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Abstract: - In secret quantum communications the best eavesdropping attacks on quantum cryptography are 
based on imperfect cloning machines. The incoherent attack, based on quantum cloning, is the most common 
eavesdropping strategy. Using a probe, the eavesdropper imperfectly clones the sender’s quantum state which 
keeps one copy and sends the other. The physically allowed transformations of Eve’s quantum cloner on Bob’s 
qubit can be described in  terms of Completely Positive (CP), trace preserving maps. The map of the quantum 
cloner compresses the Bloch-ball, as an affine map. This affine map has to be a complete positive, trace 
preserving map, which shrinks the Bloch ball. The effects of a quantum cloner can be given in tetrahedron 
representation. In this paper we show a new, quantum information theoretical representation of eavesdropping 
detection, focused on the Four-state (BB84) and Six-state quantum cryptography protocols. We use a 
fundamentally new computational geometrical method to analyze the informational theoretical impacts of 
cloning activity on the quantum channel. The proposed algorithm uses Delaunay tessellation and convex hull 
calculation on the Bloch sphere, with respect to quantum relative entropy as distance measure. The improved 
core-set approach can be used to analyze efficiently the informational theoretical impacts of physically allowed 
quantum cloning attacks.  
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1 Introduction 
Quantum cryptography is an emerging 

technology that offers new forms of security 
protection, however the quantum cloning based 
attacks against the protocol will play a crucial role 
in the future [1, 2]. We identify the quantum cloning 
based attacks in the quantum channel, and find 
potential and efficient solutions for their detection in 
secret quantum communications. The incoherent 
and coherent attacks against quantum cryptography 
are based on imperfect quantum cloners. The type of 
quantum cloner used depends on the quantum 
cryptography protocol. Against the Four-state 
(BB84) Eve, the eavesdropper uses the phase-
covariant cloner, while for the Six-state protocol the 
optimal results can be achieved by the universal 
quantum cloner (UCM) [8, 9, 10, 11].  

We use an efficient computational geometric 
method to analyze the quantum information 
theoretical impacts of physically allowed attacks on 
the quantum channel. Our goal is to measure the 
level of quantum cloning activity on the quantum 

channel, using fast computational geometric 
methods.  

Our paper is organized as follows. First we 
discuss the basic facts about computational 
geometry and quantum information theory. Then we 
explain the main elements of our security analysis, 
and we show the application of our theory for the 
security analysis of eavesdropper detection on the 
quantum channel. Finally, we summarize the results.    

 
 

1.1 Cloning Attacks in Quantum 
Cryptography 

The incoherent quantum cloning based attack is 
the most common eavesdropping strategy [8, 9], 
thus in our geometrical based security analysis, we 
study the incoherent attack based attacker model.  

The security of QKD schemes relies on the no-
cloning theorem [2]. Contrary to classical 
information, in a quantum communication system 
the quantum information cannot be copied perfectly. 
If Alice sends a number of photons 

WSEAS TRANSACTIONS on COMMUNICATIONS Laszlo Gyongyosi, Sandor Imre

ISSN: 1109-2742 165 Issue 3, Volume 9, March 2010



  

1 2, , , N    through the quantum channel, an 

eavesdropper is not interested in copying an 
arbitrary state, only the possible polarization states 
of the attacked QKD scheme. To copy the sent 
quantum state, an eavesdropper has to use a 
quantum cloner machine, and a known “blank” state 
0 , onto which the eavesdropper would like to copy 

Alice’s quantum state. If Eve wants to copy the i-th 
sent photon i , she has to apply a unitary 

transformation U, which gives the following result:  

 0 ,i i iU                     (1) 

for each polarization states of qubit i . A photon 

chosen from a given set of polarization states can 
only be perfectly cloned, if the polarization angles 
in the set are distinct, and are  all mutually 
orthogonal [2, 7]. The unknown non-orthogonal 
states cannot be cloned perfectly, the cloning 
process of the quantum states is possible only if the 
information being cloned is classical, hence the 
quantum states are all orthogonal. The polarization 
states in the QKD protocols are not all orthogonal 
states, which makes it impossible  an eavesdropper 
to copy the sender’s quantum states [2].  

In the incoherent-type attacks, Eve imperfectly 
clones the sender’s quantum state using her 
quantum state probe, she sends one copy to Bob and 
keeps the other copy. We denote Eve’s quantum 
state by E , and the unitary operation which 

describes the interaction between the sent qubit and 
Eve’s state is denoted by U, thus the whole 
transformation can be described as  [6]:  

0,0 0,1

1,0 1,1

0 0 1 ,

1 0 1 ,

U

U

E E E

E E E

  

  
        (2) 

where ,i jE  denotes Eve’s cloned quantum state, 

and E  can be written as 2 2  matrix, whose 

elements are Eve’s states ,i jE .  

We measure the information theoretical impact 
of quantum cloning activity in the quantum channel, 
where Alice’s and Bob’s side can be modeled by 
random variables X and Y. Our geometrical security 
analysis is focused on the cloned mixed quantum 
state, received by Bob. Alice’s pure state is denoted 
by A , Eve’s cloner modeled by an affine map  , 
and Bob’s mixed input state is denoted by 

 A B  .  

The general model for the quantum cloner based 
attack for quantum cryptography is illustrated in 
Fig. 1.  



Alice’s pure
qubit

Eve’s quantum
cloner

Bob’s mixed 
input state

Quantum
Cloner

Cloned
state

 A B A

Random state

 H X    H X H X Y H X Y

 
 

Fig. 1. The analyzed attacker model and the entropies. 
 
We measure in a geometrical representation the 

information, which can be transmitted in the  
presence of an eavesdropper on the quantum 
channel.  We seek to maximize  H X  and 

minimize  H X Y  in order to maximize the radius 
*r  of the smallest enclosing ball of Bob, which 

describes the maximal transmittable information 
from Alice to Bob in the attacked quantum channel: 

     * .
iall possible xr max H X H X Y          (3) 

To compute the radius *r  of the smallest 
informational ball of quantum states, we use the von 
Neumann entropy and quantum relative entropy. 
Geometrically, the presence of an eavesdropper 
causes a detectable mapping to change from a 
noiseless one-to-one relationship, to a stochastic 
map [6, 7].  

 
 

2  Physically Allowed Transformations  
The map of the quantum cloner compresses the 
Bloch-ball, as an affine map. This affine map must  
be a complete positive, trace preserving map, which 
shrinks the Bloch ball along the x, y and z directions.  

The quantum information theoretical analysis of 
the eavesdropper’s cloning machine indicates, how 
much the eavesdropper clones the sent pure 
quantum states. In our model, due to eavesdropper 
activity, the sent pure quantum states become mixed 
states. Eve’s output is represented by a 2 2  density 
matrix, and her operation is a trace-preserving 
completely positive (CP) map. We denote Eve’s 
map by  , which is trace preserving if 

    Tr Tr   for all density matrices  , and 

positive if the eigenvalues of    are 

nonnegative, whenever the eigenvalues of   are 

non-negative. Eve’s map   has to be CP, thus 

n I   is a positive map for all n, where nI  is the 

identity map on n n  matrices [7].  
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We use a computational geometrical method to 
analyze the cloning activity on the quantum channel, 
and we use the Bloch ball representation. The 
activity of an eavesdropper on a single-qubit in the 
Bloch sphere representation, can be given by an 
affine map as   

  ,E A b  r r r


                     (4) 

where A is a 3 3  real matrix, b


 is a three-
dimensional vector, r  is the initial Bloch vector of 
the sent pure quantum state, and  Er   is the Bloch 
vector of the cloned state. 

In idealistic UCM and phase-covariant based 
attacks, the eavesdropper’s activity does not change 

the center of the Bloch ball [11], thus 0b 


, and  A 

is diagonal matrix with entries  , ,x y z   


, 

which characterizes the tetrahedron  . The entries 
of matrix A specify the tetrahedron   in the 

parameter space of  , ,x y z   , where   if  

  1x y z     .                         (5) 

The tetrahedron   is the convex hull of the 
points representing I  and the three rotations, thus 
every transformation corresponding to a point in the 
tetrahedron   can be described as a statistical 
mixture of the , ,x y I  and z  extremal 

transformations [7, 8]. Thus, if all the points in   
can be described by transformations , ,x y I  and 

z . Fig. 2. illustrates the tetrahedron  . 
 

 
 

Fig. 2. The tetrahedron representation of physically allowed 
cloning transformations. 

 
The vertices of tetrahedron   represent the 

, ,x y I  and z  Pauli-transformations, where I  is 

the identity transformation, and , ,x y z    are 

rotations by   about the x, y and z axes.  
 

2.1 Geometry of Quantum Cloning Based 
Eavesdropping  
The quantum cloner map compresses the Bloch-ball, 
as an affine map. This affine map must be a 
complete positive, trace preserving map, which 
shrinks the Bloch ball along the x, y and z directions 
[2]. The vertices of tetrahedron   correspond with 
the four extremal maps which can be described as 

3
†

0

,j j j
j

A A   


                      (6) 

where 0A  is the identity matrix I , and  1,2,3j   

we have j jA   and 0 1 2 3 1.        The 

general transformation   of Eve’s quantum cloner 
can be described as a convex sum of these maps as 

  

 
1 1 1 2 2 2

3 3 3 1 2 3

, ,

1 ,

x y z

     
      

 

    



        (7) 

where 1 2,   and 3  are non-negative parameters, 

, ,x y z    are the Pauli-transformations, and 

 1 2 31      I   the identity transformation.  

The vertices of   represent a unitary map for 
which only one operator is required in the operator 
sum representation, while the edges of   represent 
the two operator maps, and the faces of   
represents the maps with three operators. The points 
inside   require all the four operators [17, 18].  

 
 

2.2 Attacker Model for BB84 and Six State 
Protocol  

In quantum cryptography, the most effective 
eavesdropping attacks use quantum cloning 
machines [7, 8, 9]. However, an eavesdropper can 
not measure the state   of a single quantum bit, 

since the result of that measurement is one of the 
single quantum system’s eigenstates. The measured 
eigenstate gives only very poor information to the 
eavesdropper about the original state   [2, 7]. The 

process of cloning pure states can be generalized as  

,
a b x abc

Q                    (8) 

where   is the state in the Hilbert space to be 

copied,   is a reference state, and Q  is the 

ancilla state [7].  
As Wooters and Zurek showed, an unknown 

quantum state 0 1     cannot be cloned 

perfectly [7], however it has subsequently been 
shown, that an unknown quantum state can be 
cloned approximately [2, 8, 9]. A cloning machine is 
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called symmetric if at the output all the clones have 
the same fidelity, and asymmetric if the clones have 
different fidelities [8, 9].  

The effect of the eavesdropper’s quantum cloner 
simply shrinks the Bloch ball  , with given 
probability p. The general model of the 
eavesdropper’s cloning machine is shown in Fig. 3.  
 

Reference
state

Eve’s quantum
cloner

Eve’s
outputs


0

0

x

r

c

b

a

r

rabc
rx



ancilla

input output

output

 
 

Fig. 3. The general model of Eve’s quantum cloner. 
 

The input qubit state is denoted by x, which is 
initially in an entangled state with a reference qubit 

r, denoted by Bell state 
rx

 .  

After the cloning transformation, the overall 
system consists of the three outputs and the 
reference quantum state, thus output state rabc  

can be written as a superposition of double Bell 
states [12, 13]:  

,

          ,

ra bc v z

x y

   

   

      

     
              (9) 

where , ,x y z  and v are complex amplitudes with 
2 2 2 2

1x y z v    . The qubit pairs ra and bc 

are Bell mixtures with 
2

xx p , 
2

yy p , 
2

zz p  

and 
2

1 .v p    

The equation ,v x y z    describes a three-
dimensional surface in the space, where each point 

 , ,x y z  represents parameters 2 2,  x yx p y p   and 
2 .zz p   

This surface is an oblate ellipsoid  , and we 
denote the coordinates [8] of the ellipsoid   by 

 , ,x y z   . As we will see in Section 5, the 

ellipsoid   has polar radius 
1

2
x  , while the 

equatorial radius is 1z   [8, 10].  
The type of the quantum cloner machine depends 

on the actual protocol. For BB84, Eve chooses the 
phase-covariant cloner, while for the Six-state 
protocol she uses the universal quantum cloner 
(UCM) machine [8, 9].  

2.3 Cloning Machine Based Attacks 
Eve has a quantum cloner machine, and she 

interacts with the quantum channel connecting two  
the legitimate users Alice and Bob. The effect of the 
eavesdropper’s symmetric quantum cloner simply 
shrinks the Bloch ball  , with given probability p.  

In the BB84 protocol [7], Eve uses phase-
covariant cloning machine, thus Eve clones only 
equatorial states:  

 1
0 1 .

2
ie                       (10) 

 In the Six-state protocol Eve considers universal 
cloning [7], and clones all the states:  

   1 1
0 , 1 , 0 1 , 0 1 .

2 2
i     

 
  (11) 

Using the incoherent-type cloning based attack, Eve 
applies the same unitary transformation to each sent 

quantum state    .  

Eve does not introduce correlation among the 
copies, and she measures her state after she cloned it 
[8]. Alice, Bob and Eve immediately measure their 
quantum states, since the parties have no ability to 
store the qubits.  
 
 
2.3.1 Universal Cloning  
If Eve uses a universal quantum cloner, then the 
value of parameter EveF   will be independent of 

input quantum state  . The quantum cloning 

transformation optimal [8, 9], if 
2

,
3

   hence the 

maximal fidelity of optimal universal cloning is 
5

,
6EveF   and the maximal radius UCM

Ever  is  

2
.

3
UCM
Ever                              (12) 

The quantum information theoretical radius can 
be defined as  

 * 1 ,UCM UCM
Eve Ever r S                   (13) 

where S  is the von Neumann entropy of the 
corresponding quantum state with a radius length 

UCM
Ever .  

Universal cloning has direct applications to 
eavesdropping strategies in Six-state quantum 
cryptography. The map   of UCM cloner based 
symmetric incoherent attack for the Six-state 
protocol on pure input state  , can be given by the 

following completely positive map:  
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4 2
1 2

3 3

2 1
  ,

3 3 2

p p 

 

              
       
   

 


         (14) 

where   is the identity transformation. In Fig. 4. we 
show the quantum cloner based attacker model for 
the Six-state protocol.  
 



Alice’s pure
qubit

Eve’s incoherent
attack

Bob’s mixed 
input state

UCM

Cloned
state

 A B A

Six state QKD

 
 

Fig. 4. The UCM cloner based attacker model for the Six-state 
protocol. 

 
In the UCM based attacker model, Eve has a state-
independent quantum cloner, where the probabilities 

are 
3x y z

p
p p p   , thus 

1

12x y zp p p   . 

 
 
2.3.2  Phase-covariant Cloning  

The best-known example of a state-dependent 
quantum cloning machine is the phase-covariant 
cloning machine [8, 11]. The phase-covariant 
cloning machines have a remarkable application in 
quantum cryptography, since they are used in the 
optimal strategy for eavesdropping [8, 9, 10].                                                              

In the Four-state (BB84) quantum cryptography 
protocol, the optimal eavesdropping attack is done 
by a phase-covariant cloning machine, which clones 
the x equator. The importance of equatorial qubits 
lies in the fact that Four-state quantum cryptography 
requires these states rather than the states that span 
the whole Bloch sphere [9].  

In phase-covariant cloning, the cloning 
transformations were restricted for pure input states 

of   1
0 1

2
ie 

    form, where the 

parameter  0,2   represents the angle between 

the Bloch vector and the x-axis. These qubits are 
called equatorial qubits, because the z-component of 
their Bloch vector is zero. The phase-covariant 
quantum cloner [9] can clone arbitrary equatorial 
qubits, and the cloner maintains the quality of the 
copies for all equatorial qubits [16, 17].  

The reduced density operator of the copies at the 
output can be expressed as [9] 

 

, ,

1 1

2 8

1 1
      ,

2 8

out
 

 

  

  

 
   
 
 

   
 

             (15) 

where ,   is orthogonal to state .  Thereby, 

the optimal fidelity of 1 to 2 phase-covariant cloning 
transformation is given by  

1 2

1 1
0.8535.

2 8
phasecov.F                  (16) 

If Eve has a phase-covariant quantum cloner, then 
the maximal value of her radius phasecov.

Ever  is  

1
2

8
phasecov.

Ever  .                          (17) 

The quantum information theoretical radius 
* phasecov.
Ever  of the phase-covariant cloner can be 

defined as  

 * 1 ,phasecov. phasecov.
Eve Ever r S                  (18) 

where S  is the von Neumann entropy of the 
corresponding quantum state with a radius length of 

phasecov.
Ever .  

The map   of the phase-covariant cloner based 
attack for BB84 protocol on input state  , can be 

given by the following completely positive map:  
 

 

1 3 2

    2
2

1 1 2 4
2

8 2 3 3 8

2 4
    ,

3 23 8

y y

y y

p

p p

 

   

     

 

 

 

  

   
 

   
 







   (19) 

with 
2x z

p
p p  , 0,yp   where 

2 4

3 3 8
p   .  

In Fig. 5. we illustrated the quantum cloner based 
attacker model for the BB84 protocol.  
 



Alice’s pure
qubit

Eve’s incoherent
attack

Bob’s mixed 
input state

Phase
covariant

Cloned
state

 A B A

BB84 protocol

 
 

Fig. 5. The phase-covariant cloner based attacker model for the 
BB84 protocol. 
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The optimal cloning transformation for the BB84 
states can be written as follows [8, 9]: 

 

 

1 1
0 0 00 0

2 8

1 1 1
         01 10 1 11 0 ,

8 2 8

1 1
1 0 11 1

2 8

1 1 1
         10 01 0 00 1 .

8 2 8

U X

U X

 
   
 

 
     

 
 

   
 

 
     

 

   (20) 

The phase-covariant quantum cloning 
transformation produces two copies of the 
equatorial qubit with optimal fidelity. 

 
 

3 Geometrical Description of Cloning 
Attacks  
Using the radius vector  , ,x y zr  of the sent pure 

qubit, the radius vector  * * *, ,E x y zr  of the 

cloned quantum state is given by Er r  as 

, ,

i i j
E ij j

j x y z

r r M r C


   ,               (21) 

where ijM  denotes the components of a 3 3  matrix 

M, and jC  are the three components of a constant 

real column vector C.  Eve’s cloning transformation 
operator   on the sent pure quantum state A , in 
the symmetric incoherent attack with BB84 and 
with a Six-state protocol, can be described as   

  .A B                         (22) 

The effect of cloning transformation  A  can 

be given by the affine map 
, ,

i j
E ij j

j x y z

r M r C


  , 

where jr  is the j-th component of Alice’s radius 
vector  , ,x y zr , and ijM  are the nine 

components of the 3 3  real matrix M, while jC  is 

the j-th element of column vector 0C 


, which is 
given by   

sin cos sin sin 0

sin sin sin sin 0 .

cos sin sin 0

C

   
    

  

   
        
   
   


        (23) 

According to matrix M, Eve’s quantum cloner 
maps the cloned state onto a maximally mixed state, 

if any parameter in  , ,    takes the value .
2


 

Thus, the effect of Eve’s cloning transformation can 
be described by the affine map [7, 8]: 

*

, ,

i j
E ij

j x y z

r M r


  .                      (24) 

In a geometrical representation, Eve’s quantum 
cloning transformation   maps the Bloch ball onto 
a compressed Bloch ball [7, 8], with radius 1Er  . 
The matrix M contains a combination of rotations 
and contractions of the vectors on the Bloch sphere, 
while the vector C corresponds to a shift in the 
origin of the Bloch sphere.  

Eve’s UCM-based attack cloning transformation 
in the Six-state protocol can be described by the 
radius vector i

Er , where matrix *
UCMM M  can be 

expressed as: 
*

cos cos 0 0

0 cos cos 0 ,

0 0 cos cos

UCMM

 
 

 



 
 
 
 
 

    (25) 

where the parameters  , ,    are the free 

parameters of the quantum cloning transformation 
[8, 10, 11].  

In the BB84 protocol, the phase-covariant 
cloning-based attack can be described with 

parameters  
 

0 1 3

1
,

2


   


   , 3 0   and by 

matrix *
phasecov.M  as: 

*

0 1 2 3

0 1 2 3

0 1 2 3

0 0

0 0

0 0

0 0

                       0 2 1 0 ,

0 0

phasecov.M

   
   

   








   
    
    

 
   
 
 

where 0 1  . The affine transformation of this 
map can be described by matrix M , where   
represents the tetrahedron  : 

0 1 2 3

0 1 2 3

0 1 2 3

0 0

0 0

0 0

0 0

                         0 0 .

0 0

x

y

z

M

   
   

   








   
    
    

 
   
 
 



The diagonal entries of the matrix take values such 
that the effect of Eve’s quantum cloning 
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transformation can be represented geometrically by 
a tetrahedron, as we have defined it. In this 
geometrical representation, each point of 

 , ,x y z    which lies inside  is an allowed set of 

diagonal elements for the affine transformation of 
the quantum cloner defined by matrix M.  
 
 
3.1  Geometrical Representation of 
Incoherent Attacks in QKD Protocols 

Using the tetrahedron approach, Eve’s cloning 

activity can be described by  , ,x y z   


. In the 

BB84 protocol with a phase-covariant cloner, Eve 
has to minimize y , with  

 x z    .                        (26) 

In the Six-state protocol, Eve uses the UCM 
transformation which can be described by  

 x y z      .                    (27) 

The probability that Alice and Bob choose the same 
basis but get a different bit is D, while the 
probability that they get the same bit in the same 
basis is F. The disturbance D can be given for any 
basis b by 

01 01 10 10

1

2b bb b
E E E E D


   .    (28) 

The fidelity F of the cloner is [10] 

00 00 11 11

1
1

2b bb b
E E E E F D


     . (29) 

In the BB84 protocol with a phase-covariant cloner, 
the fidelity of the cloning transformation is 

00 11 11 00 ,
2

y
b bb b

E E E E
 

          (30) 

while in the Six-state protocol with UCM, we have 
 00 11 11 00 .b bb b

E E E E               (31) 

If Alice and Bob share the same basis and same bit, 
and Eve guesses correctly the value of the shared 
bit,  Eve has to guess whether  her probe is in state 

00 00 

1
b b

E E
F

 or 11 11 

1
b b

E E
F

. If Eve uses an 

optimal measurement to guess this bit value, her 
success probability [11] cp  is 

2

00 11

1 1 1
1

2 2c b b
p E E

F
   .         (32) 

Eve has to maximize cp  given an allowed 

disturbance level with min    and a maximum 

allowed disturbance given by min
max

1

2
D


 . To 

reduce 
2

00 11

1
b b

E E
F

, Eve has to minimize 

00 11b b
E E , and in the phase-covariant cloner-

based attack, this minimum can be reached for  

 min min min,2 1,    


.              (33) 

In the Six-state protocol, this minimum can be 
reached for  

 min min min, ,   


.                     (34) 

In the next sections we will show the tetrahedron 
interpretation of cloning-based attacks and their 
physically allowed effects in the BB84 and Six-state 
protocols.  
 
 
3.1.1 Modeling Physically Allowed Attacks - Six-
State Protocol 
The optimal universal quantum cloning machine-
based symmetric incoherent attack in the Six-state 
quantum cryptography protocol can be represented 
as a reduced tetrahedron *  formed by matrix 

*
UCMM .  
The vertices of the original tetrahedron   

correspond to a single operator map, the edges are 
two operator maps, while the four faces represent all 
three operator maps [8, 9]. The points in the interior 
of the tetrahedron  are all four operator maps of  

3
†

0

.j j j
j

A A   


                   (35) 

In Fig. 6, we show the tetrahedron representation 
of the optimal universal quantum cloning machine-
based attack in the Six-state quantum cryptography 
protocol.  

 

 
 

Fig. 6. The optimal universal quantum cloning machine-based 
attack in the Six-state quantum cryptography protocol. 

 
The cloning transformation can be represented in 

the reduced tetrahedron *  formed by *
UCMM , on 
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the line between the identity transformation and the 
maximally mixed state map [15, 16]. 
Using this result, the affine transformation of Eve’s 
quantum cloning transformation is given by M , 

with conditions ,x y z   ,y z x    and 

,z x y    where cos cosx   , cos cosy    

and cos cosz   . The three diagonal entries of 

M have to ensure the complete positivity of the 

map, thus the allowed region in the space of  ,  x y   

and z  forms a tetrahedron   with vertices at 

   1,1,1 ,  1, 1, 1  ,  1,1, 1   and  1, 1, 1 .     

Using tetrahedron  to represent matrix M , 
only the vertices and edges of the tetrahedron are 

touched, and each point  , ,x y z    which lies 

inside   is an allowed set, while no point on the 
face or any face is contained.  

The reduced tetrahedron * can be visualized as 
the tetrahedron  with each face of the tetrahedron 
scooped out and of depth extending all the way to 
the centroid. In a graphical representation of * , all 
the vertices and edges of  are contained, while no 
other point on any face is contained.  
 
 
3.1.2  BB84 Protocol 
The phase-covariant quantum cloning-based attack 
against BB84 cannot be modeled by the reduced 
tetrahedron * , formed by matrix *

UCMM . In the 
tetrahedron representation, the phase-covariant 
cloner-based symmetric incoherent attack on BB84 
can be represented on the face of the tetrahedron   
formed by *

phasecov.M .  

The phase-covariant based attack on BB84 can 
be modeled geometrically on the line between the 
identity transformation and the mid-point of the 
edge lying between points from the Z and X-
transformations.  

We cannot use tetrahedron *  to describe the 
eavesdropper cloning transformation *

phasecovM  in 

BB84, because the quantum operators removed 
from   lie on the faces of  .  

The phase-covariant quantum cloning-based 
attack against BB84 in the tetrahedron 
representation is illustrated in Fig. 7. 

 

 
 

Fig. 7. The phase-covariant quantum cloning-based attack 
against BB84 in the tetrahedron representation.  

 
The points removed from  are required to 

describe the cloning transformation *
phasecov.M , thus 

the reduced tetrahedron *  formed by *
UCMM  

cannot describe all possible outcomes.    
 
 

4 Proposed Information Theoretical 
Model for Quantum Cloning Detection 

In our security analysis, the distances between 
quantum states are defined by the quantum relative 
entropy of quantum states. The relative entropy of 
quantum states measures the informational distance 
between quantum states [2]. The Shannon entropy 

 H p  of quantum states is given by the von 

Neumann entropy  S , which is a generalization 

of classical entropy to quantum states [2, 3]. The 
entropy of quantum states can be given in the 
following way:  

   log .Tr   S                  (36) 

The relative entropy of quantum states measures 
the informational distance between quantum states, 
using the negative entropy of quantum states [3, 5] 
as the generator function  F :  

     log .Tr     F S         (37) 

The relative quantum entropy between density 
matrices   and   can be described by the strictly 
convex and differentiable function F , as:  

       , ,D           F F F    (38) 

where  *, Tr    is the inner product of 

quantum states and   F  is the gradient.  

In Fig. 8, we visualize the quantum informational 

distance,   D   , as the vertical distance between 
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the generator function F  and  H  , the 

hyperplane tangent to F  at  . The intersection 
point at quantum state   on  H   is denoted by 

 H  .   

 

 
 

Fig. 8. Visualizing the generator function as negative von 
Neumann entropy. 

 
The quantum informational distance is not 

symmetric, nor does it satisfy the triangular 
inequality of metrics. 

The spherical Delaunay triangulation between 
pure states and between pure and mixed states can 
be simply obtained as the 3D Euclidean Delaunay 
tessellation restricted to the Bloch sphere [12, 13]. 
 
 
4.1  Quantum Relative Entropy Between 
Mixed Quantum States 

The quantum relative entropy of a general 
quantum state  , ,x y z   and mixed state 

 , ,x y z     , with radii 2 2 2r x y z     and 

2 2 2r x y z     is given by  

     
 

   
 

2

2

11 1 1
log 1 log

2 4 2 1

11 1 1
       log 1 log , ,

2 4 2 1

r
D r r

r

r
r

r r


 






 

 

 


  




  



  (39) 

where  , xx yy zz       . For a maximally 

mixed state    , , 0,0,0x y z      and 0r  , the 

quantum relative entropy can be expressed as  

   
 
 

21 1
log 1

2 4

11 1 1
       log log .

2 2 41

D r

r
r

r








   


 



           (40) 

The quantum relative entropy between two 
mixed quantum states depends on the lengths of 
their Bloch vectors and the angle   between them, 
as illustrated in Fig. 9. 
 

r r




0

 
 

Fig. 9. The quantum relative entropy depends on the lengths of 
the vectors and the angle between them.  

 
In the proposed Delaunay triangulation method, we 
apply quantum relative entropy as a distance 
measure only for mixed states, since the Delaunay 
triangulation of pure states is identical to the 
conventional spherical Delaunay diagram [1]. 

 
 

4.2  Geometrical Background 
If the set   of quantum states is denoted by 

 1 2, , n    , the Voronoi cell  vo   for 

quantum state   is given by  

        , , ,i jvo x d x d x         (41) 

where  d   is the distance function. The 

circumcircle of the given quantum states is the circle 
that passes through the quantum states 1  and 2  of 

the edge 1 2   and endpoints 1 , 2  and 3  of the 
triangle. The triangle t is said to be Delaunay, when 
its circumcircle is empty.  
 

1

2

3c

 

1

2
3

4
5

6

7

8

9

Quantum
states on the

Bloch ball

Delaunay
tesselation

 
 

Fig. 10. The triangle of quantum states corresponds to the 
vertex c (a), and Delaunay tessellation on the Bloch sphere (b). 
 
For an empty circumcircle, the circle passing 
through the quantum states of a triangle t T , 
encloses no other vertex of the set  .  

In our security analysis, we use the fact that the 
Voronoi diagram  vo   of a set of quantum states 
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  and the Delaunay triangulation  Del   are dual 

to each other [4].  
The quantum Delaunay triangulation of a set of 

quantum states   denoted by  Del   is the 

geometric dual of quantum Voronoi diagrams 

 vo  . The quantum Voronoi diagrams can be 

first-type or right sided diagrams. Similarly, we can 
derive two triangulations from quantum Voronoi 
diagrams. The first-type quantum informational ball 
circumscribing any simplex of quantum Delaunay 
triangulation  Del  , is empty.  

 

 
 

Fig. 11. The empty ball property for quantum Delaunay 
triangulation. 

 
If we choose a subset   of at most 1d   states 

in  1, , n   , then the convex hull of the 

associated quantum states ,i i  , is a simplex of 
the quantum triangulation of  , if there exists an 
empty quantum informational ball passing through 
the ,  i i  . The first-type and second-type 
quantum diagrams for quantum states which have 
non-equal radii differ. The quantum diagrams 
between these states are not equal to Euclidean 
diagrams.  

In Fig. 12(a), we illustrate the dual-Delaunay 
diagram for pure states, with 

1 2 3 4
1r r r r       . 

The quantum diagram for pure states is equivalent to 
the ordinary Euclidean diagram.  

In Fig. 12(b), we illustrate the first-type and 
second-type diagrams for mixed states with radii 

1,2,3,4
1r  , in Bloch ball representation. The first-

type quantum diagram is illustrated by bold lines, 
the dashed lines show the dual curved second-type 
diagram.  

   
 

Fig. 12. Dual-Delaunay diagram for pure states (a) and for 
mixed states (b).  

 
The ordinary quantum Voronoi diagram gives the 
regions that are nearest to a set of given states. The 
furthest Voronoi diagrams are the opposite of 
ordinary Voronoi diagrams. The furthest quantum 
Voronoi diagrams identify the regions which have 
the greatest distance from given points.  

If we have a classical Voronoi diagram of a set 
of quantum states  1 2, , n    , then the cells 

determine the regions that contain the closest points 
to the sites. We can define a similar structure for 
furthest points and such a diagram is called the 
furthest-point Voronoi diagram [18].  

In Fig. 13, we illustrate the difference between 
classical quantum Voronoi diagrams and furthest 
quantum Voronoi diagrams for a set of quantum 
states  1 2 3, ,    in the Bloch ball 

representation. We can conclude that the furthest 
quantum dual-Delaunay diagram differs from the 
ordinary Voronoi diagram and has an empty cell. 
 

       
 

Fig. 13. Comparison of classical quantum Voronoi diagrams 
and furthest quantum Voronoi diagrams for a set of quantum 

states in the Bloch ball representation. 
 
In Fig. 14, we compare the ordinary Delaunay 
triangulation and the furthest Delaunay 
triangulation. The furthest point Delaunay edges do 
not intersect and the furthest Delaunay triangulation 
of   determines the convex hull and the center of 
the smallest enclosing ball.  
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Fig. 14. Comparison of ordinary Delaunay triangulation and 
furthest Delaunay triangulation. 

 
The quantum diagrams of pure quantum states and 
of mixed quantum states with equal radii are 
equivalent to ordinary Euclidean diagrams. The 
quantum diagrams of mixed states with different 
radii are equivalent to quantum informational 
diagrams. 
 
 
4.3  Computational Geometry in Cloning 
Detection  

We would like to compute the radius *r  of the 
smallest enclosing ball of the cloned mixed quantum 
states, thus first we have to seek the center *c  of the 
set  of quantum states. The set   of quantum 

states is denoted by   1

n

i i



 . The distance  ,d    

between any two quantum states of   is measured 
by the quantum relative entropy, thus the minimax 
mathematical optimization is applied to quantum 
relative entropy-based distances to find the center c  
of the set  .  We denote the quantum relative 
entropy from c  to the furthest point of   by  

   , max ,i id d c c .                 (42) 

Using minimax optimization, we can minimize 
the maximal quantum relative entropy from c  to the 
furthest point of   by  

 * arg min ,d cc c  .                    (43) 

In Fig. 15, we illustrate the circumcenter *c  of  
  for the Euclidean distance and for quantum 
relative entropy [3].   

 

 
 

Fig. 15. Circumcenter for Euclidean distance and quantum 
relative entropy balls. 

 

The informational theoretical effect of the 
eavesdropper’s cloning machine is described by the 
radius *r  of the smallest enclosing quantum 
informational ball. The quantum informational 
theoretical radius *r  is equal to the maximum 
quantum informational distance from the center and 
can be expressed as:   

   
    

2 2

* min max .r D
 

 
 


  

          (44) 

In our geometrical approach, we compute the 
smallest enclosing information ball by Delaunay 
tessellation, which is the fastest known tool to seek 
the center of a smallest enclosing ball of points [4, 
5]. For UCM and phase-covariant cloning, the 
connection between information theoretical radius 

*r  and Bloch vector Blochr  can be defined as:  

 * 1 ,Blochr r S                         (45) 

where S  is the von Neumann entropy of the 
corresponding quantum state with maximum length 
vector Blochr . The informational theoretical radius of 
UCM and phase-covariant cloners are denoted by 

*
UCMr  and *

.phasecovr . 

 
 
4.3.1  Laguerre Diagram for Quantum States 
We use the Laguerre Delaunay diagram [4, 14, 15] 
to compute the radius of the smallest enclosing ball. 
In general, the Laguerre distance for generating 
points ix  with weight 2

ir , in a Euclidean space is 
defined by  

  2 2,L i i id x x r    .             (46) 

The Delaunay diagram for the Laguerre distance 
is called the Laguerre-Delaunay diagram. For the 
Laguerre bisector of two three-dimensional 

Euclidean balls  , PB r  and  , QB r  centered at 

quantum states   and  , we can write the equation  
2 22 , , , 0.Q Px r r              (47) 

In a Euclidean space, the Laguerre distance 
 ,L id x  with weight 2

ir  can be interpreted as the 

square of the length of the line segment starting at 
  and tangent to the circle centered at ix  with 

radius 2
ir . Thus, the circle centered at ix  with 

radius 2
ir  is the circle associated with ix  [4].  

We show a new method for deriving the quantum 
relative entropy-based Delaunay tessellation on the 
Bloch ball   to detect eavesdropping activity on 
the quantum channel. In our algorithm we present 
an effective solution to seek the center c  of the set 
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of smallest enclosing quantum information ball, 
using Laguerre diagrams [5].  

Our geometrical-based security analysis has two 
main steps:  

1. We construct Delaunay triangulation from 
Laguerre diagrams on the Bloch ball.  

2. We seek the center of the smallest enclosing 
ball. 

 
 
4.3.2  Quantum Delaunay Triangulation from 
Laguerre Diagrams  
As we have seen, in a Euclidean space, the Laguerre 
distance of a point x  to a Euclidean ball  ,b b r  

is defined as   2 2, ,Ld x x r     and for n balls 

 ,i i ib b r , where 1, ,i n  , the Laguerre 

diagram [4] of ib  is defined as the minimization 
diagram of the corresponding n distance functions 

  2 2.i
Ld x x r                    (48) 

In Fig. 16, we show the ordinary triangulation of 
quantum relative entropy-based Voronoi diagram. 

 

Quantum
states on the

Bloch ball

 
 

Fig. 16. Regular triangulation on the Bloch ball. 
 
We use the result of Aurenhammer to construct the 
quantum relative entropy-based dual diagram of the 
Delaunay tessellation, using the Laguerre diagram 
of the n Euclidean spheres of equations [5] 

  , , 2 ,i i i i i i ix x               F .  (49) 

The most important result of this equivalence is that 
we can efficiently construct a quantum relative 
entropy-based Delaunay triangulation on the Bloch 
sphere, using fast methods for constructing classical 
Euclidean Laguerre diagrams [15, 16]. 
 
 
4.4  Center of the Quantum Informational 
Ball 
In our security analysis we use an approximation 
algorithm from classical computational geometry to 

determine the smallest enclosing ball of balls using 
core-sets. The core-sets have an important role in 
our calculation and approximate method. We apply 
the approximation algorithm presented by Badoui 
and Clarkson, however in our algorithm the 
distances between quantum states are measured by 
quantum relative entropy [5, 9]. The  -core set   
is a subset of the set   , such that for the 
circumcenter c  of the minimax ball [5] 

   , 1 ,d r c                      (50) 

where r is the radius of the smallest enclosing 
quantum information ball of the set of quantum 
states   [5, 9]. The approximating algorithm, for a 
set of quantum states  1, , nS s s   and 

circumcenter c , first finds the farthest point ms  of 

ball set B, and moves c  towards ms  in  dn  time 

in every iteration step.  
The algorithm seeks the farthest point in the ball 

set     1 1 1, , , ,n n nB b Ball r b Ball r  c c  by 

maximizing the quantum informational distance for 
a current circumcenter position c  as 

   1, ,max ,F ii n D b c . Using equation 

   max , ,
ix b F i F i iD x D S r  c c , we get 

   

    
1, ,

1, ,

max ,

max , .

F ii n

F i ii n

D b

D S r



 

c

c





             (51) 

In Fig. 17, we illustrate the smallest enclosing 
ball of balls in the quantum space.  

 

*c

*r

 * * *,b Ball r c

ir
iS

Quantum
states

 
 

Fig. 17. The smallest enclosing ball of a set of balls in the 
quantum space. 

 
We denote the set of n d-dimensional balls by 

 1, , nB b b  , where  ,i i ib Ball S r , iS  is the 

center of ball ib  and ir  is the radius of the i-th ball. 

The smallest enclosing ball of set  1, , nB b b   is 

the unique ball  * * *,b Ball r c  with minimum 

radius *r  and center *c  [6].  
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The algorithm does 
2

1 
  

  iterations to ensure an 

 1   approximation, thus the overall cost of the 

algorithm is 
2

dn 
 
 




 [5]. The smallest enclosing 

ball of ball set B can be written as 

 min ,Bc F c                        (52) 

where        1, ,, max ,B ii nX d X B d X B F   and 

the distance function  ,d    measures the relative 

entropy between quantum states [9].  The minimum 
ball of the set of balls is unique, thus the 
circumcenter *c  of the set of quantum states is 

 * arg min .B cc F c   

The main steps of our algorithm can be 
summarized as: 

 
                                                                                Algorithm 1.

1

1 1

2

1.  a random center  from the set of quantum states 

                                              

1
       1,2, ,

      

2.  the farthest point  of  wrt. quantum 

Select

S

i

Find s



      

c

c

for

do









 

   1
1

1

relative entropy

                               arg max ,

3.  the circumcircle:

1
                   .

1 1

4.  

s F i

i F F i F

i

S D s

Update

i
S

i i

Return










       

c

c c

c



 

 
At the end of our algorithm, the radius *r  of the 
smallest enclosing ball *  with respect to the 
quantum informational distance is equal to the 
informational theoretical fidelity of the cloning 
transformation.  

Using the information theoretical radius 

   
    

2 2

* min maxr D
 

 
 


  

  , the radius of the 

best cloned state can be expressed as:  

 * 1 ,Blochr r S                      (53)  

where S  is the von Neumann entropy of quantum 
state with maximum length vector Blochr .  
 
 

5  Fitting the Smallest Quantum Ball 
Geometrically, the smallest quantum informational 
ball can be computed from the intersection of 
contours of the quantum relative entropy ball with 
the ellipsoid of the secret channel, which ellipsoid is 
generated by the eavesdropper’s cloner machine. 

The maximum length radius r  can be determined 

by an iterative algorithm, using the quantum relative 
entropy as a distance measure.  

In Fig. 18(a), the smallest quantum informational 

ball with radius  *
maxr D   r r  intersects the 

channel ellipsoid at magnitude m  of the Bloch 

vector r . The Euclidean distance between the 

origin and center *c is denoted by m . Similarly, the 

Euclidean distance between the origin and state    

is denoted by m . In our geometrical iteration 

algorithm, we would like to determine the location 
of vector r  inside the channel ellipsoid such that, 

the largest possible contour value  maxD  r r  

touches the channel ellipsoid surface and the 
remainder of the maxD  contour surface lies entirely 
outside the channel ellipsoid. The point on the 
channel ellipsoid surface is defined as the set of 
channel output  . The vector r  is defined in the 
interior of the ellipsoid, as the convex hull of the 
channel ellipsoid. To determine the optimal length 
of the radius, the algorithm moves point  .  

As we move vector r  from the optimum 
position, a larger contour corresponding to the larger 
value of the quantum relative entropy D will 
intersect the channel ellipsoid surface, thereby 

 max D
  r r r  will increase. We can conclude that 

vector r  should be adjusted to minimize 

 max D
  r r r , as illustrated in Fig. 18(b).   

 

     
 

Fig. 18. Intersection of radius of smallest enclosing quantum 
informational ball and channel ellipsoid (a). The optimal ball is 

shown in light-grey (b). 
 
The computed radius is equal to the radius of the 
smallest quantum informational ball, hence the 
quantum informational radius can be used to derive 
the fidelity of the eavesdropper’s quantum cloner 
machine. The vector r  should be adjusted to 
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minimize the value of  max D
  r r r . To find the 

optimal value of vector r  in our geometrical 

analysis, we choose a start point for vector r  in the 
interior of the ellipsoid.  

 In Figure 19(a), we show the initial start point 
inside the channel ellipsoid chosen by the algorithm. 
The vector of state   is denoted by r . In the next 
step, the algorithm determines the set of points to 
the vector r  on the ellipsoid surface most distant 

from r , using the quantum relative entropy as 
distance measure.  

In Figure 19(b), the new state is notated by  . 
 

            
 

Fig. 19. The algorithm determines the points on the ellipsoid 
surface most distant from the point, using the quantum relative 

entropy as distance measure. 
 

The maximum distance between the states can be 

expressed as  max D
  r r r . We choose a random 

Bloch sphere vector from the maximal set of points 
according to vector r . The selected point is 

denoted by r . The algorithm makes a step from r  

towards the surface point vector r  in the Bloch 

sphere space. In this step, the algorithm updates 
vector r  to  

 * 1 ,      r r r                    (54) 

where   denotes the size of the step.  In Fig. 20(a), 
the updated state and the vector of the state are 
denoted by   and r . The center of the quantum 

informational ball is denoted by *
r .  

In Fig. 20(b), we illustrate the quantum 
informational distance between the final center point 
and the maximal distance state  , using the 

notation  max D
  r r r . Using the updated vector 

*
r , the algorithm continues to loop until 

 *

*max D


 
r

r r  no longer changes. We conclude 

that the iteration converges to the optimal r , 

because the algorithm minimizes  max D
  r r r . 

 

      
 

Fig. 20. The algorithm makes a step towards the found surface 
point vector and updates the vector. 

 
At the end of the iteration process, the radius of the 
smallest quantum informational ball can be 
expressed as  

 min max .D
  r r r                   (55) 

In Fig. 21, we compare the smallest quantum 
informational ball and the ordinary Euclidean ball.  
 

        
 

Fig. 21. The maximum distance states of the smallest balls 
differ for the quantum informational distance and Euclidean 

distance. 
 

We can conclude that the quantum states 1 2,   

and 3 , which determine the Euclidean smallest 
enclosing ball are different from the states of the 
quantum informational ball. 
 
 
5.1 Smallest Quantum Informational Ball 
for UCM-Based Cloning 
The UCM cloner-based incoherent attack in the Six-
state protocol can be detected if the radius r  of 
imperfect UCM cloning is equal or greater than the 
radius ,UCMr  of the idealistic UCM ball in ellipsoid 

  representation, thus 

2 2 2
,

1 1
3 .

12 2UCMr r x y z              (56) 
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This surface is an oblate ellipsoid   and can be 

expressed by 2 2 2 1
.

2
x y z xy xz yz      �  The 

ellipsoid   , ,x y z    has polar radius 
1

2
x  , 

while the equatorial radius is 1z  . The distance to 

the origin is 2 2 2
x y zx y z p p p       , thus the 

closest point to the origin is at the pole of the 
ellipsoid   and can be expressed as 

1 1 1
, , .

12 12 12

 
 
 

                     (57) 

Using the ellipsoid   representation, we can model 
the effects of Eve’s quantum cloner. The cloning 
transformation will be detected by Bob, if the point 

 , ,x y z    representing the quality of the cloning 

transformation, lies on or outside the optimal UCM 
ball, represented by ellipsoidal radius ,UCMr .  

In Fig. 22, we illustrate the radius ,UCMr  of the 

UCM ball and the radius r  of the corresponding 
imperfect UCM cloning transformation in the Six-
state protocol. The origin of   represents zero 
cloning activity in the channel.  

 

 
 

Fig. 22. Comparison of optimal UCM and imperfect universal 
cloning in Six-state protocol. 

 
In our quantum informational distance-based 
geometrical security analysis, Bob will detect the 
quantum cloner, if ,UCMr r  , because in this case 

we can give the following condition for the radius 
*r  of his smallest enclosing quantum informational 

ball:  

   22
,*

44
1 1 1 1 ,

3 3
UCMrr

r
  
             

S S   (58) 

where S  is the von Neumann entropy. 
In this geometrical representation - if there is no 
quantum cloner on the quantum channel - then 

0r  , thus in this case Bob has a quantum 

informational ball with radius * 1.r    
In Fig. 23, we show the information theoretical 

radii *r  and *
UCMr . The smallest enclosing quantum 

ball of the imperfect UCM cloner has radius  

 2

* 4
1 1 ,

3

r
r

 
    

 

S                   (59) 

while the radius of the idealistic UCM-based 
cloning attack in the Six-state protocol can be 
expressed as 

 2

,*
4

1 1 .
3
UCM

UCM

r
r

 
   
 
 

S               (60) 

The smallest quantum informational ball with 
radius *r  is shown in grey, the ball of the idealistic 
UCM cloner with radius *

UCMr  is shown in light 
grey.  

 

 
 

Fig. 23. The smallest enclosing quantum informational ball of 
optimal and imperfect universal cloner. 

 
We can conclude that, if ,UCMr r  , then * *

UCMr r , 

hence the informational theoretical radius will be 
smaller. 
 
 
5.2  Smallest Quantum Informational Ball 
for Phase-covariant Based Attack  
In the phase-covariant based symmetric incoherent 
attack in the BB84 quantum cryptography protocol, 
the cloning activity can be detected by Bob, if the 
radius r  of the imperfect phase-covariant cloner is 

equal or greater than the radius , phasecovr  of the 

phase-covariant ball in the ellipsoid   
representation, , .phasecovr r    

Using the ellipsoid   representation, we can 
model the effects of Eve’s phase-covariant quantum 
cloner-based attack. The imperfect cloning 
transformation is denoted by point  ,0,x z  , which 

lies on or outside the optimal phase-covariant ball. 
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Fig. 24. The ellipsoidal radii for optimal phase-covariant 
cloning and imperfect cloning activity. 

 
The local coordinate system  ,0,x z   

represents the quality of the cloning transformation, 
and the eavesdropping activity will be detected by 
Bob, if 

 2 2 2 4
0

3 3 8
r x z

      
 

   .          (61) 

In the quantum cloner-based attack in BB84, Bob 
will detect the quantum cloner if , phasecovr r  , 

where r  is the radius representing the imperfect 
phase-covariant cloning attack. In this case, we can 
give the following condition for the information 
theoretical radius *r  of his smallest quantum 
informational ball 

 

 

2

*

2

,

3
                 1 1

2

3 1 1
1 1 1 ,

2 2 8
phasecov

r
r

r

 
    

 
               

S

S S





    (62) 

where S  is the von Neumann entropy. 
The smallest quantum informational ball with 

radius *r  is shown in grey, the maximal ball of the 
phase-covariant cloner is shown in light grey. In the 
figures the information theoretical radius is denoted 
by *r . The quantum ball of the imperfect phase-
covariant cloner is illustrated with radius 

 2

* 3
1 1 ,

2

r
r

 
    

 

S                  (63) 

the idealistic phase-covariant cloner is denoted by 
radius 

 
 2

,*
3

1 1 .
2

phasecov

phasecov

r
r

 
   
 
 

S           (64) 

In Fig. 25, we compare an idealistic phase-
covariant cloner quantum ball and an imperfect 
phase-covariant cloner quantum ball. 

  

 
 

Fig. 25. The smallest enclosing quantum informational ball of 
optimal and imperfect phase-covariant cloner. 

 
It can be concluded that the informational 
theoretical radii for idealistic and imperfect phase-
covariant cloning are different. 
 
 
5.3  Comparison of UCM and Phase-
covariant Based Attacks  
In the three-dimensional   ellipsoid representation, 
the radius , phasecovr  of the phase-covariant cloner-

based attack is smaller than radius ,UCMr . For the 

radius of the UCM and phase-covariant ball in the 
ellipsoidal   representation  

, ,phasecov UCMr r  ,                      (65) 

where 2 2 2
,

2 4
.

3 3 8
phasecovr x y z          

In Fig. 26, we illustrate , phasecovr  and ,UCMr  in 

the three-dimensional ellipsoidal representation. 
 

 
 

Fig. 26. Comparison of UCM and phase-covariant based attack 
in ellipsoidal representation. 
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Using the results derived in Section 3.1, the 
following connection holds between radii *

UCMr  and 
*
phasecovr  of the smallest enclosing quantum 

informational balls of UCM and phase-covariant 
cloning-based attack: 

 

 

2

,*

2

,*

4
1 1

3

3
             1 1 .

2

UCM
UCM

phasecov

phasecov

r
r

r
r

 
    
 
 

 
   
 
 





S

S

        (66) 

In Fig. 27, we illustrate the radii *
UCMr  and  

*
phasecovr  of the smallest enclosing quantum 

informational ball for a UCM-based attack and for 
BB84, in the Bloch sphere representation. 

 

 
 

Fig. 27. Comparison of smallest enclosing quantum 
informational ball of UCM and phase-covariant cloners. 

 
It can be concluded that the best quality of the two 
outputs simultaneously can be realized with a UCM. 
If an eavesdropper uses a phase-covariant cloner, 
one of the two outputs should have better fidelity, 
while the fidelity of the second output will be lower. 
 
 

6 Applying Our Method to Quantum 
Cryptography 
Using the results derived in Sections 5.1 and 5.2, the 
quantum channel in the BB84 and Six-state 
protocols is secure if * * .phasecovr r  and * * .UCMr r  In 

our geometrical method, we compute *r , the radius 
of the smallest enclosing quantum informational 
ball, to determine the security of the quantum 
communication.  
 
 
6.1  BB84 and Phase-covariant Cloning 

In this section we illustrate the quantum 
informational balls for the analyzed quantum 
cloners. In Fig. 28, we illustrate the dual Delaunay 

diagram for cloned equatorial states in the BB84 
protocol. The sent pure quantum states cloned by 
Eve’s phase-covariant quantum cloner are denoted 
by 1 2 3, ,    and 4 .  

 
 

Fig. 28. Dual Delaunay diagram of cloned equatorial states in 
the BB84 protocol. 

 
Using Delaunay tessellation, we compute the 
convex-hull of the cloned equatorial states 1 2 3, ,    

and 4 . In Fig. 29, we illustrate the convex-hull of 
cloned states in two- and three-dimensional Bloch 
ball representations. 
 

      
 

Fig. 29. The convex hull of cloned mixed states. The convex 
hull computed by Delaunay triangulation. 

 
From the convex set, we can compute the smallest 
enclosing quantum informational ball *  and its 
radius *r . In Fig. 30, we have illustrated the 
Euclidean smallest enclosing ball by the dashed 
circle, and the quantum relative entropy ball.  
 

   
 

Fig. 30. The smallest enclosing quantum informational balls. 
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From the smallest enclosing quantum informational 
ball * , we can determine the radius *r , which 
describes the informational theoretical impact of the 
eavesdropper cloning machine. The center of the 
smallest enclosing quantum informational ball is 
denoted by *c . 
 
 
6.2 Six State Protocol and Universal Cloning 

In Fig. 31(a), we have illustrated the Voronoi-
cells for the cloned states and the three-dimensional 
convex hull (light-grey) of cloned states 

1 2 3 4 5, , , ,      and 6 . The cloned states 
generated by Eve’s universal quantum cloner 
machine, using the Six-state quantum cryptography 
protocol. From the convex hull, we compute the 
smallest enclosing quantum informational ball * .  

In Fig. 31(b), we have illustrated the smallest 
quantum informational ball and its radius *r .  

 

    
 

Fig. 31. The convex hull (a) and the smallest quantum ball (b) 
of cloned mixed states in Six-state protocol. 

 
In Fig. 32, we show an example of a two-

dimensional smallest enclosing quantum 
informational ball, and its informational theoretical 
radius *r .  

 

 
 

Fig. 32. The smallest enclosing quantum informational ball.  
 
The center point is  0.3287,0.3274*c  and the 

radius *r  of the smallest enclosing quantum 
informational ball is * 0.4907.r   

7  Optimization  
The quantum relative entropy-based algorithm at the 

i-th iteration gives an  1 i -approximation of 

the real circumcenter, thus to get an  1   

approximation, our algorithm requires a time  

2 2 3

1dn d d

   
           
     

   ,           (67) 

by first sampling 
1

n


  points. Based on the 

computational complexity of the smallest enclosing 
ball, the  1   approximation of the fidelity of the 

eavesdropper cloning machine can be computed in a 
time  

2
.

d


 
 
 

                                 (68) 

In this section we improve our method to get a  
d


 
 
 

                                  (69) 

time,  1  -approximation algorithm in quantum 

space.  
In Fig. 33, we illustrate the improved algorithm 

on a set of quantum states. The approximate ball has 
radius r, the enclosing ball has radius r  . The 
approximate center c  is denoted in black, the core-
set are denoted by grey circles. The optimal radius 
between the center c  and the farthest quantum state 
is denoted by *r  [9].  
 

r  *cr

Farthest
quantum state

*r

Core-set

 
 

Fig. 33. The approximate (light) and enclosing quantum ball 
(darker). 

 
In the proposed algorithm, the optimal radius is 

between *r r r    , and the process terminates 

as   , in at most 
1


 
 
 

  iterations. The main 

steps of the improved approximation algorithm are 
[9]: 

 

WSEAS TRANSACTIONS on COMMUNICATIONS Laszlo Gyongyosi, Sandor Imre

ISSN: 1109-2742 182 Issue 3, Volume 9, March 2010



  

.                                                                            Algorithm 2

 

 

1

1

1

1

1.  a random center  from the set of quantum states 

                                             

1
2. max , ;

2
1

3. max , ;
2

1
4.     1,2, ,

5.        

6.  arg

i F

i F

Select

r D

D

i

S











    
  



c

c

c

c

for

do











 
 

max , ;

7.  Move ,  on the geodesic until it touches 

     the  point ;

i FD c

Ball c r

farthest S



  

 8.  max , ;                                                          
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7.1    Rate of Convergence 
In our experimental simulation, we have compared 
the core-set algorithm and our improved core-set 
algorithm to find the smallest enclosing quantum 
information ball. We have analyzed the 
approximation algorithms for 30 center updates and 
we have measured the quality of the approximation 
with respect to quantum relative entropy.  

The results of our simulation are shown in Fig. 
34. The x-axis represents the number of center 
updates to find the center of the smallest enclosing 
quantum informational ball, the y-axis represents the 
quantum informational distance between the found 
center c  and the optimal center *c .  
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Fig. 34. The rate of converge of approximation algorithms. 

From the results, we can conclude that each 
algorithm finds the approximate center c  to the 
optimal center *c  very fast. The quantum relative 
entropy-based approximation algorithms have a 
very accurate convergence of c  towards *c , 
however the improved core-set algorithm converges 
faster with a smaller number of center updates. 
 
 

8 Conclusions  
In quantum cryptography, an eavesdropper 

cannot clone the sent qubits perfectly, however the 
best eavesdropping attacks are based on imperfect 
quantum cloners. We have proposed a 
fundamentally new approach to computing the 
informational theoretical impacts of an 
eavesdropper’s cloning machine in the quantum 
channel. The analyzed incoherent attacks are the 
eavesdropper’s most general strategy, however our 
method can be extended for different types of 
attacks. The eavesdropper’s cloning activity, and the 
impacts of her cloning transformation can be 
measured geometrically. Our method is based on 
Laguerre diagrams with quantum relative entropy 
used as distance measure We showed, that the 
geometric space can be divided and can be 
computed very efficiently by using Delaunay 
tessellation on the Bloch sphere, in a reasonable 
computational time.  

As future work, we would like to extend our 
method to other protocols, and to collective and 
coherent attacks. We would like to construct a more 
effective algorithm to compute the informational 
theoretical impacts of the eavesdropper’s cloning 
machine on a private quantum channel.  
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