

Fig.10. Desired signal approximation at the filter 
output. 

 
Fig.11. Desired spectrum – blue, noise spectrum- 

red, filtered signal – black. 

 
Fig.12. Cardiac cycle after Wiener filtering. 

 

4. Low frequency Butterworth Filter

   A simple Butterworth filter [7] is realized that will 
be used as comparative filter to an optimal Wiener 
filter. Butterworth filters are characterized by a 
magnitude response that is maximally flat in the 
passband and monotonic overall. In the lowpass 
case, the first 2n-1 derivatives of the squared 
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magnitude response are zero at  0=ω . The squared 
magnitude response function  

    ( ) 2

0

2

1

1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

ω
ω

ωH                            (17) 

corresponding to a transfer function with poles 
equally spaced around a circle in the left half plane. 
The magnitude response at the cutoff angular 

frequency 0ω  is always 
2

1
 regardless of the filter 

order. 
   The main disadvantage of the Butterworth filter is 
that the signal is distorted on the filter output. If it is 
necessary to minimalize the signal distortions it is 
better to use the optimal Wiener filter [7], [8], [9]. 
   First of all we have realized the Butterworth low 
frequency filter. The used signal sampling 
frequency is 1000Hz. We represented some 
examples when filter tap numbers are 4 and 8 and 
cutoff frequencies are 30 and 70Hz. We calculated 
filter coefficients depending on signal and signal 
model spectral densities as in following figures. 
 

 
Fig.13.a) Signal noise spectral density. 

 
Fig.13.b) Real signal spectral density. 

 
Fig.13.c) Signal model spectral density. 

 
Fig.13.d) Filter coefficients dependency on 

frequency. 
 

   When we have Wiener-Hopf equation with all 
required coefficients we can filter the ECG signal. 
First filtering is done in the frequency domain. After 
calculating the signal Fourier transformation, the 
filtering is nothing more than multiplying the signal 
Fourier transformation by filter coefficients. Results 
are in following figures: 

 
Fig.14.a) Real signal Fourier transformation. 

 
Fig.14.b) Filtered signal Fourier transformation. 

 
Fig.14.c) Real Signal. 

 
Fig.14.d) Filtered Signal. 
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It is possible to filter signal in time domain. For this 
it is necessary to make reverse Fourier 
transformation of filter coefficients. If we take 30 of 
filter coefficients we get: 
 

 
Fig.15. Signal filtered in time domain using 30 of 

filter coefficients. 
 

Now we can compare filtered signals by using 
Butterworth and Wiener filters. One of comparative 
methods can be calculation of group delay. In 
following results that using Butterworth filter group 
delay, this is biggest at 70Hz while Wiener filters 
resulting group delay oscillates around 0. 

 
Fig.16. Butterworth filter group delay. 

 
Fig.17. Wiener filter group delay. 

 
According to results it is really hard to say which 
filtering method is better. We can see, that using tap 
8 and 30Hz, Butterworth filter gives more clear Q 
segment, while using Wiener filter this part of 
signal is hardly noticeable. Of course signal model 
is quite rough, this results in less precise filter 
coefficients. 

5. Savitzky-Golay Filter 
 
   A moving average filter smoothes data by 
replacing each data point with the average of the 
neighboring data points defined within the span. 
This process is equivalent to lowpass filtering with 
the response of the smoothing given by the 
difference equation (18) 

( ) ( ) ( ) (( )NiyNiyNiy
N

iys −++−+++
+

= ...1
12

1 )
 
where ( )iys  is the smoothed value for the ith data 
point, N is the number of neighboring data points on 
either side of ( )iys , and 2N+1 is the span.  
   The moving average smoothing method used by 
the Curve Fitting Toolbox follows these rules: The 
span must be odd. The data point to be smoothed 
must be at the center of the span. The span is 
adjusted for data points that cannot accommodate 
the specified number of neighbors on either side. 
The end points are not smoothed because a span 
cannot be defined.    
   Savitzky-Golay filtering [8], [9], [10] can be 
thought of as a generalized moving average. We 
derive the filter coefficients by performing an 
unweighted linear least squares fit using a 
polynomial of a given degree. For this reason, a 
Savitzky-Golay filter is also called a digital 
smoothing polynomial filter or a least squares 
smoothing filter. A higher degree polynomial makes 
it possible to achieve a high level of smoothing 
without attenuation of data features.  
   The Savitzky-Golay filtering method is often used 
with frequency data or with peak data. For 
frequency data, the method is effective at preserving 
the high-frequency components of the signal. For 
peak data, the method is effective at preserving 
higher moments of the peak such as the line width. 
By comparison, the moving average filter tends to 
filter out a significant portion of the signal's high-
frequency content, and it can only preserve the 
lower moments of a peak such as the centroid. 
However, Savitzky-Golay filtering can be less 
successful than a moving average filter at rejecting 
noise.  
   The Savitzky-Golay smoothing method used by 
the Curve Fitting Toolbox follows these rules: The 
polynomial degree must be less than the span. The 
data points are not required to have uniform 
spacing. Normally, Savitzky-Golay filtering 
requires uniform spacing of the predictor data. 
However, the algorithm provided by the Curve 
Fitting Toolbox supports nonuniform spacing. 
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Therefore, we are not required to perform an 
additional filtering step to create data with uniform 
spacing.  
   Savitzky-Golay filtering shows the smoothing of 
an electrocardiogram (ECG) signal by filtering the 
noisy ECG with a Savitzky-Golay FIR filter. Three 
plots are shown: The noisy ECG signal, the 
smoothed signal and the noiseless signal. We can 
vary the noise level of the ECG signal to be filtered 
with a slider control that may be placed on the upper 
right of the graphical user interface. The parameters 
of the Savitzky-Golay filter can be changed through 
the two possible popup menus provided Savitzky-
Golay filters act as smoothers by performing a least 
squares fitting of a frame of data to a polynomial of 
a given degree. Another control on the graphical 
user interface indicates the frame size that means 
the number of samples we are using to perform the 
smoothing for each data point. The degree is the 
order of the polynomial to which each frame of data 
is fitted. The noiseless or ideal ECG is shown at the 
bottom of the figure for comparison purposes. 

 
Fig.18. Filtered electrocardiogram using Savitzky-

Golay filter. 
 

6. Synchronized averaging 
 
   We implement a time-domain technique to 
remove random noise and in this way to give the 
possibility of acquiring multiple realizations of the 
signals [1], [9]. 
   Linear filters fail to perform when the signal and 
noise spectra overlap. Synchronized signal 
averaging can separate a repetitive signal from noise 
without distorting the signal. ECG signals may be 
filtered by detecting the QRS complexes and using 
their position to align the waveforms for 
synchronized averaging. If the noise is random with 
zero mean and is uncorrelated with the signal, 
averaging will improve the SNR. 
   Let  represent one realization of a signal, 
with k=1,2,…,M, representing the ensemble index, 
and n=1,2,…,N representing the time-sample index. 
M is the number of copies of the signal available, 

and N is the number of time samples in each copy of 
the signal. We may express the observed signal as: 

( )nyk

         ( ) ( ) (nnxny kkk )η+=                               (19) 
where ( )nxk  represents the original uncorrupted 
signal and ( )nkη  represents the noise in the kth 
copy of the observed signal. Now, if  for each 
instant of time n we add the M copies of the signal, 
we get as in equation  (20) 

( ) ( ) ( ) .,...,2,1;
111

Nnnnxny
M

k
k

M

k
k

M

k
k =+= ∑∑∑

===

η  

 
Fig.19. ECG initial signal. 

 
Fig.20. QRS complex extracted from the initial 

signal. 

 
Fig.21. Synchronization points identification. 

 
If the repetitions of the signal are identical and 
aligned, ( ) .,...,2,1;

1
NnnxM

k k =∑ =
. If the noise is 

random and has zero mean and variance 
( )nM

k k∑ =1
2, ηση , will tend to zero as M increases, 

with a variance of  . The RMS value of the 

noise in the averaged signal is 

2
ησM

ησM . Thus the 
SNR of the signal will increase by a factor of  

M
M

or M . The larger the number of epochs or 

realizations  that are averaged, the better will be the 
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SNR of the result. We can observe that 
synchronized averaging is a type of ensemble 
averaging. An algorithmic description of 
synchronized averaging is as follows: a) Obtain a 
number of realization of the signal or event of 
interest; b) Determine a reference point for each 
realization of the signal. This is directly given by 
the trigger if the signal is obtained by external 
stimulation or may be obtained by detecting the 
repetitive events in the signal if it is quasi-periodic, 
for example like QRS complex in the ECG;        
c) Extract parts of the signal corresponding to the 
events and add them to a buffer. We can observe 
that it is possible for the various parts to be of 
different durations. Alignment of the copies at the 
trigger point is important; the tail ends of all parts 
may not be aligned; d) Divide the result in the 
buffer by the number of events added. The most 
important requirement in synchronized averaging is 
indicated by the first condition in the process. That 
means, the realizations of the signal that are added 
for averaging  must be aligned such that the 
repetitive part of the signal appears at exactly the 
same instant in each realization of the signal. If this 
condition is not met, the waveform of the event in 
the signal will be blurred or smudged along the time 
axis. A major advantage of synchronized averaging 
is that no frequency-domain filtering is performed - 
either explicitly or implicitly. No spectral content of 
the signal is lost as is the case with frequency-
domain lowpass filters or other time-domain filters 
such as moving-window averaging filters. 
Structured noise such as power-line interference 
may be suppressed by synchronized averaging if the 
phase of the interference in each realization is 
different. To facilitate this feature, the repetition 
rate of the stimulus should be set so that it is not 
directly related to the power-line frequency. 
Physiological interference such as background EEG 
in ERP's (event related potentials) and SEP's 
(somatosensory evoked potentials) may also be 
suppressed by synchronized averaging, as such 
activity may bear no inter-relationship from one 
epoch of the desired signal to another. 

    

 
Fig.22. Complete ECG cycle after synchronized 

average. 

7. Conclusion 
   The most important point to observe here is that 
the filter was derived with models of the noise and 
signal processes (PSDs), which were obtained from 
the given signal itself in the present application. No 
cutoff frequency was required to be specified in 
designing the Wiener filter, whereas the Butterworth 
filter requires the specification of a cutoff frequency 
and filter order. Most signal acquisition systems 
should permit the measurement of at least the 
variance or power level of the noise present. A 
uniform PSD model can easily be derived. Models 
of the ideal signal and the noise processes may also 
be created using parametric Gaussian or Palladian 
models either in the time domain or directly in the 
frequency domain. 
   The Savitzky-Golay filtering method is often used 
with frequency data or with peak data. 
   A major advantage of synchronized averaging is 
that no frequency-domain filtering is performed - 
either explicitly or implicitly. 
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	4. Low frequency Butterworth Filter 
	   A simple Butterworth filter [7] is realized that will be used as comparative filter to an optimal Wiener filter. Butterworth filters are characterized by a magnitude response that is maximally flat in the passband and monotonic overall. In the lowpass case, the first 2n-1 derivatives of the squared magnitude response are zero at   . The squared magnitude response function  
	                                (17) 

