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Abstract: - This paper presents a new performance enhancement method of information-theoretic learning (ITL) 
based blind equalizer algorithms for ISI communication channel environments with a mixture of AWGN and 
impulsive noise. The Gaussian kernel of Euclidian distance (ED) minimizing blind algorithm using a set of evenly 
generated symbols has the net effect of reducing the contribution of samples that are far away from the mean value 
of the error distribution. The process of ED minimization between desired probability density function (PDF) and 
output PDF is considered as a harmonious force interaction on PDF shaping between concentrating force and 
spreading force. The spreading force is composed of the difference between output sample values themselves, and 
is directly related with the output information potential and the output entropy that leads to the output distribution 
spreading out.  The proposed kernel-size modification scheme is to impose loose discipline on the spreading force 
by employing larger kernel-size so that the long distance between two outputs which are correct symbol-related 
and far-located is less likely to be treated as impulsive noise. From the simulation results, the proposed kernel-size 
modified blind algorithm not only outperforms correntropy blind algorithm, but also significantly enhance 
robustness against impulsive noise. 
 
Key-Words: - Impulsive noise, blind equalization, kernel-size modification, source symbol assignment, 
information-theoretic learning, PDF, correntropy, CMA. 
 
1   Introduction 
In communication systems such as broadcast and 
multipoint networks, blind equalizers to counteract 
multipath effects of channel are very useful since they 
do not require a training sequence [1][2]. Multipath 
channels induce severe inter-symbol interference (ISI) 
and are contaminated by noise; not only Gaussian 
noise but also impulsive noise from a variety of 
impulse noise sources [3][4]. Impulsive noise induces 
large instantaneous system output and error which 
makes the system fail to produce desirable 
performance. 

Recently introduced information theoretic learning 
(ITL) method has shown superior performance as an 
alternative to mean squared error (MSE) method in 
equalization applications [5][6]. The most commonly 
used and MSE-based blind equalization algorithm is 
constant modulus algorithm (CMA), which is 
designed to minimize the average of the constant 
modulus error between equalizer output power and 
constant modulus [7]. However, CMA often fails to 
converge in impulsive noise environment. The 

correntropy blind method [8] based on ITL has shown 
better results in partial response systems with 
impulsive noise environments compared to CMA, but 
has not yielded satisfying results in PAM systems [9].  

Our initial approach to blind equalization for 
improved impulsive-noise resistance was to minimize 
the Euclidian distance of probability density function 
(PDF) between output PDF and desired PDF by using 
a set of evenly generated source symbol values at the 
receiver according to the modulation scheme [9]. The 
process of ED minimization between desired PDF and 
output PDF is considered as a harmonious force 
interaction on PDF shaping between spreading force 
and concentrating force. The spreading force is 
composed of the difference between output sample 
values themselves. Based on this concept, we propose 
a kernel-size modified version of our initial blind 
algorithm in order to reduce the spreading force so that 
the long distance between the positively largest output 
and negatively largest output has less chance of being 
considered as impulsive noise.  
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This paper is organized as follows. In Section 2, we 
describe the impulsive noise model composed of the 
background Gaussian noise and impulse noise. The 
constant modulus blind equalizer algorithm which is 
based on MSE criterion is briefly introduced in 
Section 3. In Section 4, a recent blind method for 
partial response system based on correntropy for 
impulsive noise environments is described. Our initial 
blind equalization algorithm for impulsive-noise 
resistance is explained in Section 5. In Section 6 we 
propose a kernel-size modified blind algorithm, and 
Section 7 reports simulation results and discussions. 
Finally, concluding remarks are presented in Section 
8. 

 

  

2   Impulsive Noise Model 
The impulsive channel noise model in this paper is 
composed of the background Gaussian noise and 
impulse noise. The background noise is AWGN of 
which variance is 2

GNσ . The impulsive noise occurs 
according to a Poisson process and the average 
number of Poisson occurrence impulses per 
information symbol duration is defined as ε . The 
amplitude distribution of impulsive noise has a 
Gaussian with variance 2

INσ . This noise model is 
widely used as an impulsive noise model in [8][10]. 

The PDF of the background AWGN is expressed as  
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The impulsive noise with Gaussian amplitude has 

the PDF expression as 
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The total noise is a sum of the two random 

processes and the PDF form of the total noise is 
obtained by taking the convolution of (1) and (2). 
From the convolution process we obtain the following 
total noise PDF expression.  
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3   CMA based on MSE Criterion 
For a tapped delay line (TDL) equalizer with weight 
vector W of L elements in training-aided equalization, 
error sample ke  between the desired training symbol 

kd and output ky are produced by kk de =  

k
T

kkk XWdy −=−  at time k where the equalizer 

input vector is T
Lkkkkk xxxxX ],...,,,[ 121 +−−−= . 

Channel equalization without the aid of a training 
sequence kd  is referred to as blind channel 
equalization. One of the well known blind 
equalization algorithms is CMA which minimizes the 
CMEs based on MSE criterion.     
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where the constant modulus =2R ][/][ 24
kk dEdE .  

For Gaussian noise cases, averaging CMEs taken 
from different time instants discards the effects of the 
Gaussian noise, but a single large, impulsive noise 
sample can dominate these sums and defeat the 
averaging.  

According to the steepest descent method with the 
step-size parameter CMAμ , we obtain the following 
CMA for adjusting the blind equalization [7]:  
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2
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4   Correntropy Blind Algorithm  
Since inner products are a measure of similarity, the 
pair-wise interaction of the feature vectors, that is, 
inner product of vectors in a kernel feature space 
where feature vectors are separated by a certain time 
delay in input space can be another measure of 
similarity that can be utilized in signal processing 
applications.   

Kernel algorithms transform the data iX  from the 
input space to a high dimensional feature space of 
vectors )( iXΦ , where the inner products ⋅⋅,  can be 
computed using a positive definite kernel function 
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satisfying Mercer’s conditions [8]:  
 

)(),(),( jiji XXXXK ΦΦ=                (6) 

 
This makes it possible to obtain nonlinear versions 

of any linear algorithm expressed in terms of inner 
products. In this case the knowledge of the exact 
mapping function Φ  is no longer needed.   

Let }),({ TttX ∈ be a stochastic process with     
being an index set and the nonlinear mapping Φ         
induced by the Gaussian kernel maps the data into the 
feature space  F , where F is an infinite dimensional 
reproducing kernel Hilbert space so the following 
equation holds  

 

F
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where )(⋅σG is a zero-mean Gaussian kernel with 

standard deviation σ . Then the auto correntropy 
function ),( stVX  [8] is defined as    
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where ][⋅E denotes statistical expectation. This 
similarity measure has the analogy with the 
autocorrelation of two random processes and the 
property that its average over the lags [11]. For a 
discrete-time stationary stochastic process, the 
correntropy function with the time lag m is defined as  
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And through the sample mean, it can be estimated 
using N samples as   
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Since the correntropy function conveys information 

about the PDF and correlation of the signal, the 
authors in [8] proposed the following cost function.  
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where ][mVS  is the source correntropy, ][mVY  is the 
equalizer output correntropy, and M is the number of 
lags. The cost function can be minimized by using a 
gradient descent approach, and then the correntropy 
blind algorithm is obtained as   
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To use correntropy algorithm (12) for blind 
equalizer weight update, first we must obtain the 
theoretical correntropy function value for a given 
source signal. For the 4 PAM i.i.d. source 
signal }3,1,1,3{ ++−− as an example, the theoretical 
source correntropy ][mVS  is calculated as  
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5 PDF-Distance Minimizing Blind 

Algorithm using A Set of Assigned 
Symbol Values 

The Euclidian distance [5] between the source 
(transmitted) symbol PDF )(ξDf and the equalizer 
output PDF )(ξYf is defined as   
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Minimization of (13) leads to PDF matching between 
the two PDFs, )(ξDf and )(ξYf . Using Parzen 

window method ∑
=

−=
N

i
iX xG

N
f

1
)(1)( ξξ σ  can be 

used to estimate the PDF with N  samples [5]. We 
note that the first term of (13) is not a function of 
weight. So the cost function can be composed of the 
following two terms: 
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The desired symbols are unknown in blind 

equalization, so we propose to assign transmitted 
source levels to N desired symbols evenly without 
knowing the exact desired valuses. We assume that 
Q -ary PAM signaling systems are employed and the 
all Q levels are equally likely to be transmitted a priori 

with a probability Q
1 , and the transmitted levels 

qA takes the following discrete values  
 

QqAq −−= 12 , Qq ,...,2,1= .           (16)  
 

The level value of 1A  is assigned to Q
N symbols of 

1d , the level value of 2A  is assigned to Q
N symbols 

of 2d , and so on. Now a sliding-window for output 
samples and a gradient descent method for the 
minimization of the cost function (13) can be applied 
to obtain the following our initial algorithm utilizing 
evenly assigned level values in place of desired 
symbols as in [9].  
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For convenience sake, this algorithm will be referred 
to in this paper as initial algorithm. 
 
6 PDF-Distance Minimizing Blind  

Algorithm with Kernel-size 
Modification 

In the previous section, in order to match output PDF 
and source PDF without knowing the exact source 
symbol values, we constructed the desired symbol 
PDF by evenly assigning transmitted levels to 
N desired symbols which are required in Parzen 

window method. In the process of minimizing ED, the 
two terms (14) and (15) play the role of cost function. 
In this section we investigate the specific role of each 
term and search for ways to enhance robustness 
against impulsive noise and ISI cancellation 
performance.  

We note that (15) is referred to as information 
potential (IP) of output [5][12]. To understand the 
effect of increasing or decreasing output information 
potential, we need to mention relationship between 
information potential and entropy.  

Entropy is a scalar quantity that provides a measure 
of the average information contained in a given PDF 
[13]. When output entropy is maximized, the output 
distribution of adaptive systems gets spread out. 
Renyi’s quadratic entropy [14][15] as a useful tool for 
entropy calculation is defined as 

 
       ))(log()( 2∫−= ξξ dfxE X                        (18) 

 
Substituting output information potential 

∫= ξξ dfIP YYY )(2  into (18), we obtain 

 
 )log()( YYIPyE −=                                  (19) 
 

Obviously, minimizing the output information 
potential YYIP  is equivalent to maximizing the output 
entropy )(yE . This leads to the output distribution 
spreading out. 

Since minimization of (13) is equal to 
maximization of ∫ ξξξ dff YD )()( and minimization 

of YYIP  simultaneously, PDF-distance minimizing 
process between )(ξDf and )(ξYf can be considered 
as a harmonious force interaction on the PDF shape 
between spreading force and concentrating force, 
where spreading force comes from YYIP  minimization 
and concentrating force from maximization of 

∫ ξξξ dff YD )()( .  

Noting the term ∫= ξξ dfIP YYY )(2 in (15) is 

related with )(2 ij yyG −σ , we can notice that the 
long distance between the two output points most far 
away from each other, induced by 1A and HA , can be 
treated as impulsive noise and cut out passing through 
the Gaussian kernel. Based on this observation, we can 
come up with the idea of reducing the effect of cutting  
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Fig. 1. System model with impulsive noise  
 
out the difference between extreme outputs by means 
of employing a larger kernel size. This approach also 
has the effect of diminishing the effect of the 
spreading force on the PDF matching process.   

There can be many approaches to increasing the 
kernel size in (15), in this paper, empirically-based, we 
propose to replace )(2 ij yyG −σ   in (15) with 

)(2 ij yyG −σ  as expressed in (20). 
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We chose σ2  in (20) as the best kernel size after 

testing the performance with various kernel sizes, 
which will be shown in Section 7.    

Then the new PDF-distance minimizing blind 
algorithm with kernel-size modification becomes  
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where { }id is a set of self-created and evenly-assigned 
source symbol values according to modulation 
schemes and { }iy is a sliding-window block of 
equalizer output samples. We will refer to (21) as 
kernel-modified algorithm for the sake of 
convenience. 
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 Fig. 2. Impulsive noise for the simulation. 
 
7   Results and Discussion 
In this section, we test the CMA, blind correntropy, 
the initially proposed algorithm and the kernel-size 
modified algorithm in linear radio channels and 
compare their MSE convergence and error distribution 
performance.  

As depicted in Fig. 1, we consider 4 level PAM 
}3,1,1,3{ ++−−  source signal distorted by a radio 

channel model as  
 

21
1 26.093.026.0)( −− ++= zzzH             (22) 

 
Then the channel output signal is added with a 
zero-mean white impulsive noise kn , generated 
according to the following Gaussian mixture model as 
described in previous section: 
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where we used 03.0=ε , 001.02 =GNσ , and 

001.50222
2 =+= INGN σσσ .  The impulsive noise 

signal with those parameters is depicted in Fig. 2. We 
can observe large impulses with above the magnitude 
of 19 voltages that will be added to the equalizer input 
signal.   

Fig. 3 shows the MSE convergence curves. A 
11-tap TDL equalizer is used and initialized with the 
center weight set to unity and the rest to zero. The 
step-size for initially proposed and kernel-modified  
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Fig. 3. MSE convergence performance under 
impulsive noise. 
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Fig. 4. Probability density for errors under impulsive 
noise. 
 
algorithm is commonly set to 007.0 . The step-size 
for blind correntropy algorithm and CMA is 

01.0=CEμ  and 000001.0=CMAμ , respectively. 
The number of lags is 20=M and data-block size 

32=N . And the numerical kernel size σ for the 
initially proposed and kernel-modified algorithm is 
commonly 6.0 and that for correntropy is 8.2 . We 
see that CMA fails to converge even for the small 
step-size. On the other hand, the blind algorithms 
based on ITL converge well.  
Compared to the correntropy algorithm, the MSE 
curve for the initially proposed algorithm reaches 
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Fig. 5. MSE performance comparison between the 
initially proposed algorithm and the kernel-modified 
algorithm. 
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Fig. 6. Performance comparison of probability density 
for errors between the initially proposed algorithm and 
the kernel-modified algorithm. 
 
 
lower steady state MSE, and the minimum MSE 
performance enhancement is above 3 dB. Figure 4 
depicts the estimated error probability densities of the 
algorithms. Their performance differences are shown 
more clearly. The error values of CMA appear not to  
gather well around zero, but correntropy and initially 
proposed algorithm produce error distributions still 
concentrated around zero. Clearly, the latter algorithm 
yields better equalizer-error PDF performance.  
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Fig. 7. MSE performance comparison of 
kernel-modified algorithm for four different sizes; 
1sigma= σ , 2sigma= σ2 , 3sigma= σ3  and 
4sigma= σ4 , respectively. 

 
To investigate the effect of kernel-size 

modification, we compare the initial algorithm with 
the kernel-modified algorithm under the same 
simulation environment. In Fig. 5, the MSE curve for 
the kernel-modified algorithm reaches about -24 dB of 
steady state MSE and the initial algorithm does about 
-18.5 dB. The kernel modification method produces 
MSE performance improvement of about 5.5 dB. 

Besides the performance enhancement of 
steady-state MSE, the learning speed is also improved 
significantly. The initial algorithm is considered to 
converge in about 5000 iterations, and the 
kernel-modified algorithm converges in around 3500 
iterations.  

In Fig. 6, the estimated error probability densities of 
those two algorithms are depicted. We can see their 
performance differences more clearly. The error 
values of the initially proposed algorithm gather well 
around zero, and moreover the kernel-modified 
algorithm produces superior equalizer-error PDF 
performance to the initially proposed algorithm.  

Now we compare the performance difference 
when we vary the kernel size of (20). We test the 
performance for four different sizes; σ , σ2 , σ3  and 
σ4 , and depicted the results in Fig. 7.     
In Fig. 7, the smaller kernel size σ than that of the 

initial algorithm, 2σ , produces very poor MSE 
convergence and it keeps the minimum MSE staying 
above -10 dB. This proves that our approach of 
increasing the kernel size of the spreading force is  

-0.4 -0.2 0.0 0.2 0.4
0

5

10

15

20

25

30

 

 

P
ro

ba
bi

lit
y 

de
ns

ity
 (/

20
00

)

Error value

 1sigma
 2sigma
 3sigma
 4sigma

 
Fig. 8. Error PDF comparison of kernel-modified 
algorithm for four different sizes; 1sigma= σ , 
2sigma= σ2 , 3sigma= σ3  and 4sigma= σ4 , 
respectively. 
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Fig. 9. Steady-state minimum MSE versus 
kernel-sizes; in the horizontal axis, 1=σ , 2= σ2 , 
3= σ3  and 4= σ4 , respectively. 
 
 
reasonable. However, increasing the kernel size of the 
spreading force indefinitely does not guarantee good 
performance since impulsive-noise induced large 
difference between two outputs is more likely to be 
counted in the spreading-force related Gaussian kernel 
function with a far larger kernel size than an 
acceptable one. From the modified size σ4 , the kernel 

WSEAS TRANSACTIONS on COMMUNICATIONS Namyong Kim

ISSN: 1109-2742 424 Issue 7, Volume 9, July 2010



0 2000 4000 6000 8000 10000
-25

-20

-15

-10

-5

0

5

 

 

M
S

E
 (d

B)

Iterations (symbols)

 Kernel-modified algorithm
 Initial algorithm
 Correntropy
 CMA

 
Fig. 10. MSE convergence performance in the 
channel model )(2 zH under impulsive noise. 

 
  
size degrades the performance producing slow 
convergence and increased steady state MSE. The 
kernel size σ2 or σ3  yield better performance, and 
we can find σ2 the best for the simulation 
environment by examining the error PDF performance 
as depicted in Fig. 8. The case of σ2 is slightly better 
than σ3 , but σ4 results in downgraded error PDF 
performance as observed in Fig. 8. This result is 
verified more clearly in Fig. 9 where steady-state 
minimum MSE values with various kernel sizes are 
presented. Compared to correntropy algorithm in Fig. 
3, the case of smaller kernel size, σ  than that of the 
initial algorithm brings about much worse 
performance though it produces better performance 
than CMA.  This implies that the Gaussian kernel of 
spreading force cuts out excessively the difference 
between outputs, that is, the long distance between the 
two furthest output points, induced by 1A and HA , is 
more likely to be treated as impulse noise. This is 
considered to yield worse performance. 

Opposite to small kernel size for the spreading 
force, large kernel size is considered to make the 
Gaussian kernel function pass some extent of 
impulsive noise as well as large output differences. 
This causes the equalizer to lose the function of cutting 
out outliers. According to this analysis, we observe 
slow convergence and deteriorated MSE performance  
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Fig. 11. Probability density for errors in the channel 

model )(2 zH under impulsive noise. 
 
 

as the kernel size gets bigger than σ2  in Fig. 7 and 9.  
In order to investigate their performance for 

different channel models, we perform the same 
experiment in a severer channel model )(2 zH  as 

 
21

2 304.0903.0304.0)( −− ++= zzzH       (24) 
 

While the eigen-value spread ratio of the channel 
model )(2 zH  is 21, the previous channel model 

)(1 zH  in (22) has an eigen-value spread ratio of 11. 
The eigen-value spread (ES) indicates the amount of 
multipath in the channel, ranging from large values for 
nearly line-of-sight channels to lower values for 
channels with richer multipath. Eigen-value spread 
represents the eigen-value mean and implies how 
much severe the channel model is. 

In Fig. 10, we obtained similar MSE convergence 
and error PDF performance to the case of )(1 zH but a 
little slower convergence and higher minimum MSE. 
The three ITL-type algorithms, Correntroy, initial 
algorithm and the proposed kernel-modified algorithm 
converge in about 7000 iterations and still the 
kernel-modified algorithm shows better performance. 
While the initial algorithm and correntropy algorithm 
have the steady-state minimum MSE of -12 dB and 
-17 dB, respectively, the proposed algorithm reaches 
the steady-state minimum MSE of -22 dB. We can 
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Fig. 12. MSE performance comparison between 
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the channel model )(2 zH  (CH2) under impulsive 
noise. 
 
observe the superiority of the proposed 
kernel-modified algorithm even in the worse channel 
environment more clearly in the error PDF 
comparison depicted in Fig. 11. While the error PDFs 
of correntropy approaches almost flat PDF shape, the 
initial algorithm keeps its PDF in a bell-shape and 
more interestingly the proposed kernel-modified 
algorithm shows a more zero-concentrated PDF shape. 
This indicates that error from the proposed equalizer is 
highly concentrated around zero so that it is less likely 
to be produced as large values. As we will investigate 
more the robustness against channel eigen-spread 
variations through the comparison of minimum MSE 
performance in the two channel models in Fig. 12, the 
comparison of error PDF performance shown in Fig. 8 
and 11 reveals that the proposed kernel-modified 
algorithm is very robust to severe channel conditions.    

In Fig. 12, the MSE convergence comparison for 
two channel models )(1 zH  (described as CH1) and 

)(2 zH  (described as CH2) is shown. The initial 
algorithm does not show much difference in 
convergence speed, but the convergence speed of the 
proposed kernel-modified algorithm depends on the 
channel conditions. The correntropy algorithm reveals 
more dependency on the channel conditions in 
convergence speed and minimum MSE as well. To  
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Fig. 13. Steady-state minimum MSE comparison 
between algorithms in the channel model )(1 zH  
(CH1) and in the channel model )(2 zH  (CH2) 
under impulsive noise. 

 
compare their minimum MSE performance upon the 
channel conditions in more detail, the steady-state 
MSE part after convergence for the two channel 
models is shown in Fig. 13. We see in Fig. 13 that the 
minimum MSEs of correntropy algorithm are -15.5 for 

)(1 zH  and -11.5 for )(2 zH . The difference of 
minimum MSE is about 4 dB.  On the other hand, the 
minimum MSEs of initial algorithm are -18.5 for 

)(1 zH  and -17.5 for )(2 zH . The difference of 
minimum MSE for the initial algorithm is only about 1 
dB. the minimum MSEs of initial algorithm are -24 dB 
for )(1 zH  and -22 dB for )(2 zH . The difference of 
minimum MSE for the proposed kernel-modified 
algorithm is about 2 dB. From this observation, we can 
judge that correntropy algorithm is considered 
sensitive to channel conditions but the initial 
algorithm and the proposed kernel-modified algorithm 
are very robust against the variation of channel 
characteristics.      
 
8   Conclusion 
This paper presented a new performance enhancement 
method of ITL-based blind equalizer algorithms for 
ISI communication channel environments with a 
mixture of AWGN and impulsive noise. MSE-based 
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CMA fails in impulsive noise environment but the ITL 
methods using Gaussian kernel have the net effect of 
reducing the contribution of samples that are far away 
from the mean value of the error distribution. The 
correntropy blind method based on ITL has shown 
better results in PAM communication system model 
with impulsive noise environments compared to CMA, 
but the ED minimization blind equalizer algorithms 
produce significant performance enhancement.  

PDF-distance minimizing process between desired 
PDF )(ξDf and output PDF )(ξYf can be considered 
as a harmonious force interaction on the PDF shape 
between spreading force and concentrating force. 
Since the spreading force is related with 

)(2 ij yyG −σ , we noticed that the long distance 
between the two output points that are not 
contaminated by impulsive noise but located most far 
away from each other can be treated as impulsive 
noise and cut out passing through the Gaussian kernel. 
As a way of reducing the effect of cutting out the 
difference between extreme outputs, equivalently 
diminishing the effect of the spreading force on the 
PDF matching process, the approach of modifying 
kernel size of the Gaussian kernel in the spreading 
force yielded superior equalization performance in 
impulsive noise environment. Through the experiment 
for worse channel conditions, we observed that 
correntropy algorithm is sensitive to channel 
conditions but the initial algorithm and the proposed 
kernel-modified algorithm are very robust against the 
variation of channel characteristics. 

From these results and observations, we conclude 
that the kernel modification scheme applied to the ED 
minimization-blind algorithm can not only outperform 
the CMA and correntropy blind algorithm, but also 
significantly enhance robustness against impulsive 
noise and channel inferiority. 
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