
Implementation Feasibility of Convex Recursive Deletion Regions Using

Multi-Layer Perceptrons

CHE-CHERN LIN

National Kaohsiung Normal University

Department of Industrial Technology Education

116 HePing First Road, Kaohsiung
,

Taiwan (R.O.C.)

cclin@nknucc.nknu.edu.tw

Abstract:- A constructive algorithm to implement convex recursive deletion regions via two-layer perceptrons

has been presented in a recent study. In the algorithm, the absolute values of the weights become larger and

larger when the number of nested layers of a convex recursive deletion region increases. In addition, the

absolute values of the weights are determined according to the complexity of the structure of the convex

recursive deletion region. More complicated convex recursive deletion regions result in larger values of

weights. Besides, the constructive procedure is needed to get the parameters (weights and thresholds) for the

neural networks. In this paper, we propose a simple three-layer network structure to implement the convex

recursive deletion regions in which all weights of the second and third layers are all 1’s and the thresholds for

the nodes in the second layer are pre-determined according to the structures of the convex recursive deletion

regions. This paper also provides the activation function for the output node. In brief, all of parameters (weights

and activation functions) in the proposed structure are pre-determined and no constructive algorithm is needed

for solving the convex recursive deletion region problems. We prove the feasibility of the proposed structure

and give an illustrative example to demonstrate how the proposed structure implements the convex recursive

deletion regions. Finally, we provide the conceptual diagram of the hardware implementation of the proposed

network structure.

Key-words:- Multi-layer perceptrons, nested decision region, convex recursive deletion region, hardware

implementation.

1. Introduction

A multi-perceptron is a layered structure neural

network where weights are used to connect the nodes

between adjacent layers and to perform necessary

computations to implement classification problems.

Training algorithms are used to train the weights and

get the desired mappings from inputs to outputs.

However, using training algorithm to optimize the

weight spends a lot of computational time. Some

studies focused on the partitioning capabilities of

multi-layer perceptrons [1-9]. It has been known that

the first layer of a multi-layer perceptron produces

decision boundaries for classifications and the rest of

layers implement the mappings from the inputs to the

outputs [1]. It has been known that single-layer

percetrons can determine linearly separable decision

regions, two-layer perceptrons can partition either

convex open or closed decision regions, and

three-layer perceptrons are capable of implementing

of any shapes of decision regions [2]. Recent research

also indicated that convex recursive deletion regions

can be implemented by two-layer perceptrons [3]. A

general study on the partitioning capabilities of

two-layer perceptrons can be found in [4] where the

authors presented the Weight Deletion/Selection

Algorithm to examine the feasibility of

implementation of decision regions. A constructive

algorithm to implement convex recursive deletion

regions has been presented in [5]. The space

partitioning multi-layer perceptron model has been

proposed to solve some intractable classification

problems [6]. A new two-layer paradigm with

bithreshold and the increment of the dimensionality of

the output of the first layer has been proposed and

shown to be capable of implementing arbitrary

decision regions in input space [7]. The partitioning

capability of single-hidden layer feedforward neural

networks with any continuous bounded non-constant

activation function or any arbitrary bounded activation

function has been discussed in [8]. A constraint

based decomposition training architecture for a

multi-layer perceptron has been proposed where the

second layer and third layer of a three-layer

perceptron function as logic “AND” and “OR”,

WSEAS TRANSACTIONS on COMPUTERS

Che-Chern Lin

ISSN: 1109-2750 24 Issue 1, Volume 7, January 2008

respectively [9].

The convex recursive deletion regions have been

solved by the two-layer perceptrons where a

constructive algorithm is used to determine the

weights and the threshold for the two-layer

perceptrons [5]. However, the absolute values of the

weights determined by the constructive algorithm

become larger and larger when the number of nested

layers of a convex recursive deletion region increases.

The absolute values of the weights also depend on the

complexity of the structure of the convex recursive

deletion region. If the structure of the convex

recursive deletion region is very complicated, the

absolute values of the weights determined by the

constructive algorithm could be very large. This might

probably cause computational overflowing problems

for integer manipulations. Besides, we still need to

use the constructive procedure to get the parameters

(weights and thresholds) for the neural networks. In

this paper, we propose a simple three-layer network

structure to implement the convex recursive deletion

regions in which all weights of the second and third

layers are all 1’s and the thresholds for the nodes in

the second layer are pre-determined according to the

structures of the convex recursive deletion regions. We

also provide the activation function for the output

node. In brief, all of parameters (weights and

activation functions) in the proposed structure are

pre-determined and no constructive algorithm is

needed for solving the convex recursive deletion

region problems. We also prove the feasibility of the

proposed structure and give an illustrative example to

demonstrate how the proposed structure implements

the convex recursive deletion regions. Finally, we

provide the conceptual diagram of the hardware

implementation of the proposed network structure.

For the visual reason, in this paper, we use

two-dimensional examples to explain how a

multi-layer perceptron forms the decision boundaries,

and how the proposed network structure implements

the convex recursive deletion regions.

2. Preliminaries

2.1 Forming of Decision Regions

To explain how the first layer of a multi-layer

perceptron forms decision boundaries, we present a

two-class classification example implemented by a

two-layer perceptron. This example is taken from [1,4]

and shown in Figure 1. Figure 1(a) is a two-layer

perceptron with two inputs, four nodes in the first

layer (the hidden layer) and one node in the second

layer (the output layer). Figure 1(b) is the

corresponding decision region where the two inputs

generate a two-dimensional input space which is

linearly divided into 11 sub-regions (numbered from 1

to 11) by four partitioning lines. The shaded

sub-regions belong to class A, while the blank ones

belong to class B.

It is important to know that each node in the first

layer will form a two-dimensional partitioning line in

the corresponding decision region because it is a linear

combination of inputs x1 and x2. To implement the

four partitioning lines, one therefore needs four nodes

in the first layer with one-to-one corresponding

relationship to the four partitioning lines. For

convenience, we use the same labels (z1 to z4) to

represent the four nodes and their associated

partitioning lines. Each node in the first layer

produces a “1” output if the input is on one side of its

corresponding partitioning line, and a ‘0’ output if on

the other side. The second layer performs the

mappings from the first layer to the second layer and

makes a final decision. It is important to note that

the weights in the first layer are pre-determined if a

decision region is established. To implement the

decision regions using two-layer perceptrons, one only

needs to get the weights of the second layer of the

two-layer perceptrons.

In Figure 1, the first layer partitions the input space

into 11 sub-regions. The second layer serves to

classify these sub-regions into the two classes (class A

and class B). Theθvalue for a sub-region is defined

as follows

∑
=

=

r

k

kkl zw
1

θ (1)

where θl is the θvalue of sub-region l, r is the

number of partitioning lines in the decision region,

and wk is the weight connecting first layer node zk

with the output node.

The two-class classification problem is

implemented by the following activation function

(hard limiter):

<

≥
=

hl

hl
y

θθ

θθ

if) B (class 0

if A) (class 1
 (2)

whereθh is the threshold for the second layer node.

It has been known that the necessary and sufficient

condition for implementing two-class classification

problems in a decision region is the minimum θ

value of sub-regions belonging to class A must be

greater than the maximumθvalue of sub-regions

belonging to class B.

WSEAS TRANSACTIONS on COMPUTERS Che-Chern Lin

ISSN: 1109-2750 25 Issue 1, Volume 7, January 2008

2.2 Convex Recursive Deletion Region
Consider an n-dimensional Euclidean space R

n
.

Let C 0 be the input space in R n, and C1, C2… , Cp be

a series of nested convex polyhedrons with the

following relation:

pCCCC ⊃⊃⊃⊃ L210 (3)

A convex recursive deletion region S is a set of the

form [5]:

)()()(13210 pp CCCCCCS ∩∪∪∩∪∩=
−

L (4)

where iC denotes the complement of
iC .

Figure 2 shows the example of a convex recursive

deletion region consisting of three nested convex

polyhedrons: C1, C2, and C3. Each of the three convex

polyhedrons is bounded by a group of hyper-planes.

We call the hyper-planes bounding a convex

polyhedron “bounding hyper-planes” of the convex

polyhedron. For example, in Figure 2 (b), C1 is

bounded by bounding hyper-planes z1, z2, z3, z4, and z5.

C2 is bounded by bounding hyper-planes z6, z7, and z8.

C3 is bounded by bounding hyper-planes z9, z10, z11,

and z12. A bounding hyper-plane divides the space

into two linearly separable hyper-planes. The ‘1’

side of a bounding hyper-plane of a convex

polyhedron is the separable hyper-plane toward the

convex polyhedron, and the ‘0’ side is the other one.

The ‘1’ sides and ‘0’ sides of the bounding

hyper-planes for C1, C2, and C3 are shown in Figure 2

(b).

A pattern is in a convex polyhedron if and only if it

is on the ‘1’ sides of all bounding hyper-planes of the

convex polyhedron. We can set up a threshold in each

node in the second layer associated with a particular

convex polyhedron to be the number of the bounding

hyper-planes of the convex polyhedron, and therefore

determine whether the pattern is in the convex

polyhedron or not.

3. The Proposed Network Structure and

Hardware Implementation

3.1 Neural Network Structure
The proposed neural network is a three-layer

structured network. Figure 3 shows the example of the

proposed network. The first layer of the network

serves to form a convex recursive deletion region.

The second layer detects the pattern location in the

convex recursive deletion region. The third layer

determines whether the pattern belongs to class A or

class B according to the pattern location detected by

the second layer. All of the weights in the second

and three layers are set to be 1’s. The threshold for a

node in the second layer (θh) associated with a

particular convex polyhedron is equal to the number

of the bounding hyper-planes of the convex

polyhedron. The output layer consists of only one

node. Let ∑
=

=

q

t

tCv
1

where Ct is a second layer node

and q is the number of the second layer nodes. The

activation function for the output node y is as follows:

∩=

∩+=
=

B class to tobelongs C if,2mod)(

A class tobelongs C if,2mod)1()(

10

10

Cvvf

Cvvf
y (5)

where notation ‘mod’ denotes a modulus (remainder)

operation of two integer numbers.

3.2 Proof of The Network Structure

The proof is straightforward. We explain it by

Figure 2 and Figure 3. In Figure 2, the convex

recursive deletion region consists of three nested

convex polyhedrons: C1, C2, and C3. In this case,

10 CC ∩ belongs to class B. If a pattern is in

10 CC ∩ , none of the nested convex polyhedrons

contains the pattern. v is therefore equal to 0. By Eq.

(5), y = 0 (class B). If a pattern is in 21 CC ∩ , only

C1 contains the pattern. v is equal to 1, and y = 1 (class

A). If a pattern is in 32 CC ∩ , both C1 and C2 contain

the pattern. v is equal to 2, and y = 0 (class B). If a

pattern is in 3C , all of the three convex polyhedrons

(C1, C2, and C3) contain the pattern. v is equal to 3, and

y = 1 (class A).

One can use the similar procedure to get the

sequentially alternative classification results (0 and 1)

for any convex recursive deletion regions.

Similarly, one can easily prove the feasibility of the

proposed structure when 10 CC ∩ belongs to class A.

Figure 3 is the neural network to implement the

convex recursive deletion region shown in Figure 2. In

Figure 3, all of the weights of the second and third

layers are 1’s. The thresholds for the nodes of the

second layer and the activation function for the output

node are also demonstrated in the figure.

3.3 Hardware Implementation

In the proposed network structure, the weights and

activation functions are pre-determined and no

constructive algorithm is needed for implementing the

convex recursive deletion regions. Therefore, it is

easily realized by hardware implementation. Figure

WSEAS TRANSACTIONS on COMPUTERS Che-Chern Lin

ISSN: 1109-2750 26 Issue 1, Volume 7, January 2008

4 is the conceptual diagram of the hardware

implementation of the proposed network structure.

In Figure 4, the multiplier and adder of the first layer

serve to form the decision boundaries (the linear

combinations of the inputs). Each of the comparators

in the figure serves as an activation function (hard

limier). The weights of the second layer are all 1’s.

We only need an adder and a comparator to perform

the functionality of the second layer. The activation

function of the third layer is the modulus operation

dividing the input of the activation function by 2. The

output of the activation function will be sequentially

alternative (0 or 1) when the input of the activation

function increases (0, 1, 2, 3, 4, …). This is

realized by taking the least significant bit of the input

of the activation function. Therefore we use an adder

and take its least significant bit to perform the

functionality of the third layer.

4. Conclusions

We proposed a simple three-layer network

structure to implement the convex recursive deletion

regions in which all parameters (weights and

activation functions) are pre-determined according to

the structures of the convex recursive deletion regions.

No constructive algorithm is needed for solving the

convex recursive deletion region problems. We used

an illustrative example to explain how the first layer

of a multi-layer perceptron forms the decision

boundaries. We also proved the feasibility of the

network structure, and provided the conceptual

diagram of the hardware implementation of the

proposed network structure.

References

[1] J. Makhoul, A. El-Jaroudi, R. Schwartz,

“Partitioning capabilities of two-layer neural

networks,” IEEE Trans. on Signal Processing, vol.

39, no. 6, pp.1436-1440, 1991.

[2] R. P. Lippmann, “An Introduction to computing

with neural nets,” IEEE ASSP Mag., vol.4, pp.

4-22, 1987

[3] R. Shonkwiler, “Separating the vertices of n-cubes

by hyperplanes and its application to artificial

neural networks,” IEEE Trans. on Neural

Networks, vol. 4, no. 2, pp. 343-347, 1993.

[4] C. Lin and A. El-Jaroudi, “An Algorithm to

determine the feasibilities and weights of

two-Layer perceptrons for partitioning and

classification”, Pattern Recognition, vol. 31, no.

11, pp. 1613-1625, 1998.

[5] C. Cabrelli, U. Molter, and R. Shonkwiler, “A

constructive algorithm to solve “Convex recursive

deletion” (CoRD) classification problems via

two-layer perceptron networks,” IEEE Trans. On

Neural Networks, vol. 11, no 3, pp. 811-816, 2000.

[6] W. Fan and L Zhang, “Applying SP-MLP to

complex classification problems,” Pattern

Recognition Letters, vol. 21, pp. 9-19, 2000.

[7] V. Deolalikar, “A two-layer paradigm capable of

forming arbitrary decision regions in input space,”

IEEE Trans. On Neural Networks, vol. 13, no 1,

pp. 15-21, 2002.

[8] G. Huang, Y Chen and H. A. Babri, “Classification

ability of single hidden layer feedforward neural

networks,” IEEE Trans. On Neural Networks, vol.

11, no 3, pp. 799-801, 2000.

[9] S. Draghici, “The constraint based decomposition

(CBD) training architecture,” Neural Networks,

vol. 14, pp. 527-550, 2001.

WSEAS TRANSACTIONS on COMPUTERS Che-Chern Lin

ISSN: 1109-2750 27 Issue 1, Volume 7, January 2008

Figure 1: The two-layer perceptron and the corresponding decision region (taken from [1, 4]).

The first layer

(hidden layer)
z1 z4 z3 z2

x1 x2

y

 The second layer

(output layer)

The inputs

(a) The two-layer perceptron

x1

x2

1

5 2

4

3

6

7

8

9
10

11

z1 z1= 0

z1= 1 z2
z2= 0

z2= 1

z
z

 z1

z3=0

z3= 1
z3

z4 z4= 0

z4= 1

(b) The decision region

w1 w2 w3 w4

WSEAS TRANSACTIONS on COMPUTERS Che-Chern Lin

ISSN: 1109-2750 28 Issue 1, Volume 7, January 2008

C1

C3

z1 z1= 0
z1= 1

z2 z2= 0

z2= 1
z3
z3= 1 z3= 0

z4

z4= 0

z4= 1

z5
z5= 0

z5= 1

C2

z6= 1
z6= 0

z7 z7= 0

z7= 1

z8 z8= 1

z8= 0

z9
z9= 1 z9= 0

z10 z10=0

z10=1

z11
z11=0 z11=1

z12
z12=0

z12=1

Figure 2: The convex recursive deletion region

and the bounding hyper-planes.

(b) The bounding hyper-planes.

C3

z6

(a) The example of a convex recursive deletion

region where C0 is the input space in R
n
.

C0 (the input space)

C1

C2

21 CC ∩

10 CC ∩

32 CC ∩

21 CC ∩

21 CC ∩

21 CC ∩

WSEAS TRANSACTIONS on COMPUTERS Che-Chern Lin

ISSN: 1109-2750 29 Issue 1, Volume 7, January 2008

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12

C1

θh = 5
C2

θh = 3

C3

θh = 4

∩=

∩+=
=

B class tobelongs C if,2mod)(

A class tobelongs C if,2mod)1()(

10

10

Cvvf

Cvvf
y

x1 x2

Figure 3: The proposed network structure.

u1=1 u2=1 u3=1

1 1 1 1 1 1 1 1 1 1 1 1

The inputs

The 1
st
 layer

The 2
nd

 layer

y the output layer (the 3
rd

 layer)

WSEAS TRANSACTIONS on COMPUTERS Che-Chern Lin

ISSN: 1109-2750 30 Issue 1, Volume 7, January 2008

Adder

Multiplier

Comparator

Inputs

Adder

Comparator

Adder

The 1
st
 layer

The 2
nd

 layer

The 3
rd

 layer

Output = least significant bit of the

adder of the 3
rd

 layer

Output

Figure 4: The conceptual diagram of the hardware implementation

of the proposed network structure.

WSEAS TRANSACTIONS on COMPUTERS Che-Chern Lin

ISSN: 1109-2750 31 Issue 1, Volume 7, January 2008

