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Abstract:Several simulation and measurement studies have reported the well-known network trafficself-similarity
andlong-range dependencyand the consequences for network performance. In the context of simulation, however,
the impact of the number of sources has not been sufficiently emphasized for the generation of syntheticself-
similar traffic. In this paper we describe a simulation scenario suitable for the testing of performance issues under
self-similar traffic. Our analysis was centered on the effect of traffic aggregation over theself-similaritydegree,
determining the necessary number of sources to approach the verified relationH = (3 −minα)/2. Besides, we
highlighted the performance of severalHurst parameters estimators for this type of simulation scenarios, identify-
ing the most suited ones.
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1 Introduction

Simulation plays an important role for the design, per-
formance evaluation and dimensioning of computer
networks. Diverse network features can be studied
with the aid of simulation scenarios. The effect of
traffic behaviour on theQoSmetrics such asdelay,
delay jitter, packet loss, etc. is such an example. In
this context, packet network traffic has shown to be
of self-similarnature[2][3]. Thus, current simulation
scenarios must take this behaviour into account. A
well known and amply cited simulation scenario is
given in [1][4], whereself-similar traffic was gener-
ated by the transmission of files of sizeZ by an en-
semble ofi = 32 users. A particular feature of this
scenario is that the distribution of files,Zi, transmit-
ted by useri is heavy-tailedwith parameterαi, giving
rise to highly variable file sizes. In the limit as the
number of usersi → ∞, the traffic in the network
node isself-similarwith H = (3−minαi)/2. Unfor-
tunately, theHurst parameter obtained in that paper
is highly variable and overestimates whenα > 1.6
and underestimates whenα < 1.6. From the above it
is noted that the scenario described in [1][4] can not
be used for simulation studies where accurate tuning
of the Hurst parameter is required. In addition, es-
timators used to test the presence ofself-similar be-
haviour are not the most robust. In this paper, we pro-
pose some changes to the simulation scenario and de-
termine the neccesary(and finite) number of users to

approach the limitH = (3 − minαi)/2 with mini-
mum variation. It is shown that our simulation sce-
nario can be used to effectively generate aself-similar
process withHurst parameterH, whereH shows lit-
tle variation. Thus, we propose a simulation sce-
nario which can be used to study the behaviour of net-
work algorithms underself-similar traffic, and where
H can be effectively and accurately tuned by the val-
ues ofα. Also, we complement the study presented in
[1][4] by including in our study several estimators of
Hurst-index. In this context, the paper is organized as
follows, section 2 reviews fundamentals concepts re-
lated toheavy-taildistributions,self-similarprocesses
and the methods for generatingself-similarprocesses
from heavy-taileddistributions. It also reviews the
main estimators for both of them. Section 3 provides
description of the simulation scenario and points out
the differences with the one described in [1][4]. Sec-
tion 4 shows the results of the simulation and finally
section 5 presents the concluding remarks.

2 Internet Traffic Models

2.1 Heavy-Tail Distributions

Heavy-taileddistributions are distribution functions
whose tailsP (X > x) andP (X ≤ −x), for pos-
itive x, decrease slower than exponential rate. The
latter, e.g., normal and exponential distributions, are
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said to be of light tails while Pareto distribution are
said to exhibit heavy tails. We will concentrate on
right heavy-tails, i.e., on distributions whose survival
functionP (X > x), x ≥ 0 behaves as a power law.
LetX be a random variable defined on the probability
space{Ω, F, P}, we said thatX has a heavy right tail
if the following asymptotic behavior holds

P [X > x] ∼ x−αL(x), x → ∞, (1)

where L(x) is a slowly varying function, i.e.,
limi→∞ L(ix)/L(i) = 1 andα ∈ (0, 2) is the tail-
index. Whenα > 2, the random variableX has fi-
nite mean and variance; whenα ∈ [1, 2), X has infi-
nite variance but finite mean; finally whenα ∈ (0, 1),
X has infinite variance and infinite mean. Qualita-
tively, typical features of sample paths ofheavy-tailed
distributions are; most observations take small val-
ues, intermediate values occur frequently and extreme
values occur rarely but with non-negligible probabil-
ity. The thicker the tail of a distribution,F , the more
probable the appearance of an extreme value is. As
above-mentioned tail-index indicates the existence of
moments in a random variableX. LetE(Xβ) be the
moment of orderβ of X, if β < α thenE(Xβ) < ∞,
otherwise ifβ > α thenE(Xβ) = ∞. For more
information on properties, estimators and methods of
generation ofheavy-taileddistributions please refer to
[5][6][7][21][22][23]. Heavy-tailed distributions has
for instance be used to model network delay[32].

2.2 Estimators of tail-index

Several estimators of the tail-indexα have been pro-
posed, next subsections reviewHill -based and QQ
plots used for estimatingα.

2.2.1 Standard Hill Estimator

Let X1,X2, ...,Xn be a discrete time series with dis-
tribution FX(x). Now letX(1) > X(2) > ... > X(n)

denote the ordered statistics of time seriesX1, ..,Xn.
TheHill estimator ofγ = α−1 based onk + 1-upper
ordered statistics,1 < k ≤ n, is defined according to
the following formula:

Hk,n = k−1
k∑

i=1

log
X(i)

X(k+1)
. (2)

The parameterα is estimated by plottingk versus
Hk,n for 1 < k ≤ n and looking for a stable re-
gion in the plot. The stable region must sit at height
α. Usually theHill estimator works better when the
underlyingheavy-taileddistribution is Pareto. When
the distribution is not of Pareto-type theHill estimator
shows volatility, i.e., irregular erratic behavior.

2.2.2 Smooth Hill Estimator

The smoothHill estimator,smooHill, is obtained by
applying a smoothing technique to the standardHill
estimator in order to reduce the volatility in the stan-
dardHill plot. Let againX(1) > X(2) > ... > X(n)

be the ordered statistics, thesmooHill estimator is
defined as

smoo α̂k,n,u =
1

1
(u−1k

∑uk
j=k+1Hj,n

, (3)

where u ∈ {2, 3}. Again a plot of k versus
smoo α̂k,n,u should stabilize at a region̂α.

2.2.3 Alternative Hill Estimator

Another variant of the standardHill estimator is the
alternativeHill estimator,altHill , which changes the
scale of theHill estimator. ThealtHill estimator
can be applied to the standardHill estimator and the
smooHillestimator. When applied to thesmooHilles-
timator, it results in thealtsmooHill estimator ofα̂.
ThealtHill estimator is defined as

H⌈nθ⌉,n = ⌈nθ⌉−1

⌈nθ⌉∑

i=1

log(
X(i)

X(⌈nθ⌉+1)

), (4)

where⌈y⌉, is the smallest integer greater of equal to
y ≥ 0. For the estimation of̂α we plot θ versus
H⌈nθ⌉,n for 0 ≤ θ ≤ 1. The stable region in the plot
should be the estimated value ofα̂.

2.2.4 QQ-Plot

Let X = (X1,X2, ...,Xn) be i.i.d observations with
common distributionF . Now let X(1),X(2), ...X(n)

be the upper order statistics ofX, i.e., X(i) > X(j)

iff i < j. Pick k upper order statistics and neglect
rest k + 1. The distribution of thek exceedances,
X(1), ..,X(k) should be Pareto ifF is heavy-tailed.
Taking the logarithm of thek exceedances makes its
distribution approximately exponential, thus the plot
of the empirical quantiles of the exceedances against
the theoretical quantiles of the exponential distribu-
tion should yield a straight line with slopeα−1. More
formally the plot of

{
(

− log(1−
j

k + 1

)

, logX(k−j+1), 1 ≤ j ≤ k}, (5)

should yield approximately aα−1 slope straight line if
the distribution ofX1,X2, ...,Xn satisfies the asymp-
totic behavior of (1). The slope of the line is computed
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by least squares regression through the points in (5)
and is called the QQ estimator, i.e.,

α̂−1
k,n =

∑k
i=1(νi,k)ξi,k −

∑k
i=1(νi,k)Hk,n

k( 1k
∑k

i=1(νi,k)
2 − ( 1k

∑k
i=1 νi,k)

2)
, (6)

whereνi,k = − log( i
k+1) and ξi,k = log(

X(i)

X(k+1)
).

There are two different versions of the QQ-plot,
namely the dynamic and static QQ-plot. The dynamic
QQ-plot is similar to theHill plot and is obtained by
plotting {(k, 1/α̂−1

k,n), 1 ≤ k ≤ n} and finding a
stable region in the plot. The static plot is obtained by
choosing an appropiate value ofk, plotting the points
in (5) and finding a region where the plots looks lin-
ear, then in the linear region apply (6) which should
yield the value ofα−1.

2.3 Self-similarity and long-memory

Processes with some form ofscaling behaviour can
be defined as stochastic signals possesing invariance
properties on all or a set of scales(i.e., no character-
istic scale can be identified). Examples of such pro-
cesses includeself-similar[26], long-memory, frac-
tal and multifractal processes[27][24][25][28]. The
paper deals withself-similar and long-memorypro-
cesses, the most known of them. Strictself-similar
signals(H-ss),X = {Xt, t ∈ R}, are defined as
those for which appropiate changes of scale of time
and space do not vary its statistical properties, i.e.,
processes for whichXat = aHXt, for any t ∈ R,
a,H > 0, where the equality is in terms of finite-
dimensional distributions. Weakself-similarity, a
more often used version, is defined as processes for
which EXatXas = a2HEXtXs, for any t, s ∈,R,
a,H > 0. Note that strict self-similarity implies
nonstationarity,long-memoryprocesses on the other
hand is often defined for stationary processes. Long-
memory property of finite-variance stationary signals
Y = {Yt, t ∈ R} is possesed ifEYtYt+τ ∼ cγ |
τ |β−1(equivalently as its PSDf(ν) ∼ cf | ν |−β)
as τ → ∞(as ν → 0). Indeed, a strong rela-
tionship between these two processes exists and a
given self-similar process(H-ss) with stationary in-
crements(Hsssi) possesslong-memoryin its first in-
crement process, i.e.,EYtYt+τ ∼ cτβ−1 provided
Y = ∆1X(t; 1) = X(t + 1) − X(t) andX belongs
to the space of finite variance H-sssi processes. The
above for example holds true for the unique Gaus-
sianH-sssiprocess, namely, fractional Brownian mo-

tion(fBm) with 0 < H < 1. Many estimators
of Hurst-index have been proposed[17][33][34],R/S
statistic, variance based(aggregated, differenced, de-
trended), periodogram-based(GPH, cumulated, whit-
tle), wavelet based estimators(abry, delbeke)[20][30],
etc.

2.4 Estimators of theself-similarity parame-
ter

2.4.1 R/S Statistic:

The R/S Statistic[6][8][9][10][34] developed by E.
Hurst when studying Nile river is defined for a pro-
cessY (t) in the interval(τi, τi + n) as

R

S
(τi, n) :=

max
(

W (τi, n)
)

−min
(

W (τi, n)
)

S(τi, n)
, (7)

whereW (τi, n) = Y (τi + u) − Y (τi) − uE(τi, n)
andE(τi, n) andS(τi, n) denote the mean and stan-
dard deviation in the interval(τi, τi + n). Hurst
found that for long-memory records, (7) behaves as
E{RS (τi, n)} ∼ nH ,H > 0.5, in constrast, short-
memory processes followE{RS (τi, n)} ∼ n0.5. A
log-log plot of the mean values of theR/Sstatistic val-
ues versusn is an estimator ofH.

2.4.2 Block averaged methods: Variance and Ab-
solute Moment

Consider the aggregated seriesΓm({xi}) = X
(m)
i

of a lengthN time series[11][13]. The sample vari-
ance of the block averaged process Var

(
Γm({xi})

)

for long-memoryseries behaves asymptotically as
Var

(
Γm({xi})

)
∼ cm−β, wherec is a constant and

β = 2 − 2H. From this result, a log-log plot of
Var

(
Γm({xi})

)
versusm, for different values ofm,

and such thatmi+1/mi = C ∈ R+ is an estima-

tor of H. The absolute moment ofX(m)
i , AM (m),

behaves asymptotically asAM (m) ∼ m−β/2, thus a
log-log plot ofAM (m) versusm results in a line with
slope−β/2 = H − 1 from whichH is inferred. First
method is called the variance method and the latter the
absolute moment one.

2.4.3 Periodogram based methods: Periodogram
and Whittle

The periodogram, I(υ) = 1/(2πN) |∑N
j=1Xje

ijυ |2 for the series{Xj} is also an estima-
tor of H. The periodogram for along-memorytime
series behaves asI(υ) ∼| υ |1−2H for υ → 0, there-
fore a log-log plot ofI(υ) versusυ is used to obtain
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H. TheWhittle method[33][29][18] [34][6] is a non-
graphical MLE estimator strongly related to the peri-
odogram defined by the following relationQ(η) :=∫ π
−π

(
I(υ)/f(υ; η)

)
dυ +

∫ π
−π log(f(υ; η))dυ, where

η is a vector of unknown parameters andf(υ; η)
is the spectral density at frequencyυ of the stud-
ied function, the value of vectorη that minimizes
the function Q is considered theWhittle Estima-
tor. A discretized version ofQ(η) is obtained as

Q∗(η) =
∑(N−1)/2

j=1 I(υ)dυ/f∗(υj ; η) whereN is
the series length. TheWhittle MLEspecifies the func-
tional form of the spectral density at all frequencies
and theLocal Whittle[33][29] [6] assumes only the
functional form whenν approaches zero, namely
f(υ) ∼ G(H) |υ|1−2H asv → 0 and fromQ∗(η) the
task is reduced to minimize the function

R(H) = log


 1

M

M∑

j=1

I(υj)

υ1−2H
j


−(2H−1)

1

M

M∑

j=1

log υj

(8)
Its computation involves the introduction of the pa-
rameterM which is an integer less thanN2 , and
satisfying1

M + M
N −→ 0 asN −→ ∞.

2.4.4 Wavelet based methods

Let dx(i, j) denote the wavelet coefficients of a
particular finite length sequence{xi}, it is known
that for long-memoryprocesses the variance at level
i of the coefficients is given by Var(dx(i, .)) =
σ2

2 Vψ(H)(2j)2H+1, where Vψ(H) depends on the
particular wavelet and theHurst-index and is defined
by:

Vψ(H) = −

∫ ∞

−∞
γψ(τ) | τ |2H dτ (9)

taking the logarithm at Var(dx(i, .)) should result in
log(Var(dx(i, .))) = (2H + 1)j + K, where K
is a constant. Abry and Veitch have suggested an
Hurst-index estimator based on this behaviour using
Daubechies wavelets[30][16][20]. First a time aver-
ageµi of dx(i.j) is computed at a given scale, where
µi is defined asµi = (ni)

−1
∑ni

j=1 d
2
x(i.j), where

ni is the wavelet coefficient number at scalei and
n the time series points. The estimatedHurst-index
is then obtained from the slope of a linear regres-
sion method for log2(µi) = log2(

1
ni

∑ni

j=1 d
2
x(i, j)),

wherei = 1, 2, . . . , [log2(n)].

2.4.5 Sources of inaccuracies

Algorithms’ accuracy are often affected by some pa-
rameters such as cut-off selection, number of aggrega-
tion levels and the minimum number of points in block
size in regression based methods. Also other param-
eters include number of frequencies for periodogram
methods, begining and ending octave, etc. These pa-
rameters are sources of inaccuracies and bias the est-
timates. They must be selected carefully.

2.5 Self-similarity through high-variability

Self-similar traffic can be generated using the Lam-
perti transformation based on a stationary stochastic
process or can be generated by the superposition of
an infinite number of users which are superposed in a
node. In this paper we concentrate in the generation of
self-similartraffic based onheavy-taileddistributions.
LetXi be a random variable with aheavy-taileddistri-
bution. Suppose the random variable can represent the
file size of traffic sourcei or the period of transmission
between succesive packets. As the number of users
i → ∞, then, the traffic aggregated(or superposed at
a node) isself-similar with self-similarity parameter
H = (3 − minαi)/2[14][15][31]. We used the high
variability of interdepartures times for the generation
of self-similartraffic.

3 Simulation scenario

This section presents the proposed simulation sce-
nario which generatesself-similar traffic with pa-
rameterH. This scenario turns to be an appropi-
ate model for simulations where the degree of traf-
fic self-similarityneeds to be finely and precisely ad-
justed. The simulation scenario is shown by the net-
work model of figure 1. In this network,self-similar
traffic is generated by an ON/OFF model, where the
ON and/or OFF are heavy-tailed [14][15]. Although
the required number of independent users should be
infinite along this model, in practice, this condition
is not feasible giving rise toself-similar traffic gen-
erators using diverse number of sources. This diver-
sity has an important impact over trafficself-similarity
generation and measurement. For instance, in the
works [1][4], oriented to study the relationship be-
tween file sizes andself-similarity phenomena, the
numbers of sources was set up toi = 32 and its vari-
ation seemed not to be significant to their results. In
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contrast, in the experiments we performed, a signifi-
cant relationship between this parameter and the gen-
eratedself-similar traffic was found and thus, the net-
work configuration of figure 1 was proposed in order
to calibrate this feature. As shown in the figure 1, the
network consists ofi nodes(or sources) andl output
links in a packet switched configuration. The param-
eter i is customizable and represents statistically in-
dependent UDP sources, i.e,Si, S2, . . . , Si are i.i.d.
N1 andN2 represents routers through which packets
from sourcesSi are processed and forwarded to the
destination sourcesRi. In our configurationN1 rep-
resents the node over which traffic is superposed and
thus represents our measurement point. Queue length
of nodeN1 was set up to1000 packets with buffer size
of 312.5kB and its output link bandwidth was set up
to 32.768Mb and latency of30ms. Each link fromSi
to N1 and fromRi to N2 has a bandwidth of8.2Mb
and a latency of20ms. In order to obtainself-similar
traffic in N1, the traffic sourcesSi have a Pareto ran-
dom variable generator for the inder-departure timeti.
Recall that ifti is a Pareto random variable, itsCDF
is given by:

P(ti ≤ t) = 1− (
tmin
t

)α, (10)

where the minimum value ofti is tmin andα is the
tail-index. The Pareto random variable has infinite
variance when1 < α < 2. In this case tha mean is fi-
nite. Then, in order to keepE(t) < ∞ for all sources,
the simulation was performed forα ∈ {1.1, . . . , 1.9}.
Eventhough the mean of the inter-departure time rely
upon the value ofα, in our configuration it is constant,
i.e.,E(t) = 500µs for all given values ofα. Likewise
to normalize the data mean rate for all sources,tmin
was tuned to each values ofα, with an initial value of
0.041ms and fixed packet size of320 bytes. The net-
work configuration just reviewed was used in all the

Figure 1: Simulation scenario

experiments of the paper. We used the well-known
network simulatorns-2in a2x2.8GHz Quad-Core In-
tel Xeon Macintosh platform. All results were ob-
tained from several hundreds of runs executed for 300
simulated seconds and varying number of sources.

4 Results

4.1 Generation of Pareto series

In order to check the correctness of our simulation
scenario, we first test the appropiate generation of
heavy-tailedtraces inns-2 from which users send
the packets (recall that Pareto series simulate inter-
departure times of packets). Figure 2 shows typical
packet inter-departure time series trace inns-2 with
α ∈ {1.2, 1.8}. Top plot correspond to Pareto series
with α = 1.2 while bottom plot to Pareto withα =
1.8. Note that traces behave qualitatively asheavy-
tailed process, i.e extreme values occur frequently. As
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Figure 2: Typical Pareto series generated with ns-2.
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above mentioned, the number of extremes values(i.e.,
of silent periods) inns-2 generated Pareto series oc-
cur with a non-negligible probability. Note that the
’usual’ values are below100ms and that the lower
the value ofα is the greater this value. AHill -plot
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Figure 3: Typical Hill plots for ns-2 generated Pareto
series

and aCCDF plot will confirm the appropiate genera-
tion of Pareto series in our simulation scenario. Figure
3 shows theHill plots associated to traces of figure 2.
Top plot corresponds to Pareto withα = 1.2 while
the bottom toα = 1.8. Note thatHill -plots stabi-
lize in a region and this region corresponds to the true
value ofα. CCDF plots are also helpful for testing
if a given model follows a particular probability dis-
tribution FX(x). CCDF plots, therefore can be used
to test if a series follows a Pareto distribution. Fig-
ure 4 shows the CCDF plots corresponding to traces
presented in figure 2. Again as before top plot cor-
responds tons-2 generated Pareto time series with
α = 1.2 while bottom plot toα = 1.8. Note from the
figure that both time series follow accurately the ref-
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Figure 4: Typical CCDF plots for ns-2 generated
Pareto series

erence line corresponding to an exact Pareto time se-
ries with knownα. From the above it is seen that the
generation of Pareto time series withns-2 is accu-
rate sinceHill and CCDF plots estimate correctly the
givenα. Similar results were obtained when analyz-
ing other time series corresponding to a given source
or sources.

4.2 Generation of Self-Similar series

In this subsection we experimentally verify that aggre-
gate traffic fromN sources, where each source send
packets with inter-departure according to a Pareto se-
ries, follows and can be modelled by aself-similar
process of parameterH. Recall that asN → ∞,
H = (3 − α)/2. This subsection only test that ggre-
gate traffic is indeed aself-similar process. Figure 5
shows typical traffic traces obtained in a network node
in our simulation scenario. Note that the series ob-
tained behaves in accordance with aself-similartrace.
The bottom trace corresponds to a trace withH = 0.9
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Figure 5: Self-Similar Series obtained from Pareto
distributions

and the top plot to a trace withH = 0.95.

4.3 Self-similarity andα relation

Figure 6 shows the simulation results when consid-
ering 30 traffic sources. The same number of traffic
sources was used in [1][4]. As can be noted from the
figure, the same kind of behaviour is obtained as those
of [1][4]. Note that no estimator can follow the refer-
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Figure 6: EstimatedHurst-index for 32 users

ence lineH = (3 − minαi)/2. In fact it is noted
that the estimateŝH ∼ Href + k, wherek is a con-
stant. From this it can be said that no simulation sce-
nario, neither [1][4] nor the proposed by us is capable
of finely and accurately generatingself-similar traf-
fic for performance purposes whenN = 32. Pre-
cisely generatingself-similar traffic is important for
testing the behaviour of algorithms or novel protocols
and checking its behaviour under varying degrees of
correlation or persistence. In fact, this degree can be

accurately varied based on the tail-index of the traf-
fic source. Figure 7 shows the variation of theHurst-
index when estimated with five different estimators.
Note that variance-type method presents high variabil-
ity. R/Sstatistic presents low variability but unfortu-
nately its bias is high. From the two figures is con-
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Figure 7: Variation ofHurst-index estimation for 32
users

cluded that when using30 traffic sources in the simu-
lation scenario shown above,self-similar traffic is ef-
fectively generated but theHurst-index of this gen-
erated traffic presents high bias and variability. Fig-
ure 8 shows the simulation results when using50 traf-
fic sources. Note that significant improvements in

1.0 1.2 1.4 1.6 1.8 2.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Self−similarity and heavy−tailedness relationship

Tail−index

E
st

im
at

ed
 s

el
f−

si
m

ila
rit

y 
pa

ra
m

et
er Reference

Periodogram
R/S
Variance
Wavelet
Whittle

Figure 8: EstimatedHurst-index for 50 users

the bias are obtained. In fact, Whittle, wavelet and
R/Sstatistic behave reasonable well. Periodogram and
variance method present high bias and variability. Re-
call that the most robust estimators are those based on
wavelets and the MLE estimation ones(Whittle). Our
paper takes these estimators into account and our con-
clusions area based on the results obtained from these.
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As above, figure 9 shows the standard deviation of the
estimations of theHurst-index but when using50 traf-
fic sources. Note that althoughR/Sstatistic shows low
bias, the variance is high and thus is not suggested for
deciding which the number of required traffic sources
is. Whittle and wavelet are the most robust among all
the estimators[33][34][12][20] studied and thus can
be used for the task of deciding the required number
of traffic sources for obtainingself-similartraffic with
low-bias and variance. We also performed the same
kind of analysis to70 traffic sources obtaining similar
results as those for50, this behaviour can be observed
in Figure 10. From the above figures, we can con-
clude that the required number of users neccesary to
generate accurateself-similartraffic is at least50 traf-
fic sources. Also, variance andR/Sstatistic methods
can not be used for such a task. In our work, Whittle
and wavelet based methods were used to decide the
required number of users for the accurate generation
of self-similarsignals. References [1][4] showed the
results for30 traffic sources and the methods used to
test the presence were variance andR/Sstatistic. We
suggest that the relationship betweenself-similarity
parameter andQoSparameter presented in that paper
must be re-evaluated.

5 Concluding Remarks

This paper described background information onself-
similar processes andheavy-taileddistributions. It
also detailed the simulation scenario for generating
self-similar traffic from heavy-tailedsources. This
scenario diverges from previous reported results in
two aspects: i) the number of sources andii) the
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Figure 9: Variation ofHurst-index estimation for 50
users
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Figure 10: EstimatedHurst-index for 70 users

increment in the number ofHurst parameter estima-
tors evaluated. Results found show that the number of
independent users impact the accuracy of theHurst-
index and conclude that the required number of in-
dependent traffic sources must be at least50. Also,
according to variation ofHurst-index estimation, the
Whittle and wavelet methods were the most suited for
this type of simulation scenarios. As further work
we propose the analysis of the relationship ofself-
similarity parameter andQoSperformance under the
scenario proposed. Also, it would be interesting to
include severalself-similar traffic flows in the topol-
ogy to study its relation on adjacent nodes and also to
establish the mathematical relationship amongHurst-
indexes.
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