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Abstract: - This study presents a novel means of shortening a Reed Solomon (RS) code at the bit level, yielding 

only shortened BCH subcodes. With the use of a certain basis, an RS codes over )2( mGF  is mapped onto a 

binary image[4], which contains m concatenated BCH sub-codewords and some glue-vector codewords. With 

the proposed approach, there only exist some shortened BCH subcode generators in the diagonal entries of the 

corresponding binary image generator matrix of an RS code. Hence, only binary codewords of shortened BCH 

subcodes exist in concatenation. When such a codeword is transmitted, BCH decoders or an RS decoder can be 

adopted at the receiver. In simulations of a BPSK coherent system over AWGN channels, the error 

performance of BCH algebraic decoding is better than that of RS algebraic decoding. The coding gain between 

both decoding algorithms becomes obvious as the code rate reduces or the error correcting capability of an RS 

code increases. At the word error rate 10
-5
, the code gain can reach as much as 1.5 dB at the code date 0.747. 

Additionally, with the proposed method for shortening RS codes over GF(2
8
), such a shortened RS code can be 

decoded by two or three BCH decoders in parallel, which greatly reducing the decoding times and 

computational complexity. 

 

Key-Words: - RS decoding, shorten RS codes, shorten BCH codes, binary images. 

 

1 Introduction 
Reed-Solomon (RS) codes have been widely adopted 

in practical error control applications, such as 

satellite communications or compact disk digital 

audio & digital versatile disks, high-definition 

television (HDTV) or digital audio broadcasting / 

digital video broadcasting (DAB/DVB). They have 

been widely accepted mostly because their properties 

make them uniquely suitable for error correction in a 

broad spectrum of applications. Perhaps, the most 

important practical aspect of RS codes is their burst 

error-correcting capability, which makes them 

effective against degradation and attractive for 

applications in fading channels, jamming 

environments, and recording systems.  

According to the necessity of applications, some 

shortened RS codes are desired. In such applications, 

the system internal architecture determines the values 

of coding scheme parameters that are required for 

error control. Shortening is a technique in which 

some information symbols are removed from the 

code in order to reduce its dimensionality. Shortened 

RS codes retain many salient properties of the 

mother codes, from which they are derived. A 

shortened RS code can be formed by setting some 

information symbols in the mother RS code to zero. 

Since these inherent all-zero symbols can be 

regarded as known symbols in the receiver, therefore 

they need not be transmitted. A shortened cyclic 

code has at least the same error-correcting capability 

as the mother code[1][2]. So the code is effectively 

shortened without altering its minimum distance. In 

the study[2], if the deleted symbols are treated as 

erased positions, then the standard errors and erasure 

decoder for an RS code is adopted to decode 

shortened version of this same code. Any k symbols 

of an RS code can be used as the message symbols in 

a systematic representation. Given a code sequence 

with k symbols and n – k erasures (assume n is the 

codeword length), the systematic encoding will give 

a codeword containing the k arbitrary symbols in 

their input positions and the erasures will has been 

corrected.  

A few studies have developed shortened RS codes 

[5]-[10]. In two of them[5][6], since shortened RS 

codes over )2( mGF  have the property of maximum 

distance separability at the symbol level (1 symbol = 

m bits), they are adopted in the fault-tolerance 

systems to improve the bit error correction. In two 

other studies[7][8], a rate-compatible punctured and 
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shortened RS code is utilized to minimizes packet 

retransmission or packet loss in network 

communications. In a fifth study[9], the decoding 

latency matches the shortened RS code length rather 

than the mother RS code length. Therefore, the 

saving in decoding latency can be significant. In 

another study[10], a way to fold a shortened RS code 

reduces the probability of erroneous reception. All 

these studies are completed at the symbol level.  

Some studies have addressed RS decoding at the 

bit level [3-4][11-12][16]. In one of them[3], bit-

level soft decision information is used in a proposed 

RS decoding, which is a sort of maximum likelihood 

decoding (MLD) with less complexity than trellis 

decoding. However, it can only be adopted to decode 

short-length RS codes. In [4], the main contribution 

of this paper was to present a computationally 

efficient hybrid reliability-based decoding algorithm 

for RS codes, which yield the same results as MLD. 

This hybrid decoding algorithm consists of two 

major components – a re-encoding process and a 

successive erasure-and-error decoding process for 

both bit and symbol levels. One study[11] presents a 

concatenated turbo coding system in which an RS 

outer code is concatenated with a binary turbo inner 

code. Since there is an interactive turbo-coding 

system used in the communication scheme, both 

encoding and decoding are carried out in two stages, 

which consist of turbo-decoding and RS decoding 

with Chase-GMD algorithm. Another 

investigation[12] proposed an approach to combine 

both Chase-2[19] and GMD[18] algorithms. This 

approach generalizes the results of from binary codes 

to the nonbinary case. It has shown that a Chase-

GMD decoder succeeds whenever a GMD decoder 

does. That study also considered the choices of 

reliability measures to be used in conjunction with 

the Chase-GMD algorithm. Another work[16] used 

the properties of a binary image generator matrix of 

an RS code to develop a partition decoding algorithm. 

Simulations reveal that the decoding performance of 

the proposed partition decoding algorithm is a little 

poorer, by 1.0 to 1.4 dB at BER 10
-5
, than that 

achieved by MLD, but is 0.8 to 1.1 dB better than 

that achieved by GMD. 

No study has yet discussed an algorithm for 

decoding shortened RS codes at the bit level. 

Accordingly, an opportunity still exists to increase 

the effectiveness of decoding by reducing the 

complexity of decoding a shortened RS codes. In this 

study, BCH algebraic decoding is adopted for 

shortened RS codes at the bit level, to increase the 

error performance than conventional RS algebraic 

decoding. Additionally, the complexity of decoding a 

binary BCH code is much less than that of decoding 

an RS code of the same code length. Based on the 

motivation of increasing error performance and 

decreasing decoding complexity of a shortened RS 

code, a proposed method for shortening RS codes are 

prevented in this work. In the organization of this 

work, Section 2 introduces the code structure of 
binary images of RS codes. Section 3 presents a 

method for shortening RS codes at the bit level. 

Based on the code structure of a shortened RS code 

at the bit level, BCH algebraic decoding is applied to 

decode such a shortened RS code at the bit level. 

Section 4 presents simulations and bounds on its 

error performance. Finally, Section 5 draws 

conclusions. 

 

2 Code structures of RS codes at bit 

level 

Let C be an (N, K, D) RS code over )2( mGF with 

code length N, information length K and minimum 

distance D = N – K + 1. For binary transmission, the 

symbols of this code must map into binary bits. Let 

),,( 110 −= mB βββ ⋯ be a basis of )2( mGF . For a 

codeword CVVVV N ∈= − ),,,( 110 ⋯ , each 

11,11,00, −−++= mmiiii aaaV βββ ⋯  is a symbol in 

)2( mGF  and each jia ,  is a bit in GF(2). Let 

)(VΩ be a mapping that maps a codeword into the 

following binary mN-tuple, 

),,,,,,,,,,,(

)(

1,11,11,01,11,11,00,10,10,0 −−−−−−=

Ω=

mNmmNN aaaaaaaaa

Vv

⋯⋯⋯⋯
 

(1) 

The set of binary mN-tuples, 

}),({)( CVVvC b ∈Ω== , is called the binary 

image[4][13] of C with respect to B, which is a linear 

(mN, mK) code with minimum distance D
(b)
 of 

greater than or equal to D. Conversely, if 
)(bCv ∈ is 

known, then the inverse mapping )(1 v−Ω  yields the 

corresponding codeword CV ∈ . Consider an (N, K) 

RS code with the generator polynomial 
KN

KN XgXggXg −
−+++= ⋯10)( ; the 

generator matrix of this code is shown as follows[1],  
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(2) 

where, for 10 −≤≤ Ki , a vector )]([ XgXg i

i= is 

formed by cyclically shifting the vector 

)]([0 Xgg =  by i places, and the notation 

),,()]([ 110 −= Npppxp ⋯ , as 

1

110)( −
−+++= N

N XPXppXp ⋯ . Then the 

generator matrix of the binary image )(bC  of C is 

[4][13] 



































Ω

Ω

Ω

Ω

Ω

Ω

==

−−

−

−

−

)(

)(

)(

)(

)(

)(

11

11

01

10

10

00

)(

km

m

m

k

b

g

g

g

g

g

g

G

β

β
β

β

β
β

⋮

⋮

⋮

 .                             (3) 

 

The code structure of a binary image of an (N, K, D) 

RS code over )2( mGF  is the sum of a concatenation 

of m binary (N, k, d) BCH sub-codes and some glue-

vector codewords. The binary generator matrix can 

be expressed as follows[3][4][13], 
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where, for mi ≤≤1 , 
)(i

bchG and 
)(i

gvG  are a Nk ×  

BCH generator sub-matrix and an NkKm ×− )(  glue-

vector generator sub-matrix, respectively. An 

example is given as follows. 

 

Example 1: Consider (7, 5, 3) RS code over GF(2
3
) 

generated by the polynomial .013 =++− αα The 

generator polynomial of this code is given by 
3422 ))(()( αααα ++=++= XXXXXg . Its 

corresponding vector is )0,0,0,0,1,,( 43

0 αα=g . 

The binary generator matrix, based on the 

polynomial basis B = (1, α, α2), is given by (Ex.1.1). 
Through row operations, the above generator matrix 

becomes such a trellis oriented generator matrix 

(TOGM) [14] as shown by (Ex.1.2). Although both 

generator matrices are different, the binary codes   

that are generated by these two generators are 

identical, because of their linearity. 

 

3 Method for shortening RS codes at 

bit level 
Based on this generator matrix structure in (3), a 
binary information message u can be presented:  

( ))()()1( ,,, gm uuuu ⋯= ,                 (7) 

 

where, for ,1 mi ≤≤ an information sub-vector 

)(iu is associated with a BCH generator sub-

matrix
)(i

bchG  and the sub-vector 
)(gu is related to a 

glue-vector generator sub-matrix 

( ))()1( ,, m

gvgvgv GGG ⋯∆ . Let c be a codeword 

in ),,()( DmKmNC b
, its encoding is given by 

 

( )























=

=

)()2()1(

)(

)2(

)1(

)()()1(

)(

0

00

00

,,,

m

gvgvgv

m

bch

bch

bch

gm

b

GGG

G

G

G

uuu

Guc

⋯

⋮

⋮⋮

⋯

⋯

⋯

 

 (8) 

 

According to [2], shortening an information bit is 

equivalent to deleting its related row and column 

from the mother code generator matrix. For example, 

if the first information bit is shortened, then the first 

row and first column are deleted from the mother 

code generator matrix. In (4), if the information sub-

vector 
)(gu  is shortened (or fixed as an all-zero 

vector), then codewords in this shortened code C
(b)
 

are generated through these m BCH subcode 

generator matrices in parallel.  

However, if the glue-vector information sub-

vector 
)(gu  is shortened, then the related m(K - k) 

rows and columns are deleted from the generator 

matrix G
(b)
. For example, in Example 1, if the last 
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three rows and the 13
th
 to 15

th
 columns, related to the 

information sub-vector 
)(gu , are deleted, then the 

parity check sub-matrix in the third subcode matrix, 
)3(

bchG , is also deleted. In such a circumstance, the 

information sub-vector 
)3(u  is forced to be all-zero. 

In other words, some information bits of a BCH 

subcode are also forced to shorten in addition to 

shorten these m(K - k) glue-vector information bits.  

A method for shortening information bits that are 

associated with glue-vector information sub-vector 
)(gu  in G

(b)
 is proposed here. After it is applied, 

only shortened BCH subcodes exist in C
(b)
. These 

shortened BCH subcodes are called the residual 

shortened BCH subcodes in this work. When the 

inverse mapping )(1 ⋅Ω−
is applied, these residual 

shortened BCH subcodes can be transformed into the 

corresponding mother RS code, from which they are 

derived. The main contribution of this work is to 

propose a method for shortening RS codes such that 

only shortened BCH subcodes are obtained, and then 

decoding can be completed by BCH decoding.  

Let L be the number of shortened symbols in a 

mother RS code, and l be the number of deleted BCH 

subcodes, and x (assume x < m) be the total number 

of shortened bits in these residual shortened BCH 

subcodes. To converse the information length, the 

number of information bits shortened in C
(b)
 equals 

the number of shortened symbols in the mother RS 

code over )2( mGF  multiplied by m, 

xlkkKmmL ++−= )( ,                           (7) 

where m(K - k) represents the length of the glue 

vector information in C
(b)
. To converse the code 

length, the number of bits that are shortened in C
(b)
 is 

equal to the number of shortened symbols in C 

multiplied by m:  

xNlmL +=                             (8) 

(7)(8) yield the following equation; 

kN

kKm
l

−
−

=
)(
 .                           (9) 

If Nl  is completely divided by m without a 

remainder, then 

m

Nl
L = ,                             (10) 

Otherwise,  






=
m

Nl
L ,                             (11) 

where  y  denotes the least number greater than y. 

From (8), once the values of L and l are found, then 

the following equation can be obtained. 

NlmLx −= .                          (12) 

When the proposed shortening method is applied, the 

mother (N, K) RS code becomes ( 'N , 'K ) RS code 

with code length LNN −='  and information length 

LKK −=' . The ( 'N , 'K ) RS code only contains 

'm  residual shortened ( 'n , 'k ) BCH subcodes with 

code length )'/(' mxNn −=  and )'/(' mxkk −= , 

and lmm −=' . Table 1 lists the shortened RS codes 

in their mother codes over GF(2
8
), by using this 

proposed shortening method. The following example 

is given for illustrative purposes. 

 

Example 2: In Table 1, consider (255, 239) RS code 

with 8-error-correcting over GF(2
8
). There are eight 

(255, 191) BCH subcodes with 8-error-correcting are 

contained in this mother code. With this proposed 

shortening method, there are 192 symbols shortened 

in the mother RS code, which is equivalent to shorten 

six (255, 191) BCH subcodes and six bits in the two 

residual (255, 191) BCH subcodes. Hence, there are 

two residual shortened (252,188) BCH codes only 

contained in the shortened (63, 47) RS codes.  

 

4. BCH algebraic decoding for 

shortened RS codes at bit level 
A. Decoding 
After the proposed shortening method applied, the 

mother (N, K) RS code becomes the shortened 

( 'N , 'K ) RS code, which only contained some 

shortened ( 'n , 'k ) BCH codes. Data are encoded by 

shortened ( 'N , 'K ) RS code. They are transmitted 

with BPSK signalling. At the receiver, the received 

sequence is independently decoded by BCH 

decoding. Then the inverse mapping )(1 ⋅Ω−
 is 

applied, the decoded sequence at the symbol level V̂  

is output. Let a received sequence be 

),,( 1'10 −= mrrrr ⋯ , where 

),,( ,1',1,0 iniii rrrr −= ⋯ and 1'0 −≤≤ mi . The 

proposed decoding is presented as follows. 

1) Decode each ir  using the (N, k) BCH 

algebraic decoders in parallel and output  
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a decoded  vector )ˆ,ˆ,ˆ(ˆ
1'10 −= mvvvv ⋯  

2) Output the decoded sequence (or 

codeword) at the symbol level 

)ˆ(ˆ 1 vV −Ω= . 

 

In [1][4], RS decoding comprises four 

steps, which are evaluation of syndromes, 

determination of the error-locator polynomial, 

determination of the roots of the error-locator 

polynomial, and determination of error values. 

Binary BCH decoding only uses the first three 

steps to correct binary random errors. The 
received sequence can be decoded with several 

BCH decoders in parallel, which is more effective 

than RS decoding for decoding such a shortened RS 

code. 
 

B. Error performance bound 

Assume such a shortened RS code is transmitted 

with BPSK signalling over an AWGN channel with 

zero mean and variance
2

0N
. Let R denote the 

shortened code rate, and Eb be the energy of a BPSK 

signal per information bit. At a BPSK coherent 

receiver, the error transition probability p is given 

by  

∫
∞

−==
0/

2

0 )exp(
1

)/2(
~

NRE
b

b

dNREQp λλ
π

 .(

13) 

Since t+1 symbol (or bit) errors in such a shortened 

RS code dominate the error performance of 

algebraic decoding of both RS code and BCH code, 

therefore the word error rates achieved 

with ),( KN RS algebraic decoding and with 

),( kn BCH algebraic decoding are bounded by  

 

))1('(')1('

, ))1(())1(1(
1

' +−+ −−−








+
≥ tnmtm

RSe pp
t

n
P

(14) 

and 

))1('()1(

, )1(
1

' +−+ −








+
≥ tnt

BCHe pp
t

n
P     (15) 

 

 

C.  Simulations 
This study presented a method for shortening RS 

codes such that only a few shortened BCH subcodes 

are included in their binary images. Figures 1 to 6 

show the error performance of six shortened RS 

codes, such as shortened (63, 59)RS code, shortened 

(63, 55)RS code, shortened (63, 51)RS code, 

shortened (63, 47)RS code, shortened (95, 77)RS 

code, and  shortened (95, 71)RS code. In these 

figures, coding gains between both algebraic 

decoding algorithms are various, and they are 

dependent on the code rate and the error correcting 

capability of a shortened RS code. As the coding 

rate decreases, the coding gain for shortened RS 

codes increases. At the word error rate 10
-5
, the 

coding rates in Figures 1 to 6 are 0.939, 0.873, 0.81, 

0.746, 0.815 and 0.747, respectively. The 

corresponding coding gains are 0.44 dB, 0.72 dB, 

0.83 dB, 0.88 dB, 1.5 dB and 1.77 dB. The error 

performance is also proportional to the error 

correcting capability of a shortened RS code. For 

example, the error performance of shorten RS codes 

with 6 and 8 error corrections in Figures 3 and 4 is 

much less than that of those codes with error 

correcting capabilities 9 and 12 in Figures 5 and 6.  

 

5. Conclusion 
The main contribution of this work is the 

development of a method for shortening an RS code 

such that only its shortened BCH subcodes exist in 

its binary image. Such a shortened RS code can 

therefore be decoded by either RS decoding or BCH 

decoding. The decoding complexity of BCH codes 

is less than that of RS codes[20] and simulation 

results show that with BPSK signalling, decoding of 

BCH codes outperforms that of RS codes. 

Consequently, when the a proposed method for 

shortening an RS code is used, BCH decoding 

adopted in parallel is more effective and powerful 

than RS decoding to eliminate random errors over 
AWGN channels. 
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Figure 1: The error performance of RS and BCH algebraic decoding (AD) for a shortened (63, 59) RS code 

with BPSK coherent system over AWGN channels 
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Figure 2: The error performance of RS and BCH algebraic decoding for a shortened (63, 55) RS code with 

BPSK coherent system over AWGN channels  
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Figure 3: The error performance of RS and BCH algebraic decoding for a shortened (63, 51) RS code with 

BPSK coherent system over AWGN channels 
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Figure 4: The error performance of RS and BCH algebraic decoding for a shortened (63, 47) RS code with 

BPSK coherent system over AWGN channels  
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Figure 5: The error performance of RS and BCH algebraic decoding for a shortened (95, 77) RS code with 

BPSK coherent system over AWGN channels 
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Figure 6: The error performance of RS and BCH algebraic decoding for a shortened (95, 71) RS code with 

BPSK coherent system over AWGN channels 
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Table 1: the proposed method for shortening RS codes over GF(2
8
) 

(N, K, t) RS 

code 

(N, k) BCH 

subcode 

 

L: number of 

shortened 

symbols in 

mother RS code  

l: number of 

deleted 
BCH subcodes 

x: total number of 

shortened bits in 

residual BCH 

subcodes 

shortened ( 'N , 'K ) 

RS code 

 

(255,253,1) (255,247) 192 6 6 (63, 61) 

(255,251,2) (255,239) 192 6 6 (63, 59) 

(255,249,3) (255,231) 192 6 6 (63, 57) 

(255,247,4) (255,223) 192 6 6 (63, 55) 

(255,245,5) (255,215) 192 6 6 (63, 53) 

(255,243,6) (255,207) 192 6 6 (63, 51) 

(255,241,7) (255,199) 192 6 6 (63, 49) 

(255,239,8) (255,191) 192 6 6 (63, 47) 

(255,237,9) (255,187) 160 5 5 (95, 77) 

(255,235,10) (255,179) 160 5 5 (95, 75) 

(255,233,11), (255,171) 160 5 5 (95, 73) 

(255,231,12) (255,163) 160 5 5 (95, 71) 

(255,229,13) (255,155) 160 5 5 (95, 69) 

(255,227,14), (255,147) 160 5 5 (95, 67) 

(255,225,15) (255,139) 160 5 5 (95, 65) 

(255,223,16) (255,131) 160 5 5 (95, 63) 

(255,221,17) (255,131) 160 5 5 (95, 61) 

(255,219,18) (255,131) 160 5 5 (95, 59) 

(255,217,19) (255,123) 160 5 5 (95, 57) 

(255,215,20) (255,115) 160 5 5 (95, 55) 

(255,213,21) (255,115) 160 5 5 (95, 53) 

(255,211,22) (255,107) 160 5 5 (95, 51) 

(255,209,23) (255, 99) 160 5 5 (95, 49) 

(255,207,24) (255, 91) 160 5 5 (95, 47) 

(255,205,25) (255, 91) 160 5 5 (95, 45) 

(255,203,26) (255, 87) 160 5 5 (95, 43) 

(255,201,27) (255, 79) 160 5 5 (95, 41) 

(255,199,28) (255, 71) 160 5 5 (95, 39) 

(255,197,29) (255, 71) 160 5 5 (95, 37) 

(255,195,30) (255, 63) 160 5 5 (95, 35) 

(255,193,31) (255, 55) 160 5 5 (95, 33) 
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Table 1 (Cont.): the proposed way to shortened RS codes over GF(2
8
) 

(N, K, t) RS 

code 

(N, k) BCH 

subcode 

 

L: number of 

shortened 

symbols  in 

mother RS code 

l :number of 

deleted 
BCH subcodes 

x : total number of 

shortened bits in 

residual BCH 

subcodes 

shortened ( 'N , 'K ) 

RS code 

 

(255,191,32) (255, 47) 160 5 5 (95, 31) 

(255,189,33) (255, 47) 160 5 5 (95, 29) 

(255,187,34) (255, 47) 160 5 5 (95, 27) 

(255,185,35) (255, 47) 160 5 5 (95, 25) 

(255,183,36) (255, 47) 160 5 5 (95, 23) 

(255,181,37) (255, 47) 160 5 5 (95, 21) 

(255,179,38) (255, 47) 160 5 5 (95, 19) 

(255,177,39) (255, 47) 160 5 5 (95, 17) 

(255,175,40) (255, 47) 128 4 4 (127, 47) 

(255,173,41) (255, 47) 128 4 4 (127, 45) 

(255,171,42) (255, 47) 128 4 4 (127, 43) 

(255,169,43) (255, 45) 128 4 4 (127, 41) 

(255,167,44) (255, 37) 128 4 4 (127, 39) 

(255,165,45) (255, 37) 128 4 4 (127, 37) 

(255,163,46) (255, 29) 128 4 4 (127, 35) 

(255,161,47), (255, 29) 128 4 4 (127, 33) 

(255,159,48) (255, 21) 128 4 4 (127, 31) 

(255,157,49) (255, 21) 128 4 4 (127, 29) 

(255,155,50) (255, 21) 128 4 4 (127, 27) 

(255,151,52) (255, 21) 128 4 4 (127, 23) 

(255,149,53) (255, 21) 128 4 4 (127, 21) 

(255,147,54) (255, 21) 128 4 4 (127, 19) 

(255,145,55) (255, 21) 128 4 4 (127, 17) 

(255,143,56) (255, 13) 128 4 4 (127, 15) 

(255,141,57) (255, 13) 128 4 4 (127, 13) 

(255,139,58) (255, 13) 128 4 4 (127, 11) 

(255,137,59) (255, 13) 128 4 4 (127, 9) 

(255,135,60) (255, 9) 128 4 4 (127, 7) 

(255,133,61) (255, 9) 128 4 4 (127, 5) 

(255,131,62) (255, 9) 96 3 3 (159, 35) 

(255,129,63) (255, 9) 96 3 3 (159, 33) 
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