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Abstract:- A constructive algorithm to implement convex recursive deletion regions via two-layer perceptrons 

has been presented in a recent study. In the algorithm, the absolute values of the weights become larger and 

larger when the number of nested layers of a convex recursive deletion region increases. In addition, the 

absolute values of the weights are determined according to the complexity of the structure of the convex 

recursive deletion region.  More complicated convex recursive deletion regions result in larger values of 

weights.  Besides, the constructive procedure is needed to get the parameters (weights and thresholds) for the 

neural networks.  In this paper, we propose a simple three-layer network structure to implement the convex 

recursive deletion regions in which all weights of the second and third layers are all 1’s and the thresholds for 

the nodes in the second layer are pre-determined according to the structures of the convex recursive deletion 

regions. This paper also provides the activation function for the output node. In brief, all of parameters (weights 

and activation functions) in the proposed structure are pre-determined and no constructive algorithm is needed 

for solving the convex recursive deletion region problems. We prove the feasibility of the proposed structure 

and give an illustrative example to demonstrate how the proposed structure implements the convex recursive 

deletion regions. Finally, we provide the conceptual diagram of the hardware implementation of the proposed 

network structure. 

 

Key-words:- Multi-layer perceptrons, nested decision region, convex recursive deletion region, hardware 

implementation.  

 

1. Introduction 

 
A multi-perceptron is a layered structure neural 

network where weights are used to connect the nodes 

between adjacent layers and to perform necessary 

computations to implement classification problems.  

Training algorithms are used to train the weights and 

get the desired mappings from inputs to outputs.  

However, using training algorithm to optimize the 

weight spends a lot of computational time. Some 

studies focused on the partitioning capabilities of 

multi-layer perceptrons [1-9].  It has been known that 

the first layer of a multi-layer perceptron produces 

decision boundaries for classifications and the rest of 

layers implement the mappings from the inputs to the 

outputs [1]. It has been known that single-layer 

percetrons can determine linearly separable decision 

regions, two-layer perceptrons can partition either 

convex open or closed decision regions, and 

three-layer perceptrons are capable of implementing 

of any shapes of decision regions [2]. Recent research 

also indicated that convex recursive deletion regions 

can be implemented by two-layer perceptrons [3].  A 

general study on the partitioning capabilities of 

two-layer perceptrons can be found in [4] where the 

authors presented the Weight Deletion/Selection 

Algorithm to examine the feasibility of 

implementation of decision regions. A constructive 

algorithm to implement convex recursive deletion 

regions has been presented in [5].  The space 

partitioning multi-layer perceptron model has been 

proposed to solve some intractable classification 

problems [6].  A new two-layer paradigm with 

bithreshold and the increment of the dimensionality of 

the output of the first layer has been proposed and 

shown to be capable of implementing arbitrary 

decision regions in input space [7].  The partitioning 

capability of single-hidden layer feedforward neural 

networks with any continuous bounded non-constant 

activation function or any arbitrary bounded activation 

function has been discussed in [8].  A constraint 

based decomposition training architecture for a 

multi-layer perceptron has been proposed where the 

second layer and third layer of a three-layer 

perceptron function as logic “AND” and “OR”, 
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respectively [9]. 

The convex recursive deletion regions have been 

solved by the two-layer perceptrons where a 

constructive algorithm is used to determine the 

weights and the threshold for the two-layer 

perceptrons [5].  However, the absolute values of the 

weights determined by the constructive algorithm 

become larger and larger when the number of nested 

layers of a convex recursive deletion region increases. 

The absolute values of the weights also depend on the 

complexity of the structure of the convex recursive 

deletion region.  If the structure of the convex 

recursive deletion region is very complicated, the 

absolute values of the weights determined by the 

constructive algorithm could be very large. This might 

probably cause computational overflowing problems 

for integer manipulations.  Besides, we still need to 

use the constructive procedure to get the parameters 

(weights and thresholds) for the neural networks.  In 

this paper, we propose a simple three-layer network 

structure to implement the convex recursive deletion 

regions in which all weights of the second and third 

layers are all 1’s and the thresholds for the nodes in 

the second layer are pre-determined according to the 

structures of the convex recursive deletion regions. We 

also provide the activation function for the output 

node. In brief, all of parameters (weights and 

activation functions) in the proposed structure are 

pre-determined and no constructive algorithm is 

needed for solving the convex recursive deletion 

region problems. We also prove the feasibility of the 

proposed structure and give an illustrative example to 

demonstrate how the proposed structure implements 

the convex recursive deletion regions. Finally, we 

provide the conceptual diagram of the hardware 

implementation of the proposed network structure. 

For the visual reason, in this paper, we use 

two-dimensional examples to explain how a 

multi-layer perceptron forms the decision boundaries, 

and how the proposed network structure implements 

the convex recursive deletion regions.   

 

2. Preliminaries 

 
2.1 Forming of Decision Regions 

 
To explain how the first layer of a multi-layer 

perceptron forms decision boundaries, we present a 

two-class classification example implemented by a 

two-layer perceptron. This example is taken from [1,4] 

and shown in Figure 1. Figure 1(a) is a two-layer 

perceptron with two inputs, four nodes in the first 

layer (the hidden layer) and one node in the second 

layer (the output layer).  Figure 1(b) is the 

corresponding decision region where the two inputs 

generate a two-dimensional input space which is 

linearly divided into 11 sub-regions (numbered from 1 

to 11) by four partitioning lines. The shaded 

sub-regions belong to class A, while the blank ones 

belong to class B. 

It is important to know that each node in the first 

layer will form a two-dimensional partitioning line in 

the corresponding decision region because it is a linear 

combination of inputs x1 and x2.  To implement the 

four partitioning lines, one therefore needs four nodes 

in the first layer with one-to-one corresponding 

relationship to the four partitioning lines.  For 

convenience, we use the same labels (z1 to z4) to 

represent the four nodes and their associated 

partitioning lines.  Each node in the first layer 

produces a “1” output if the input is on one side of its 

corresponding partitioning line, and a ‘0’ output if on 

the other side.  The second layer performs the 

mappings from the first layer to the second layer and 

makes a final decision.  It is important to note that 

the weights in the first layer are pre-determined if a 

decision region is established.  To implement the 

decision regions using two-layer perceptrons, one only 

needs to get the weights of the second layer of the 

two-layer perceptrons.   

In Figure 1, the first layer partitions the input space 

into 11 sub-regions.  The second layer serves to 

classify these sub-regions into the two classes (class A 

and class B). Theθvalue for a sub-region is defined 

as follows 

∑
=

=

r

k

kkl zw
1

θ                        (1) 

where θl  is the θvalue of sub-region l, r is the 

number of partitioning lines in the decision region, 

and wk is the weight connecting first layer node zk 

with the output node. 

The two-class classification problem is 

implemented by the following activation function 

(hard limiter): 
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whereθh is the threshold for the second layer node. 

It has been known that the necessary and sufficient 

condition for implementing two-class classification 

problems in a decision region is the minimum θ

value of sub-regions belonging to class A must be 

greater than the maximumθvalue of sub-regions 

belonging to class B. 
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2.2 Convex Recursive Deletion Region  
Consider an n-dimensional Euclidean space R 

n
. 

Let C 0 be the input space in R n, and C1, C2… , Cp  be 

a series of nested convex polyhedrons with the 

following relation: 

pCCCC ⊃⊃⊃⊃ L210                   (3) 

A convex recursive deletion region S is a set of the 

form [5]: 

)()()( 13210 pp CCCCCCS ∩∪∪∩∪∩=
−

L   (4) 

where iC denotes the complement of 
iC . 

Figure 2 shows the example of a convex recursive 

deletion region consisting of three nested convex 

polyhedrons: C1, C2, and C3.  Each of the three convex 

polyhedrons is bounded by a group of hyper-planes. 

We call the hyper-planes bounding a convex 

polyhedron “bounding hyper-planes” of the convex 

polyhedron.  For example, in Figure 2 (b), C1 is 

bounded by bounding hyper-planes z1, z2, z3, z4, and z5. 

C2 is bounded by bounding hyper-planes z6, z7, and z8. 

C3 is bounded by bounding hyper-planes z9, z10, z11, 

and z12.  A bounding hyper-plane divides the space 

into two linearly separable hyper-planes.  The ‘1’ 

side of a bounding hyper-plane of a convex 

polyhedron is the separable hyper-plane toward the 

convex polyhedron, and the ‘0’ side is the other one.  

The ‘1’ sides and ‘0’ sides of the bounding 

hyper-planes for C1, C2, and C3 are shown in Figure 2 

(b).  

A pattern is in a convex polyhedron if and only if it 

is on the ‘1’ sides of all bounding hyper-planes of the 

convex polyhedron. We can set up a threshold in each 

node in the second layer associated with a particular 

convex polyhedron to be the number of the bounding 

hyper-planes of the convex polyhedron, and therefore 

determine whether the pattern is in the convex 

polyhedron or not. 

 

3. The Proposed Network Structure and 

Hardware Implementation 

 

3.1 Neural Network Structure  
The proposed neural network is a three-layer 

structured network. Figure 3 shows the example of the 

proposed network.  The first layer of the network 

serves to form a convex recursive deletion region.  

The second layer detects the pattern location in the 

convex recursive deletion region.  The third layer 

determines whether the pattern belongs to class A or 

class B according to the pattern location detected by 

the second layer.  All of the weights in the second 

and three layers are set to be 1’s.  The threshold for a 

node in the second layer (θh ) associated with a 

particular convex polyhedron is equal to the number 

of the bounding hyper-planes of the convex 

polyhedron.  The output layer consists of only one 

node. Let ∑
=

=

q

t

tCv
1

where Ct is a second layer node 

and q is the number of the second layer nodes.  The 

activation function for the output node y is as follows: 





∩=

∩+=
=

B  class  to tobelongs  C  if,2mod)(

A class   tobelongs  C  if,2mod)1()(

10

10

Cvvf

Cvvf
y  (5)  

where notation ‘mod’ denotes a modulus (remainder) 

operation of two integer numbers.  

 

3.2 Proof of The Network Structure 

  
The proof is straightforward. We explain it by 

Figure 2 and Figure 3.  In Figure 2, the convex 

recursive deletion region consists of three nested 

convex polyhedrons: C1, C2, and C3. In this case, 

10 CC ∩  belongs to class B. If a pattern is in 

10 CC ∩ , none of the nested convex polyhedrons 

contains the pattern. v is therefore equal to 0. By Eq. 

(5), y = 0 (class B). If a pattern is in 21 CC ∩ , only 

C1 contains the pattern. v is equal to 1, and y = 1 (class 

A). If a pattern is in 32 CC ∩ , both C1 and C2 contain 

the pattern. v is equal to 2, and y = 0 (class B). If a 

pattern is in 3C , all of the three convex polyhedrons 

(C1, C2, and C3) contain the pattern. v is equal to 3, and 

y = 1 (class A).  

One can use the similar procedure to get the 

sequentially alternative classification results (0 and 1) 

for any convex recursive deletion regions.       

Similarly, one can easily prove the feasibility of the 

proposed structure when 10 CC ∩  belongs to class A.     

Figure 3 is the neural network to implement the 

convex recursive deletion region shown in Figure 2. In 

Figure 3, all of the weights of the second and third 

layers are 1’s.  The thresholds for the nodes of the 

second layer and the activation function for the output 

node are also demonstrated in the figure. 

 

3.3 Hardware Implementation 

 
In the proposed network structure, the weights and 

activation functions are pre-determined and no 

constructive algorithm is needed for implementing the 

convex recursive deletion regions.  Therefore, it is 

easily realized by hardware implementation.  Figure 
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4 is the conceptual diagram of the hardware 

implementation of the proposed network structure.  

In Figure 4, the multiplier and adder of the first layer 

serve to form the decision boundaries (the linear 

combinations of the inputs). Each of the comparators 

in the figure serves as an activation function (hard 

limier).  The weights of the second layer are all 1’s. 

We only need an adder and a comparator to perform 

the functionality of the second layer.  The activation 

function of the third layer is the modulus operation 

dividing the input of the activation function by 2. The 

output of the activation function will be sequentially 

alternative (0 or 1) when the input of the activation 

function increases (0, 1, 2, 3, 4, …).   This is 

realized by taking the least significant bit of the input 

of the activation function. Therefore we use an adder 

and take its least significant bit to perform the 

functionality of the third layer. 

      

4. Conclusions 
 

We proposed a simple three-layer network 

structure to implement the convex recursive deletion 

regions in which all parameters (weights and 

activation functions) are pre-determined according to 

the structures of the convex recursive deletion regions. 

No constructive algorithm is needed for solving the 

convex recursive deletion region problems. We used 

an illustrative example to explain how the first layer 

of a multi-layer perceptron forms the decision 

boundaries. We also proved the feasibility of the 

network structure, and provided the conceptual 

diagram of the hardware implementation of the 

proposed network structure.    
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Figure 1: The two-layer perceptron and the corresponding decision region (taken from [1, 4]). 
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Figure 2: The convex recursive deletion region 

and the bounding hyper-planes.   

(b) The bounding hyper-planes. 
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Figure 3: The proposed network structure. 
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Figure 4: The conceptual diagram of the hardware implementation 

of the proposed network structure.  
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