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Abstract: - The OPNET Modeler is a simulation environment enables modeling of large-scale networks with in detail 

defined parameters. This paper is focused on the possibility to communicate with external systems and applications that 

this environment offers. Due to this we are able to interconnect simulation environment with real network system and 

gain the simulation results more accurate and in accordance with the reality. We created communication model 

composed from network scenario created in the OPNET Modeler, C/C++ external application and Cisco router. For 

this purpose we implemented the SNMP protocol into the OPNET Modeler. This model enables data exchange 

between external network component and work station in OPNET Modeler scenario. This model is very useful 

especially in the situation when you need to include a real network device into simulation process, because the pure 

simulation environment is not quite sufficient. 
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1   Introduction 
The complexity of today’s networks necessitates the 

need for network management to optimize network 

performance. There are several methods to manage 

network equipment. The first possibility is to manage 

network devices locally. This method requires direct 

access to network devices and is time demanding. This 

type of management is very complicated, especially if 

the network consists of many devices or the network is a 

geographically vast. Generally, local management is not 

able to ensure optimal network performance and fault 

detection. 

     Remote network management represents another 

solution. This method does not require direct access to 

the network devices because it uses a remote application 

for the network management. The prerequisite for this 

type of management is that this functionality must be 

implemented in each network device to be managed. 

An important part of the network management is 

network monitoring. Network monitoring allows 

surveying of the current state and behaviour of the 

network equipment. Due to network monitoring it is 

possible to respond to different events in the network 

more quickly and solve non-standard behaviour of the 

network devices. 

     The development of a monitoring and management 

system for network equipment is quite a complex task. 

Often different simulation tools can be used to improve 

the development process by modelling specific events 

rarely appearing in real networks. The simulation 

environment allows the developers to evaluate several 

alternative solutions before their implementation into 

real systems [1]. Recently there are many simulation 

tools available to cover different needs from the field of 

network and data communications. The essential 

difference between these tools lies in the complexity and 

degree of abstraction [2]. 

     One of the leaders between simulation environments 

specialized for complex modelling and simulation of 

communications networks, devices and protocols is the 

OPNET Modeler (OM) simulation tool [3]. This 

program is able to create and simulate behaviour of any 

network architecture. The friendly Graphic User 

Interface (GUI) and many specific editors (e.g. network 

editor, node editor, process editor etc.) are the main 

advantages of this application. The GUI is showing real 

layout of network elements and is able to generate 

various statistics too. In this way, for example, can be 

simulate any network states and then prevent from 

unwanted events or mistakes before the network is 

implemented to the real environment. 

     The OM is an open source application which means 

that the users can modify source codes of every network 

nodes and create their own functions. The source codes 

are written in programming language C. This feature 

extends the flexibility of this simulation environment 

[3]. The results of simulations can be saved into the 

many file formats, for example into the XML 

(eXtensible Markup Language) or HTML (Hypertext 
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Markup Language), or save in form of tables. The OM 

can make backward load input data from this file 

formats. The OPNET Modeler contains animation 

viewer and the OPNET Debugger tool. By the help of 

these components user can keep track of simulation 

process in detail and detect possible mistakes. The 

simulation is running with the acceleration which 

depends on the simulation model complexity. Therefore 

it can be simulate the month behaviour of network in 

order of several hours [3].  

     All components in the OM are modeled in the object 

oriented approach which provides intuitive mapping to 

real systems [4]. Particular components in the OM are 

described by C/C++ source codes and are user 

accessible. It allows the users to modify the source code 

and to add new custom functionalities if required. A 

unique feature of the the OM is the possibility of an 

interaction between the OM and external systems. This 

possibility is ensured by a complex set of functions 

called External System Domain/Definition (ESD) [3], 

[5]. The external system might represent almost anything 

from a general algorithm to a specific model of a 

hardware entity (e.g. user designed hardware, real 

network devices). It gives a flexible platform to test new 

ideas and solutions with low cost and brings more 

accurate results to the entire research process. 

 

 

2   Implementation of SNMP Protocol 

into OPNET Modeler 
 

2.1 SNMP Protocol 
The Simple Network Management Protocol (SNMP) is 

one of the most often used solutions for remote network 

management. SNMP was introduced in 1988 [6] to meet 

the growing need for a standard for network devices 

management. SNMP was developed as a temporary tool 

and was intended to be replaced by a solution based on 

the Common Management Information Service/Protocol 

(CMIS/CMIP) architecture. Today SNMP is still the 

most popular method of network management because it 

can be easy implemented and disposes with great 

interoperability [7]. 

     SNMP is a communication platform between the 

SNMP agent and the SNMP manager. The agent is 

located at the managed device and makes accessible the 

configuration information and statistics of this devices. 

The SNMP manager is placed on the device that 

manages the network nodes. The manager sends 

requests, encapsulated into the SNMP operations, to the 

agent. As a response the agent usually sends back the 

requested data. In the case of critical events the agents 

can inform the manager without any previous polling 

using a special message called trap [7]. The 

communication model of SNMP is shown in Fig. 1. 

 

 

Fig. 1.  SNMP communication model 

 

2.1.1   SNMP Operations  

There are three version of the SNMP protocol – 

SNMPv1, SNMPv2 and SNMPv3. Currently the most 

used version is the SNMPv2. For gathering and changing 

management information in network devices following 

operations can be used [7]:  

- Get, 

- Get-Next, 

- Get-Bulk, 

- Set, 

- Get-Response, 

- Trap, 

- Notification, 

- Inform, 

- Report. 

 

     Each of these operations has a standardized Protocol 

Data Unit (PDU) format that is used by managers and 

agents to send and received information. The structure 

and detailed description of above mentioned SNMP 

operations can be found in [7]. 

 

 

2.2 Management Information Base 
The Management Information Base (MIB) is a structured 

collection of configuration and measurement information 

of a given network device. The MIB entries are 

organized into a treelike hierarchy that enables to divide 

the MIB database into several independent branches. The 

existing branches can be extended by other branches or 

objects corresponding to the supported functions and 

requirements of network component manufacturers [7], 

[8].  

 
2.2.1   MIB Management 

The statistics and configuration values stored in the MIB 

are accessible through Object Identifiers (OIDs) [8]. The 

value corresponding to OID represents the current state 

of the object. The above mentioned SNMP operations 

Get, Get-Next, Get-Response are used to gather and 

modify management information in the MIB of the 

SNMP agent. 

     When the manager sends an SNMP request to the 

agent it has to know the OID of the MIB’s entry that 

wants to discover/modify. In the case when the manager 
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needs just one entry form the agent it uses the Get-

Request SNMP operation. After the agent receives this 

SNMP request, the value bound to the corresponding 

OID is obtained from the MIB. Then the retrieved 

information is encapsulated into the Get-Response 

SNMP message and sent back to the manager. 

     Another way to obtain the required information from 

the MIB is the Get-Next SNMP operation that enables to 

retrieve a block of values from the MIB. The Get-Next 

message contains only the starting OID from which the 

SNMP agent starts to look-up the MIB. When the 

manager receives the Get-Next Response from the agent 

it generates another Get-Next Request command 

repeatedly until the agent returns an error, signalizing 

that the end of the MIB has been reached and there are 

no more objects left to retrieve [7]. 

     The above described SNMP operations are used for 

reading from the MIB database. When the manager 

needs to write a specific value into the MIB it has to use 

the Set SNMP operation. This operation contains the 

specific OID and the corresponding value that should be 

entered. 

 

 

2.3 SNMP Model in OPNET Modeler 
The majority of application protocols available in the 

OM are represented by a parametric traffic generator 

producing a mathematically described pattern of network 

traffic. It means that the communication on the 

application level is simulated by dummy data units with 

application specific traffic parameters [9]. On top of that, 

the SNMP protocol is not implicitly implemented in the 

current version of the OM, but the OM enables the 

functional modelling of custom network technologies 

and protocols. We used this feature to implement the 

SNMP communication model into the OM in the C 

programming language. 

     As a result of this work a simulation model with 

agent – manager architecture had been created where the 

components communicated with each other using 

SNMPv2 messages. The SNMP agent and manager were 

modelled by finite-state machines realized by C/C++ 

functions. These functions support receiving and sending 

of SNMP messages. The process model of the SNMP 

manager created in the OM is shown in Fig. 2.  

 

 
Fig. 2. Process model of SNMP manager 

     According to [7] the SNMPv2 message has the 

following standardized structure: 

 
/* Variable Bindings*/ 

typedef struct variablebin{ 

 char *ObjectID; 

 char *Value; 

} VARIABLEBIN; 

 

/* SNMP PDU */ 

typedef struct snmppdu{ 

 int PDUtype; 

 int RequestId; 

 int ErrorStatus; 

 int ErrorIndex; 

 VARIABLEBIN *VariableBin; 

} SNMPPDU; 

 

/* SNMP Packet */ 

typedef struct snmppaket{ 

 int      Version; 

 char     *Community; 

 SNMPPDU   *SNMPpdu; 

} SNMPPACKET;    

 

     Each SNMP message is created dynamically. First, 

the SNMP operation type (PDUtype) is defined and then 

the message is filled up with the OID (ObjectID) or 

specific MIB value (Value) according to the operation 

type. 

     In order to transmit the SNMP message in the way 

described in RFC 1067 [6], it was necessary to encode 

and decode every message using Basic Encoding Rules 

(BER). BER is one of the encoding formats defined as 

the part of ASN.1 (Abstract Syntax Notation One) and 

specified by the ITU (International Telecommunication 

Union) in X.690 recommendation [10]. A single instance 

of an SNMP message has to be encoded into a string of 

octets. BER defines how the objects are encoded and 

decoded so that they can be transmitted over a transport 

medium such as Ethernet [11]. 

     Since BER is not available in current version of the 

OM we have to implement it in C language. The C 

functions programmed perform encoding and decoding 
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of every field of SNMP message as a data type identifier, 

the length description in bytes and the actual data. By 

this way each SNMP message is encoded into an octet 

sequence. Subsequently, this sequence is transmitted 

over the communication link to the destination node 

where it is decoded back into the original SNMP 

message. 

     The implementation of the SNMP protocol and BER 

encoding was the first step to develop a functional 

communication system between real network 

components and the OM which is described in next 

chapter. 

 

 

3   Communication with Real Network 

Component 
 

3.1 Possibilities of Communication between 

OPNET Modeler and Real Systems 
There are two possibilities how to interconnect the OM 

with real network equipment. The first possibility is the 

already mentioned ESD system. The second is called 

System In The Loop (SITL). Naturally, both of them 

have their advantages and disadvantages. 

     SITL is a separately distributed library for the OM 

which provides an interface to link real network 

hardware or software applications to the OM discrete 

event simulation. External devices are connected to the 

simulation loop over SITL gateways operated as a bridge 

interface between the simulation environment and the 

network interface of the host computer. Packets 

transmitted between the simulated and real networks are 

converted between real and simulation formats. The 

SITL module is mainly focused on real-time 

communication with devices based on Ethernet 

technology while the use of the ESD system is much 

more versatile [3]. 

     As mentioned before, the ESD system allows an 

interconnection between the OM and external system. 

This interconnection is called co-simulation [3]. The 

ESD system consists of several components. These 

components are Simulation description, External System 

Definitions model, External System Interface, co-

simulation code and code implemented in external 

system or application [12]. 

     The external system is represented in the OPNET 

Modeler as a model whose behavior is determined by an 

external code. Such model can be represented by 

anything from microchip till user application. The OM 

passes and receives data from the external system 

without having any implicit knowledge of the method of 

processing these data [12]. 

     The basic advantage of this feature is that there is no 

need to intricately define the new simulation model of 

the existing system we want to include into the 

simulation. There is only need to modify existing system 

to implement the esys interface by the library functions. 

These functions ensure the data exchange through the 

esys interface. The whole architecture is based on the 

control exchanging between the OPNET Modeler and 

external system. The basic principle of co-simulation in 

the OPNET Modeler is shown in Fig. 3 [12].        

 

 
 

Fig. 3.  Basic co-simulation scheme in OPNET Modeler 

environment 

     The co-simulation is available only in the sequential 

version of the OPNET Modeler kernel where only main 

thread of process should invoke the OPNET APIs 

(Application Programming Interface). 

     The co-simulation has two basic requirements. There 

is a need to implement code of the esys interface on the 

OPNET Modeler side and also in the external system. 

The second requirement relates to the computing 

memory, because more complicated simulations are 

more memory-intensive. 

     The co-simulation is established by using a special 

interface of the OM called External System Interface 

(esys). The esys interface is represented in the OM by a 

process module. Thus it can be implemented anywhere 

in the model structure. The esys interface ensures the 

control and data exchange between the OM and external 

systems [3]. The whole ESD system is more complex 

and more universal than SITL but on the other hand it 

does not provide such a high speed of the 

communication and simulation. It is because the control 

of simulation is shared between the OM and an external 

system which can lead to slower event processing. 

 

 

3.2 Co-simulation Approaches and Components 
There are two basic co-simulation approaches in the 

OM. The difference of these approaches lies in the 

determination which co-simulation side will be the 

controlling unit [13]. The first option is that the OM is 

part of the larger program. In this case the OPNET 

Modeler models code is linked into the external system. 

The second approach option, which is shown in Fig. 4, is 

to dynamically link the external system code in the form 

of library into the co-simulation in the OM. In this case, 
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the OPNET Modeler is controlling element. We use the 

second option in our project so the paper is focused on 

this co-simulation approach.      

 

 

Fig. 4.  OPNET Modeler as a control application 

     The whole co-simulation process is based on three 

following components that have to be properly defined. 

 

3.2.1 Simulation Description 

The simulation description is a text file with the “.sd” 

suffix that defines the list of object files, libraries and 

other attributes that are required by the OM during co-

simulation. Thanks to this description the OPNET 

Modeler is able to find and invoke files and objects of 

the external system. Furthermore the OM finds attributes 

such as compilation option, object file names and the 

type of operating system. The simulation description 

consists of one or more blocks of statements set off by 

the identifiers start_definition and end_definition. The 

simulation description file is not used if the user defines 

own makefiles [14].          

 

3.2.2 External System Definitions (ESD) 

The ESD specifies the number and attributes of external 

system interfaces. Through the defined esys interfaces 

the external system can communicate with the co-

simulation code implemented in the OM. There is the 

External System Editor in the OPNET Modeler that 

gives a way to build and edit the ESD model. The first 

ESD attribute that has to be defined is the esys interface 

name. It can be used to refer to the interface during co-

simulation. The next attribute is a data type which 

defines the type of data that are transferred over the esys 

interface. One esys interface can handle only one 

selected data type, so it is very important to define right 

data type for both direction of co-simulation. Most of 

data type available in the OPNET Modeler responds to 

the C/C++ data types [3]. 

     The next ESD attribute specifies the direction in 

which information flows through the esys interface. 

There are three possible directions – from OM to 

external system, from external system to OM and 

bidirectional. The data value passed over the esys 

interface is valid until the old data are overwritten with 

new ones. The last ESD attribute is dimension which 

specifies the number of elements for the esys interface. 

The default dimension value of 0 identifies a simple esys 

interface. A value of 1 or greater indicates that the 

interface is a vector interface with the specified number 

of elements. The ESD with the simulation description 

make up the ESD module [3].             

 

3.2.3 External System Interface 

The esys interface is the only physical component in the 

OM which represents the communication instrument 

with the external system. The esys interface is a process 

module and thanks to this it can be implemented into a 

model structure of any network device along other 

processes where it is exactly needed. The properties of 

the esys interface process module are defined by the 

associated ESD module. Only esys interfaces specified 

in this way can be used for communication with the 

external system. Inside of the esys process module 

process model (algorithm) is created. The main task of 

this algorithm is to interact with the external system. The 

structure and setting of this process model (inner logic) 

reflect the way how the OM executes the information 

exchange with the external system. A variety of kernel 

procedures let you control data transmission as well as 

data transformation between the OPNET Modeler and 

external system [3]. 

     Although the data transformations needed depend on 

specific circumstances, it will be often needed to 

transform objects (such as packets) to a form usable in 

the external system's domain. Conversely, it will be 

needed to take values received from the external system 

and convert them back into objects that Modeler can use. 

There are general mechanisms that can assist you with 

these conversions. For example, application of value 

vectors that are essentially arrays with a variable number 

of elements, directly to the esys interfaces. 

 

 

3.3 OPNET Modeler Functions for esys Interface 

Support 
The co-simulation code binds the OM kernel and 

external system code together. In order to this binding 

the OM contains kernel procedures that enable data 

reading and writing on the esys interface. These 

procedures allow the transfer of one particular value or 

the array of values. The OPNET Modeler kernel 

procedures are closely described in the OPNET Modeler 

External System package documentation [3]. 

     There is the External Simulation Access (ESA) API 

that provides a support for the esys interface on the 

external system side. The ESA API is a set of C/C++ 

functions that are defined in the header file “esa.h”. This 

file is part of the OM system library. The ESA API 

functions perform the co-simulation initialization, 

application flow controlling between the OM and 
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external system and the data exchange through the esys 

interface. 

     The co-simulation initialization can be described by 

the following steps. After the co-simulation start-up the 

basic OPNET Modeler kernel services are initialized. 

The OM simulation subsystem is loaded consequently. 

During this operation, the processing preferences are 

initialized and then the simulation environment settings 

are specified. After that the network model with 

associated components are loaded and the co-simulation 

time is set to “0” [3]. 

     In order to proper operation of all co-simulation 

process the external code has to enable the OPNET 

Modeler to perform the simulation events starting or 

stopping. 

     The data insertion on the esys interface is executed by 

the OM kernel procedures. In order to know that the 

external system wrote the data on the esys interface the 

OPNET Modeler uses the principle of event 

interruptions to announce this event. When the data are 

placed on the interface the data entry interruption is 

invoked and delivered to the esys process model (see 

Fig. 5). The kernel functions enable the process model to 

get the identifier of the interface with written data. This 

identifier is saved in the esys interface interruption. If 

the process model knows the interface identifier, it can 

read the data from the interface. The data reading is 

realized also by the OM kernel procedures. After all, 

data are processed by the internal logic of the esys model 

[3]. 

     In the external system the callback function is used to 

manipulate with the external interface. The callback 

function is part of the ESA API function set. The 

external system does not have access to the OM kernel 

procedures that is why it can use only defined ESA API 

functions. After the data are placed on the esys interface 

the callback function is invoked in the external system 

(see Fig. 5). The callback function is responsible for the 

data processing sent from the OM. Therefore the 

callback function must be properly implemented in the 

external system. The decision which function of the 

external system becomes the callback function is defined 

by the ESA API function called 

Esa_Interface_Callback_Register() [3], [12], [13]. 

     There are two ways of data writing on the esys 

interface. The delayed data writing on the esys interface 

performed by specific ESA API function is the first way. 

This ESA function notifies the OM about new data 

placing with a delay. The delay duration is one of 

parameters of this function. The data writing with 

immediate announcement is the second way. 

 

 

Fig. 5.  Invoking and transfer of data entry interruption and 

callback function 

 

3.4 Configuration of Node Model 

snmp_manager_esys 
Into the node model of the SNMP manager we 

implemented a new process model esys. This model 

enables communication with the environment outside the 

OM and it is connected to User Datagram Protocol 

(UDP) process model, because it needs to work with IP 

address and port. the modified topology of the 

workstation node model is shown in Fig. 6. 

     Attributes of this process model have one special item 

called the ESD Model. This model is accessible through 

button labelled Edit ESD Model in the Attributes 

window (see Fig. 7). 

     The first part contains one row with the text box to 

input name of a special data file called Simulator 

description. This file will be described further. 

The second part defines the esys interface/s connected to 

this esys process model. These interfaces can transmit 

a data from the simulation to the external application or 

in opposite direction.  

 

 

Fig. 6. Modified topology of SNMP manager node model 
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     The field Name specifies the name through which the 

interface is accessible. The following field specifies a 

data type of the interface. These types can be common 

C/C++ data types (integer, character, pointer etc.) or 

special types of string or bit (for special Value Vector 

data types in the OM). 

     In the field Direction is set the direction of the 

transmission, from the OM to external code, external 

code to the OM or bidirectional interface. 

The last important field is named Dimension. It specifies 

the dimension of the array for storing the values. If set 

on zero, only one value can be set on this interface. 

Setting another value on this interface would overwrite 

the previous value.  

     

 

Fig. 7. Configuration of ESD model 

 

3.5 Configuration of Process Model 

snmp_manager_esys 
Starting with the header block of the 

snmp_manager_esys process model, we need to define 

conditions of the state transitions, included header files 

and structure for packet type of SNMP. This process 

model contains four states (see Fig. 8). 

 

 

Fig. 8. Process model snmp_man_esys 

3.5.1 INIT State 

Its function is to obtain pointers on objects surrounding 

the process (like UDP process model) and on the process 

itself. Then it creates an interruption for itself to register 

the UDP port. It registers the port number 162 and in the 

end is allocated a memory for error messages and for the 

IP address string. 

 

 

3.5.2 IDLE State 

After initialization comes the process to this state. It 

remains there until some interruption comes from 

outside. It has got no code but in the Exit executives, 

where is obtained pointer on the ICI interface that 

produced the interruption. ICI interfaces are commonly 

used to store additional information for the interruption. 

 

3.5.3 SEND State 

Whenever are received data coming from the UDP 

process model (i.e. data to send out of the simulation), 

the process transits into this state. Together with the data 

to send is obtained the IP address of the target SNMP 

agent. Then, the child process is invoked and the data are 

written on the esys interfaces. Necessity of using child 

process will be explained in following chapter. 

 

3.5.4 RECEIVE State 

The reverse state to SEND is RECEIVE state. It reads 

a data from esys interfaces and stores it in the pre-

allocated structure. Then is the structure wrapped into 

the packet and the packet is send to the UDP process 

model. 

 

 

3.6 Child Process 
The system of co-simulation is following: whenever are 

a data written on the esys interface with condition 

OPC_ESYS_NOTIFY_IMMEDIATELY, an immediate 

interruption is invoked in the external code (on the other 

side of esys interface). When this happens, the process 

on the OM side that invoked the interruption has not 

returned from the sending state, because the simulation 

in the OM is paused [3]. However, we need the main 

esys process to be unblocked because of manipulation 

with incoming data from the external code. 

     For this purpose we can create a new process that will 

send the data in behalf of the main process. At first, in 

the parent process model must be declared, which 

process/es will be available to become “child”. This 

declaration is accessible in the menu item File – Declare 

Child Process Models, where is a list of all process 

models saved in the model directories (add/remove 

model directory in the menu item File - Manage Model 

Files). 

     The child process contains only two states, START 

and EXEC. Immediately after invocation, the process 

transits to EXEC state that contains the whole code. 

     At first we need to obtain a structure with the parent 

data (SNMP data and IP address). Then we write these 

data on the esys interface and with the last value written 

on the interface we create an interruption for the external 

code. In the end is de-allocated the memory with the 

SNMP data. The last step is performed after the co-

simulation returns from the external code. 
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3.7 Configuration of Simulation Descriptor 
This file contains a information for the co-simulation 

builder and linker. Structure of this file is strictly 

defined. All definitions must be wrapped in the block 

starting with a start_definition and ending with 

a end_definition. 

 
start_definition 

platform:     windows 

use_esa_main: yes 

kernel:       development 

bitness:      32bit 

dll_lib:      

esys_udp_conn.dll 

end_definition 

 

     We run the co-simulation under 32-bit Microsoft 

Windows operating system. We use the OM Debugger 

Console for debugging the simulation, so we need a 

development kernel. 

     In our case, the OM side should be “in charge”.  

Setting use_esa_main on yes means that we use the 

external dynamic loaded library (DLL file) in the OM 

simulation. The co-simulation is started from the OM 

GUI like common simulations. 

     With use_esa_main set on yes, we need to define a 

name of the DLL file with the external code. This name 

is a parameter of item dll_lib. 

 

 

3.8 Definition of External Application 
In order to implement a communication between the OM 

and a real network node we created an external 

application that is used as middleware between the OM 

model and the network interface of the local workstation. 

The application reads data from the OM, translates them 

into SNMP requests and sends them to a network node. 

Then it waits for the SNMP response from an agent 

implemented in the destination node. When SNMP 

response arrives, it is translated back into a data structure 

compatible with the OM and it is entered into the 

simulation model. 

     We used the functions of the OM API for 

sending/reading data to/from the OM. These functions 

are declared in the esa.h header file, which also contains 

the functions to initialize the co-simulation and register 

callback functions. 

     The external application developed is compiled as a 

dynamically loaded library. All the functions that should 

be available to the co-simulation coordinator have to be 

exported with code extern "C" DLLEXPORT. There are 

two functions of this type esa_main and callback. 

     The esa_main function completes the basic 

initialization procedures of the co-simulation and 

includes the Winsock library initialization (for 

communication through the network interface) and 

registration of the callback function to the ESYS 

interface. 

     The callback function is called, whenever data are 

written on this interface [13]. The data are read from the 

interface, encapsulated to the SNMP request and sent to 

the SNMP agent. After obtaining the response, the 

corresponding data is converted and forwarded to the 

simulation model through the ESYS interface. 

     For sending the SNMP request there is an internal 

function (without an export) called snmp. This function 

realises the SNMP communication using the functions 

and structures from the snmp.h and Mgmtapi.h windows 

header files [15]. It can create an SNMP Get-Request 

and Get-Next-Request to obtain values from the MIB 

database of the SNMP agent. When the SNMP structure 

is filled with data, the request can be sent via the 

SnmpMgrRequest function. If this call succeeds, the 

SnmpVarBind structure is filled with the value of the 

requested object by the SNMP agent.  

     The data returned by real equipment is stored in a 

data type, which is incompatible with the OM, so a 

conversion is necessary [16]. With respect to the type of 

the returned value it is converted and saved in a special 

structure. This structure contains a constant used to 

specify the value type and the ID of the returned object 

(saved as string). The conversion of complex data types 

to standard string is executed by functions readAsnOid, 

readAsnAddress and readAsnString.  

     After processing the data obtained, the corresponding 

structures are deallocated by calling the 

SnmpUtilMemFree function. Finally, the SnmpMgrClose 

function destroys the SNMP manager instance and the 

pointer on the structure for the converted values. 

 

 

4 Simulation Scenario 
In real network conditions the SNMP manager creates 

the SNMP message and sends it toward to the SNMP 

agent. By default, the SNMP message is delivered 

through the network to the SNMP agent using the UDP 

transport protocol. 

     Our evaluation test-bed consists of a real network 

represented by a Cisco router C1841 and a simulation 

model in the OM environment. Because of this 

combination of real and simulated systems, this solution 

has more complex architecture than the majority of real 

infrastructures, but at the same time, it offers several 

interesting research opportunities. The whole evaluation 

test-bed is composed from the SNMP manager created in 

OM, esys interface, external application and the SNMP 

agent implemented in a real router with SNMP support. 

The architecture of the test-bed is shown in Fig. 9.          

     The communication process of our simulation 

scenario is described in following text. The SNMP 

manager creates the SNMP message in the OM and 
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sends it to the esys interface. Through the esys interface 

the SNMP message is passed to the external application 

running on local workstation. During the transmission 

through the esys interface data conversion must be 

provided. This conversion is necessary because the OM 

and the external application use incompatible data types. 

The external application places the converted data into 

an SNMP message and sends it to the SNMP agent in 

UDP datagrams. The SNMP agent is located in a 

hardware device. After processing, the SNMP agent 

sends the answer in as an SNMP message back to the 

external application. The external application extracts 

data from the response and forwards them to the esys 

interface. In the esys interface, data is converted and sent 

into OM. In the OM, the data received is processed by 

the model of the SNMP manager. 

 

 

5   Conclusion 
We have created a communication system able mutually 

exchange information between real network components 

and the the OM simulation environment. This system 

uses SNMP messages to communicate with each other. It 

can create an realistic SNMP message inside the 

simulation environment of the OM, encode it using the 

BER algorithm and transmit to a real network device 

through the esys interface. The destination network 

device can search for and read the required value from 

the MIB database and send it back to the OM. To 

achieve this functionality was necessary to modify the 

source code of external applications and the model 

created in the OM. The modification is based on the 

implementation and configuration of esys interface, 

which is part of the ESD system. The possibility of 

interconnection of simulations running in the OM with a 

real environment is the result of modifications.  

      The interconnection of real and simulating 

environments opens the way towards complex 

simulation scenarios that can be use e. g. within the 

development of complex communication systems for 

network managing or quality of service assurance. 
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