
Integration of Real Network Components into OPNET Modeler

Co-simulation Process

MILAN BARTL, JIRI HOSEK, TOMAS MATOCHA, KAROL MOLNAR, LUKAS RUCKA

Department of Telecommunications

Faculty of Electrical Engineering and Communication, Brno University of Technology

Purkynova 118, 612 00 Brno

CZECH REPUBLIC

xbartl02@stud.feec.vutbr.cz, hosek@feec.vutbr.cz, xmatoc00@stud.feec.vutbr.cz, molnar@feec.vutbr.cz,

rucka.lukas@phd.feec.vutbr.cz

Abstract: - The OPNET Modeler is a simulation environment enables modeling of large-scale networks with in detail

defined parameters. This paper is focused on the possibility to communicate with external systems and applications that

this environment offers. Due to this we are able to interconnect simulation environment with real network system and

gain the simulation results more accurate and in accordance with the reality. We created communication model

composed from network scenario created in the OPNET Modeler, C/C++ external application and Cisco router. For

this purpose we implemented the SNMP protocol into the OPNET Modeler. This model enables data exchange

between external network component and work station in OPNET Modeler scenario. This model is very useful

especially in the situation when you need to include a real network device into simulation process, because the pure

simulation environment is not quite sufficient.

Key-Words: BER, Esys interface, MIB, OPNET Modeler, SNMP.

1 Introduction
The complexity of today’s networks necessitates the

need for network management to optimize network

performance. There are several methods to manage

network equipment. The first possibility is to manage

network devices locally. This method requires direct

access to network devices and is time demanding. This

type of management is very complicated, especially if

the network consists of many devices or the network is a

geographically vast. Generally, local management is not

able to ensure optimal network performance and fault

detection.

 Remote network management represents another

solution. This method does not require direct access to

the network devices because it uses a remote application

for the network management. The prerequisite for this

type of management is that this functionality must be

implemented in each network device to be managed.

An important part of the network management is

network monitoring. Network monitoring allows

surveying of the current state and behaviour of the

network equipment. Due to network monitoring it is

possible to respond to different events in the network

more quickly and solve non-standard behaviour of the

network devices.

 The development of a monitoring and management

system for network equipment is quite a complex task.

Often different simulation tools can be used to improve

the development process by modelling specific events

rarely appearing in real networks. The simulation

environment allows the developers to evaluate several

alternative solutions before their implementation into

real systems [1]. Recently there are many simulation

tools available to cover different needs from the field of

network and data communications. The essential

difference between these tools lies in the complexity and

degree of abstraction [2].

 One of the leaders between simulation environments

specialized for complex modelling and simulation of

communications networks, devices and protocols is the

OPNET Modeler (OM) simulation tool [3]. This

program is able to create and simulate behaviour of any

network architecture. The friendly Graphic User

Interface (GUI) and many specific editors (e.g. network

editor, node editor, process editor etc.) are the main

advantages of this application. The GUI is showing real

layout of network elements and is able to generate

various statistics too. In this way, for example, can be

simulate any network states and then prevent from

unwanted events or mistakes before the network is

implemented to the real environment.

 The OM is an open source application which means

that the users can modify source codes of every network

nodes and create their own functions. The source codes

are written in programming language C. This feature

extends the flexibility of this simulation environment

[3]. The results of simulations can be saved into the

many file formats, for example into the XML

(eXtensible Markup Language) or HTML (Hypertext

WSEAS TRANSACTIONS on COMMUNICATIONS
Milan Bartl, Jiri Hosek, Tomas Matocha,
Karol Molnar, Lukas Rucka

ISSN: 1109-2742 553 Issue 9, Volume 9, September 2010

Markup Language), or save in form of tables. The OM

can make backward load input data from this file

formats. The OPNET Modeler contains animation

viewer and the OPNET Debugger tool. By the help of

these components user can keep track of simulation

process in detail and detect possible mistakes. The

simulation is running with the acceleration which

depends on the simulation model complexity. Therefore

it can be simulate the month behaviour of network in

order of several hours [3].

 All components in the OM are modeled in the object

oriented approach which provides intuitive mapping to

real systems [4]. Particular components in the OM are

described by C/C++ source codes and are user

accessible. It allows the users to modify the source code

and to add new custom functionalities if required. A

unique feature of the the OM is the possibility of an

interaction between the OM and external systems. This

possibility is ensured by a complex set of functions

called External System Domain/Definition (ESD) [3],

[5]. The external system might represent almost anything

from a general algorithm to a specific model of a

hardware entity (e.g. user designed hardware, real

network devices). It gives a flexible platform to test new

ideas and solutions with low cost and brings more

accurate results to the entire research process.

2 Implementation of SNMP Protocol

into OPNET Modeler

2.1 SNMP Protocol
The Simple Network Management Protocol (SNMP) is

one of the most often used solutions for remote network

management. SNMP was introduced in 1988 [6] to meet

the growing need for a standard for network devices

management. SNMP was developed as a temporary tool

and was intended to be replaced by a solution based on

the Common Management Information Service/Protocol

(CMIS/CMIP) architecture. Today SNMP is still the

most popular method of network management because it

can be easy implemented and disposes with great

interoperability [7].

 SNMP is a communication platform between the

SNMP agent and the SNMP manager. The agent is

located at the managed device and makes accessible the

configuration information and statistics of this devices.

The SNMP manager is placed on the device that

manages the network nodes. The manager sends

requests, encapsulated into the SNMP operations, to the

agent. As a response the agent usually sends back the

requested data. In the case of critical events the agents

can inform the manager without any previous polling

using a special message called trap [7]. The

communication model of SNMP is shown in Fig. 1.

Fig. 1. SNMP communication model

2.1.1 SNMP Operations

There are three version of the SNMP protocol –

SNMPv1, SNMPv2 and SNMPv3. Currently the most

used version is the SNMPv2. For gathering and changing

management information in network devices following

operations can be used [7]:

- Get,

- Get-Next,

- Get-Bulk,

- Set,

- Get-Response,

- Trap,

- Notification,

- Inform,

- Report.

 Each of these operations has a standardized Protocol

Data Unit (PDU) format that is used by managers and

agents to send and received information. The structure

and detailed description of above mentioned SNMP

operations can be found in [7].

2.2 Management Information Base
The Management Information Base (MIB) is a structured

collection of configuration and measurement information

of a given network device. The MIB entries are

organized into a treelike hierarchy that enables to divide

the MIB database into several independent branches. The

existing branches can be extended by other branches or

objects corresponding to the supported functions and

requirements of network component manufacturers [7],

[8].

2.2.1 MIB Management

The statistics and configuration values stored in the MIB

are accessible through Object Identifiers (OIDs) [8]. The

value corresponding to OID represents the current state

of the object. The above mentioned SNMP operations

Get, Get-Next, Get-Response are used to gather and

modify management information in the MIB of the

SNMP agent.

 When the manager sends an SNMP request to the

agent it has to know the OID of the MIB’s entry that

wants to discover/modify. In the case when the manager

WSEAS TRANSACTIONS on COMMUNICATIONS
Milan Bartl, Jiri Hosek, Tomas Matocha,
Karol Molnar, Lukas Rucka

ISSN: 1109-2742 554 Issue 9, Volume 9, September 2010

needs just one entry form the agent it uses the Get-

Request SNMP operation. After the agent receives this

SNMP request, the value bound to the corresponding

OID is obtained from the MIB. Then the retrieved

information is encapsulated into the Get-Response

SNMP message and sent back to the manager.

 Another way to obtain the required information from

the MIB is the Get-Next SNMP operation that enables to

retrieve a block of values from the MIB. The Get-Next

message contains only the starting OID from which the

SNMP agent starts to look-up the MIB. When the

manager receives the Get-Next Response from the agent

it generates another Get-Next Request command

repeatedly until the agent returns an error, signalizing

that the end of the MIB has been reached and there are

no more objects left to retrieve [7].

 The above described SNMP operations are used for

reading from the MIB database. When the manager

needs to write a specific value into the MIB it has to use

the Set SNMP operation. This operation contains the

specific OID and the corresponding value that should be

entered.

2.3 SNMP Model in OPNET Modeler
The majority of application protocols available in the

OM are represented by a parametric traffic generator

producing a mathematically described pattern of network

traffic. It means that the communication on the

application level is simulated by dummy data units with

application specific traffic parameters [9]. On top of that,

the SNMP protocol is not implicitly implemented in the

current version of the OM, but the OM enables the

functional modelling of custom network technologies

and protocols. We used this feature to implement the

SNMP communication model into the OM in the C

programming language.

 As a result of this work a simulation model with

agent – manager architecture had been created where the

components communicated with each other using

SNMPv2 messages. The SNMP agent and manager were

modelled by finite-state machines realized by C/C++

functions. These functions support receiving and sending

of SNMP messages. The process model of the SNMP

manager created in the OM is shown in Fig. 2.

Fig. 2. Process model of SNMP manager

 According to [7] the SNMPv2 message has the

following standardized structure:

/* Variable Bindings*/

typedef struct variablebin{

 char *ObjectID;

 char *Value;

} VARIABLEBIN;

/* SNMP PDU */

typedef struct snmppdu{

 int PDUtype;

 int RequestId;

 int ErrorStatus;

 int ErrorIndex;

 VARIABLEBIN *VariableBin;

} SNMPPDU;

/* SNMP Packet */

typedef struct snmppaket{

 int Version;

 char *Community;

 SNMPPDU *SNMPpdu;

} SNMPPACKET;

 Each SNMP message is created dynamically. First,

the SNMP operation type (PDUtype) is defined and then

the message is filled up with the OID (ObjectID) or

specific MIB value (Value) according to the operation

type.

 In order to transmit the SNMP message in the way

described in RFC 1067 [6], it was necessary to encode

and decode every message using Basic Encoding Rules

(BER). BER is one of the encoding formats defined as

the part of ASN.1 (Abstract Syntax Notation One) and

specified by the ITU (International Telecommunication

Union) in X.690 recommendation [10]. A single instance

of an SNMP message has to be encoded into a string of

octets. BER defines how the objects are encoded and

decoded so that they can be transmitted over a transport

medium such as Ethernet [11].

 Since BER is not available in current version of the

OM we have to implement it in C language. The C

functions programmed perform encoding and decoding

WSEAS TRANSACTIONS on COMMUNICATIONS
Milan Bartl, Jiri Hosek, Tomas Matocha,
Karol Molnar, Lukas Rucka

ISSN: 1109-2742 555 Issue 9, Volume 9, September 2010

of every field of SNMP message as a data type identifier,

the length description in bytes and the actual data. By

this way each SNMP message is encoded into an octet

sequence. Subsequently, this sequence is transmitted

over the communication link to the destination node

where it is decoded back into the original SNMP

message.

 The implementation of the SNMP protocol and BER

encoding was the first step to develop a functional

communication system between real network

components and the OM which is described in next

chapter.

3 Communication with Real Network

Component

3.1 Possibilities of Communication between

OPNET Modeler and Real Systems
There are two possibilities how to interconnect the OM

with real network equipment. The first possibility is the

already mentioned ESD system. The second is called

System In The Loop (SITL). Naturally, both of them

have their advantages and disadvantages.

 SITL is a separately distributed library for the OM

which provides an interface to link real network

hardware or software applications to the OM discrete

event simulation. External devices are connected to the

simulation loop over SITL gateways operated as a bridge

interface between the simulation environment and the

network interface of the host computer. Packets

transmitted between the simulated and real networks are

converted between real and simulation formats. The

SITL module is mainly focused on real-time

communication with devices based on Ethernet

technology while the use of the ESD system is much

more versatile [3].

 As mentioned before, the ESD system allows an

interconnection between the OM and external system.

This interconnection is called co-simulation [3]. The

ESD system consists of several components. These

components are Simulation description, External System

Definitions model, External System Interface, co-

simulation code and code implemented in external

system or application [12].

 The external system is represented in the OPNET

Modeler as a model whose behavior is determined by an

external code. Such model can be represented by

anything from microchip till user application. The OM

passes and receives data from the external system

without having any implicit knowledge of the method of

processing these data [12].

 The basic advantage of this feature is that there is no

need to intricately define the new simulation model of

the existing system we want to include into the

simulation. There is only need to modify existing system

to implement the esys interface by the library functions.

These functions ensure the data exchange through the

esys interface. The whole architecture is based on the

control exchanging between the OPNET Modeler and

external system. The basic principle of co-simulation in

the OPNET Modeler is shown in Fig. 3 [12].

Fig. 3. Basic co-simulation scheme in OPNET Modeler

environment

 The co-simulation is available only in the sequential

version of the OPNET Modeler kernel where only main

thread of process should invoke the OPNET APIs

(Application Programming Interface).

 The co-simulation has two basic requirements. There

is a need to implement code of the esys interface on the

OPNET Modeler side and also in the external system.

The second requirement relates to the computing

memory, because more complicated simulations are

more memory-intensive.

 The co-simulation is established by using a special

interface of the OM called External System Interface

(esys). The esys interface is represented in the OM by a

process module. Thus it can be implemented anywhere

in the model structure. The esys interface ensures the

control and data exchange between the OM and external

systems [3]. The whole ESD system is more complex

and more universal than SITL but on the other hand it

does not provide such a high speed of the

communication and simulation. It is because the control

of simulation is shared between the OM and an external

system which can lead to slower event processing.

3.2 Co-simulation Approaches and Components
There are two basic co-simulation approaches in the

OM. The difference of these approaches lies in the

determination which co-simulation side will be the

controlling unit [13]. The first option is that the OM is

part of the larger program. In this case the OPNET

Modeler models code is linked into the external system.

The second approach option, which is shown in Fig. 4, is

to dynamically link the external system code in the form

of library into the co-simulation in the OM. In this case,

WSEAS TRANSACTIONS on COMMUNICATIONS
Milan Bartl, Jiri Hosek, Tomas Matocha,
Karol Molnar, Lukas Rucka

ISSN: 1109-2742 556 Issue 9, Volume 9, September 2010

the OPNET Modeler is controlling element. We use the

second option in our project so the paper is focused on

this co-simulation approach.

Fig. 4. OPNET Modeler as a control application

 The whole co-simulation process is based on three

following components that have to be properly defined.

3.2.1 Simulation Description

The simulation description is a text file with the “.sd”

suffix that defines the list of object files, libraries and

other attributes that are required by the OM during co-

simulation. Thanks to this description the OPNET

Modeler is able to find and invoke files and objects of

the external system. Furthermore the OM finds attributes

such as compilation option, object file names and the

type of operating system. The simulation description

consists of one or more blocks of statements set off by

the identifiers start_definition and end_definition. The

simulation description file is not used if the user defines

own makefiles [14].

3.2.2 External System Definitions (ESD)

The ESD specifies the number and attributes of external

system interfaces. Through the defined esys interfaces

the external system can communicate with the co-

simulation code implemented in the OM. There is the

External System Editor in the OPNET Modeler that

gives a way to build and edit the ESD model. The first

ESD attribute that has to be defined is the esys interface

name. It can be used to refer to the interface during co-

simulation. The next attribute is a data type which

defines the type of data that are transferred over the esys

interface. One esys interface can handle only one

selected data type, so it is very important to define right

data type for both direction of co-simulation. Most of

data type available in the OPNET Modeler responds to

the C/C++ data types [3].

 The next ESD attribute specifies the direction in

which information flows through the esys interface.

There are three possible directions – from OM to

external system, from external system to OM and

bidirectional. The data value passed over the esys

interface is valid until the old data are overwritten with

new ones. The last ESD attribute is dimension which

specifies the number of elements for the esys interface.

The default dimension value of 0 identifies a simple esys

interface. A value of 1 or greater indicates that the

interface is a vector interface with the specified number

of elements. The ESD with the simulation description

make up the ESD module [3].

3.2.3 External System Interface

The esys interface is the only physical component in the

OM which represents the communication instrument

with the external system. The esys interface is a process

module and thanks to this it can be implemented into a

model structure of any network device along other

processes where it is exactly needed. The properties of

the esys interface process module are defined by the

associated ESD module. Only esys interfaces specified

in this way can be used for communication with the

external system. Inside of the esys process module

process model (algorithm) is created. The main task of

this algorithm is to interact with the external system. The

structure and setting of this process model (inner logic)

reflect the way how the OM executes the information

exchange with the external system. A variety of kernel

procedures let you control data transmission as well as

data transformation between the OPNET Modeler and

external system [3].

 Although the data transformations needed depend on

specific circumstances, it will be often needed to

transform objects (such as packets) to a form usable in

the external system's domain. Conversely, it will be

needed to take values received from the external system

and convert them back into objects that Modeler can use.

There are general mechanisms that can assist you with

these conversions. For example, application of value

vectors that are essentially arrays with a variable number

of elements, directly to the esys interfaces.

3.3 OPNET Modeler Functions for esys Interface

Support
The co-simulation code binds the OM kernel and

external system code together. In order to this binding

the OM contains kernel procedures that enable data

reading and writing on the esys interface. These

procedures allow the transfer of one particular value or

the array of values. The OPNET Modeler kernel

procedures are closely described in the OPNET Modeler

External System package documentation [3].

 There is the External Simulation Access (ESA) API

that provides a support for the esys interface on the

external system side. The ESA API is a set of C/C++

functions that are defined in the header file “esa.h”. This

file is part of the OM system library. The ESA API

functions perform the co-simulation initialization,

application flow controlling between the OM and

WSEAS TRANSACTIONS on COMMUNICATIONS
Milan Bartl, Jiri Hosek, Tomas Matocha,
Karol Molnar, Lukas Rucka

ISSN: 1109-2742 557 Issue 9, Volume 9, September 2010

external system and the data exchange through the esys

interface.

 The co-simulation initialization can be described by

the following steps. After the co-simulation start-up the

basic OPNET Modeler kernel services are initialized.

The OM simulation subsystem is loaded consequently.

During this operation, the processing preferences are

initialized and then the simulation environment settings

are specified. After that the network model with

associated components are loaded and the co-simulation

time is set to “0” [3].

 In order to proper operation of all co-simulation

process the external code has to enable the OPNET

Modeler to perform the simulation events starting or

stopping.

 The data insertion on the esys interface is executed by

the OM kernel procedures. In order to know that the

external system wrote the data on the esys interface the

OPNET Modeler uses the principle of event

interruptions to announce this event. When the data are

placed on the interface the data entry interruption is

invoked and delivered to the esys process model (see

Fig. 5). The kernel functions enable the process model to

get the identifier of the interface with written data. This

identifier is saved in the esys interface interruption. If

the process model knows the interface identifier, it can

read the data from the interface. The data reading is

realized also by the OM kernel procedures. After all,

data are processed by the internal logic of the esys model

[3].

 In the external system the callback function is used to

manipulate with the external interface. The callback

function is part of the ESA API function set. The

external system does not have access to the OM kernel

procedures that is why it can use only defined ESA API

functions. After the data are placed on the esys interface

the callback function is invoked in the external system

(see Fig. 5). The callback function is responsible for the

data processing sent from the OM. Therefore the

callback function must be properly implemented in the

external system. The decision which function of the

external system becomes the callback function is defined

by the ESA API function called

Esa_Interface_Callback_Register() [3], [12], [13].

 There are two ways of data writing on the esys

interface. The delayed data writing on the esys interface

performed by specific ESA API function is the first way.

This ESA function notifies the OM about new data

placing with a delay. The delay duration is one of

parameters of this function. The data writing with

immediate announcement is the second way.

Fig. 5. Invoking and transfer of data entry interruption and

callback function

3.4 Configuration of Node Model

snmp_manager_esys
Into the node model of the SNMP manager we

implemented a new process model esys. This model

enables communication with the environment outside the

OM and it is connected to User Datagram Protocol

(UDP) process model, because it needs to work with IP

address and port. the modified topology of the

workstation node model is shown in Fig. 6.

 Attributes of this process model have one special item

called the ESD Model. This model is accessible through

button labelled Edit ESD Model in the Attributes

window (see Fig. 7).

 The first part contains one row with the text box to

input name of a special data file called Simulator

description. This file will be described further.

The second part defines the esys interface/s connected to

this esys process model. These interfaces can transmit

a data from the simulation to the external application or

in opposite direction.

Fig. 6. Modified topology of SNMP manager node model

WSEAS TRANSACTIONS on COMMUNICATIONS
Milan Bartl, Jiri Hosek, Tomas Matocha,
Karol Molnar, Lukas Rucka

ISSN: 1109-2742 558 Issue 9, Volume 9, September 2010

 The field Name specifies the name through which the

interface is accessible. The following field specifies a

data type of the interface. These types can be common

C/C++ data types (integer, character, pointer etc.) or

special types of string or bit (for special Value Vector

data types in the OM).

 In the field Direction is set the direction of the

transmission, from the OM to external code, external

code to the OM or bidirectional interface.

The last important field is named Dimension. It specifies

the dimension of the array for storing the values. If set

on zero, only one value can be set on this interface.

Setting another value on this interface would overwrite

the previous value.

Fig. 7. Configuration of ESD model

3.5 Configuration of Process Model

snmp_manager_esys
Starting with the header block of the

snmp_manager_esys process model, we need to define

conditions of the state transitions, included header files

and structure for packet type of SNMP. This process

model contains four states (see Fig. 8).

Fig. 8. Process model snmp_man_esys

3.5.1 INIT State

Its function is to obtain pointers on objects surrounding

the process (like UDP process model) and on the process

itself. Then it creates an interruption for itself to register

the UDP port. It registers the port number 162 and in the

end is allocated a memory for error messages and for the

IP address string.

3.5.2 IDLE State

After initialization comes the process to this state. It

remains there until some interruption comes from

outside. It has got no code but in the Exit executives,

where is obtained pointer on the ICI interface that

produced the interruption. ICI interfaces are commonly

used to store additional information for the interruption.

3.5.3 SEND State

Whenever are received data coming from the UDP

process model (i.e. data to send out of the simulation),

the process transits into this state. Together with the data

to send is obtained the IP address of the target SNMP

agent. Then, the child process is invoked and the data are

written on the esys interfaces. Necessity of using child

process will be explained in following chapter.

3.5.4 RECEIVE State

The reverse state to SEND is RECEIVE state. It reads

a data from esys interfaces and stores it in the pre-

allocated structure. Then is the structure wrapped into

the packet and the packet is send to the UDP process

model.

3.6 Child Process
The system of co-simulation is following: whenever are

a data written on the esys interface with condition

OPC_ESYS_NOTIFY_IMMEDIATELY, an immediate

interruption is invoked in the external code (on the other

side of esys interface). When this happens, the process

on the OM side that invoked the interruption has not

returned from the sending state, because the simulation

in the OM is paused [3]. However, we need the main

esys process to be unblocked because of manipulation

with incoming data from the external code.

 For this purpose we can create a new process that will

send the data in behalf of the main process. At first, in

the parent process model must be declared, which

process/es will be available to become “child”. This

declaration is accessible in the menu item File – Declare

Child Process Models, where is a list of all process

models saved in the model directories (add/remove

model directory in the menu item File - Manage Model

Files).

 The child process contains only two states, START

and EXEC. Immediately after invocation, the process

transits to EXEC state that contains the whole code.

 At first we need to obtain a structure with the parent

data (SNMP data and IP address). Then we write these

data on the esys interface and with the last value written

on the interface we create an interruption for the external

code. In the end is de-allocated the memory with the

SNMP data. The last step is performed after the co-

simulation returns from the external code.

WSEAS TRANSACTIONS on COMMUNICATIONS
Milan Bartl, Jiri Hosek, Tomas Matocha,
Karol Molnar, Lukas Rucka

ISSN: 1109-2742 559 Issue 9, Volume 9, September 2010

3.7 Configuration of Simulation Descriptor
This file contains a information for the co-simulation

builder and linker. Structure of this file is strictly

defined. All definitions must be wrapped in the block

starting with a start_definition and ending with

a end_definition.

start_definition

platform: windows

use_esa_main: yes

kernel: development

bitness: 32bit

dll_lib:

esys_udp_conn.dll

end_definition

 We run the co-simulation under 32-bit Microsoft

Windows operating system. We use the OM Debugger

Console for debugging the simulation, so we need a

development kernel.

 In our case, the OM side should be “in charge”.

Setting use_esa_main on yes means that we use the

external dynamic loaded library (DLL file) in the OM

simulation. The co-simulation is started from the OM

GUI like common simulations.

 With use_esa_main set on yes, we need to define a

name of the DLL file with the external code. This name

is a parameter of item dll_lib.

3.8 Definition of External Application
In order to implement a communication between the OM

and a real network node we created an external

application that is used as middleware between the OM

model and the network interface of the local workstation.

The application reads data from the OM, translates them

into SNMP requests and sends them to a network node.

Then it waits for the SNMP response from an agent

implemented in the destination node. When SNMP

response arrives, it is translated back into a data structure

compatible with the OM and it is entered into the

simulation model.

 We used the functions of the OM API for

sending/reading data to/from the OM. These functions

are declared in the esa.h header file, which also contains

the functions to initialize the co-simulation and register

callback functions.

 The external application developed is compiled as a

dynamically loaded library. All the functions that should

be available to the co-simulation coordinator have to be

exported with code extern "C" DLLEXPORT. There are

two functions of this type esa_main and callback.

 The esa_main function completes the basic

initialization procedures of the co-simulation and

includes the Winsock library initialization (for

communication through the network interface) and

registration of the callback function to the ESYS

interface.

 The callback function is called, whenever data are

written on this interface [13]. The data are read from the

interface, encapsulated to the SNMP request and sent to

the SNMP agent. After obtaining the response, the

corresponding data is converted and forwarded to the

simulation model through the ESYS interface.

 For sending the SNMP request there is an internal

function (without an export) called snmp. This function

realises the SNMP communication using the functions

and structures from the snmp.h and Mgmtapi.h windows

header files [15]. It can create an SNMP Get-Request

and Get-Next-Request to obtain values from the MIB

database of the SNMP agent. When the SNMP structure

is filled with data, the request can be sent via the

SnmpMgrRequest function. If this call succeeds, the

SnmpVarBind structure is filled with the value of the

requested object by the SNMP agent.

 The data returned by real equipment is stored in a

data type, which is incompatible with the OM, so a

conversion is necessary [16]. With respect to the type of

the returned value it is converted and saved in a special

structure. This structure contains a constant used to

specify the value type and the ID of the returned object

(saved as string). The conversion of complex data types

to standard string is executed by functions readAsnOid,

readAsnAddress and readAsnString.

 After processing the data obtained, the corresponding

structures are deallocated by calling the

SnmpUtilMemFree function. Finally, the SnmpMgrClose

function destroys the SNMP manager instance and the

pointer on the structure for the converted values.

4 Simulation Scenario
In real network conditions the SNMP manager creates

the SNMP message and sends it toward to the SNMP

agent. By default, the SNMP message is delivered

through the network to the SNMP agent using the UDP

transport protocol.

 Our evaluation test-bed consists of a real network

represented by a Cisco router C1841 and a simulation

model in the OM environment. Because of this

combination of real and simulated systems, this solution

has more complex architecture than the majority of real

infrastructures, but at the same time, it offers several

interesting research opportunities. The whole evaluation

test-bed is composed from the SNMP manager created in

OM, esys interface, external application and the SNMP

agent implemented in a real router with SNMP support.

The architecture of the test-bed is shown in Fig. 9.

 The communication process of our simulation

scenario is described in following text. The SNMP

manager creates the SNMP message in the OM and

WSEAS TRANSACTIONS on COMMUNICATIONS
Milan Bartl, Jiri Hosek, Tomas Matocha,
Karol Molnar, Lukas Rucka

ISSN: 1109-2742 560 Issue 9, Volume 9, September 2010

sends it to the esys interface. Through the esys interface

the SNMP message is passed to the external application

running on local workstation. During the transmission

through the esys interface data conversion must be

provided. This conversion is necessary because the OM

and the external application use incompatible data types.

The external application places the converted data into

an SNMP message and sends it to the SNMP agent in

UDP datagrams. The SNMP agent is located in a

hardware device. After processing, the SNMP agent

sends the answer in as an SNMP message back to the

external application. The external application extracts

data from the response and forwards them to the esys

interface. In the esys interface, data is converted and sent

into OM. In the OM, the data received is processed by

the model of the SNMP manager.

5 Conclusion
We have created a communication system able mutually

exchange information between real network components

and the the OM simulation environment. This system

uses SNMP messages to communicate with each other. It

can create an realistic SNMP message inside the

simulation environment of the OM, encode it using the

BER algorithm and transmit to a real network device

through the esys interface. The destination network

device can search for and read the required value from

the MIB database and send it back to the OM. To

achieve this functionality was necessary to modify the

source code of external applications and the model

created in the OM. The modification is based on the

implementation and configuration of esys interface,

which is part of the ESD system. The possibility of

interconnection of simulations running in the OM with a

real environment is the result of modifications.

 The interconnection of real and simulating

environments opens the way towards complex

simulation scenarios that can be use e. g. within the

development of complex communication systems for

network managing or quality of service assurance.

Acknowledgement:

This paper has been supported by the Grant Agency of

the Czech Republic (Grant No. GA102/09/1130) and the

Ministry of Education of the Czech Republic (Project

No. MSM0021630513).

References:

[1] Koutny, M., Mlynek, P., Krajsa, O., Modelling of

PLC Communication for Supply Networks.

Proceedings of the 13th WSEAS International

Conference on Communications, 2009, pp. 185-189.

[2] Bojkovic, Z., Bakmaz, B., Bakmaz, M., Multimedia

Traffic in New Generation Networks: Requirements,

Control and Modeling. Proceedings of the 13th

WSEAS International Conference on

Communications, 2009, pp. 124-130.

[3] Opnet Technologies, OPNET Modeler Product

Documentation Release 15.0, 2009.

[4] Skorpil, V., Novak, D., Network Elements

Controlled by Artificial Neural Network.

Proceedings of the 14th WSEAS International

Conference on Communications, 2010, pp. 145-148.

[5] Hosek, J., Rucka, L., Molnar, K., DiffServ Extension

Allowing User Applications to Effect QoS Control.

Proceedings of the 13th WSEAS International

Conference on Communications, 2009, pp. 39-43.

Fig. 9. Architecture of the evaluation test-bed

WSEAS TRANSACTIONS on COMMUNICATIONS
Milan Bartl, Jiri Hosek, Tomas Matocha,
Karol Molnar, Lukas Rucka

ISSN: 1109-2742 561 Issue 9, Volume 9, September 2010

[6] Case, J., Fedor, M., Davin, J., Simple Network

Management Protocol, RFC1067, 1988.

[7] Mauro, D., Schmidt, K., Essentials SNMP, Second

Edition, O’Reilly Media, 2005.

[8] Barker F., Chan, K., Smith, A., Management

Information Base for the Differentiated Services

Architecture, RFC3289, 2002.

[9] Wessing, Y., Berger, Y., Berger, M., Simulation

Based Analysis on Dynamic Resource Provisioning

in Optical Networks Using GMPLS Technologies.

WSEAS Transaction on Communications, Vol. 5,

No. 1, 2006, pp. 185-189.

[10] ASN.1 encoding rules: Specification of Basic

Encoding Rules (BER), Canonical Encoding Rules

(CER) and Distinguished Encoding Rules (DER),

ITU-T Standard X.690, 2002.

[11] Larmouth, J., ASN.1 Complete, Academic Press,

1990.

[12] Hosek, J., Rucka, L., Molnar, K., Mutual

Cooperation of external application and OPNET

Modeler simulation environment. Proceedings of the

International Workshop RTT 2009 Research in

Telecommunication Technology, 2009, pp. 1-5.

[13] Opnet Technologies, Using Modeler’s Co-

simulation Capabilities to Integrate with External

Systems, Proceedings of the OPNETWORK 2007,

2007.

[14] K. Fujita, Extending Opnet Modeler with Client

Profiles for Selecting Data Sources in WAN, project,

Department of Information Science and

Telecommunications, School of Information Science,

University of Pittsburgh, Pittsburgh, 2003.

[15] Microsoft Corporation (2009). Simple Network

Management Protocol. Microsoft Development

Library [Online]. Available:

http://msdn.microsoft.com/en-us/library/aa377993

[16] Lucio, G. F., Ferrera, P. M., Jammeh, E., Fleury,

M., Reed, J. M., OPNET Modeler and NS-2:

comparing the accuracy of network simulators for

packet-level analysis using a network testbed.

WSEAS Transaction on Computers, Vol. 2, No. 3,

2003, pp. 700-707.

WSEAS TRANSACTIONS on COMMUNICATIONS
Milan Bartl, Jiri Hosek, Tomas Matocha,
Karol Molnar, Lukas Rucka

ISSN: 1109-2742 562 Issue 9, Volume 9, September 2010

http://msdn.microsoft.com/en-us/library/aa377993

