

Capability-Aware Object Management based on Skip List
in Large-Scale Heterogeneous P2P Networks

TAKASHI TOMIMOTO, TAKUJI TACHIBANA, KENJI SUGIMOTO

Graduate School of Information Science
Nara Institute of Science and Technology
8916-5 Takayama, Ikoma, Nara 630-0192

JAPAN
E-mail: {takuji-t,kenji}@is.naist.jp

Abstract: - In this paper, we propose an object management method in large-scale heterogeneous P2P networks.
In the proposed method, objects can be stored in and searched from nodes by considering node's capabilities.
The proposed system is based on skip list, and two identifications are utilized; TypeID and HashID. The
TypeID is used to specify each node's capabilities, on the other hand, HashID is used for providing load
balancing among nodes with similar capabilities. According to the two identifications, message routing for
storing and searching objects is performed. We evaluate the performance of the proposed method by simulation,
and we investigate the effectiveness of the method. Numerical examples show that the proposed method can
manage objects based on node's capabilities and can provide the scalability when the number of nodes is large
and the difference in node's capabilities is large.

Key-Words: - Peer-to-Peer networks, Skip list, DHT, Heterogeneous networks, Object management

1 Introduction
Peer-to-peer (P2P) networks have been widely used
over the Internet for various applications such as
Internet telephony [1], distributed data storages [2],
data streaming [3], and online games [4].The
numbers of P2P users and objects increase year by
year, and in order to manage a large number of users
and objects, structured P2P networks based on
distributed hash table (DHT) have emerged,
including Chord [5] and Pastry [6].

In the DHT-based P2P networks, a key is
assigned to each node and each object. An object is
stored in a node whose key is closest to the object's
key. In addition, an objective is searched from a
node whose key is closest to the object's key. By
using a hash function for the key assignment, the
load balancing can be provided among participating
nodes.

Moreover, the difference in node's capabilities
becomes large year by year [7,8]. For example,
multimedia file sharing, traffic/weather prediction,
and stress level monitoring of buildings are just
beginning to be utilized by mobile hand-held
devices or sensor nodes [9-11]. In the future, it is
indispensable to build large-scale heterogeneous
P2P networks.

Fig. 1 shows a large-scale heterogeneous P2P
network where several types of objects are utilized.

In such P2P network, it is expected that each object
is stored in a node whose capabilities satisfy the
requirement of the object. In addition, it is expected
that each object is searched from a node whose
capabilities satisfy the requirement of the object. For
example, music files should be stored in high-
performance computers and temperature data should
be searched from sensor nodes. Hence, objects
should be managed by considering node's
capabilities.

In this paper, we propose an object management
method that is used in large-scale heterogeneous
P2P networks. In the proposed method, objects can
be stored in and searched from nodes by considering
node's capabilities. This proposed method is based
on skip list [12].

In the capability-aware object management, two
identifications are utilized; TypeID and HashID.

Map

Music

Photo

Fig. 1: Heterogeneous P2P network for multiple
applications.

WSEAS TRANSACTIONS on COMMUNICATIONS Takashi Tomimoto, Takuji Tachibana, Kenji Sugimoto

ISSN: 1109-2742 312 Issue 5, Volume 9, May 2010

TypeID is assigned to each node according to its
own capabilities such as forwarding speed, data
storage, mobility, and availability. It is also assigned
to each object according to capabilities of node
which the object should be stored in or searched
from. On the other hand, HashID is assigned to
each node and each object with a hash function.

When an object is stored in or searched from a
node according to pre-specified TypeID and HashID,
message routing is performed based on the two
identifications. First, according to TypeID, a
message is routed to one of the nodes whose
TypeIDs are the same as the pre-specified TypeID.
Then, the message is routed according to HashID,
and finally the message is received by a node whose
HashID is closest to the pre-specified HashID. By
using the proposed method, it is expected that each
object can be managed according to node's
capabilities based on TypeID and that the load
balancing can be provided based on HashID. In
addition, this method has high scalability for
heterogeneous environments.

We evaluate the performance of the proposed
method by simulation, and we investigate the
effectiveness of this method. Moreover, we evaluate
its performance over physical networks. Note that
our proposed routing algorithms and simulation
results have been updated from those in our
previous works [13].

The rest of the paper is organized as follows.
Section 2 describes P2P system based on skip list,
and Section 3 explains the proposed capability-
aware object management. Numerical examples are
shown in Section 4 and finally, conclusions are
presented in Section 5.

2 P2P System based on Skip List
Skip list has been proposed as a randomized
balanced tree data structure [12]. In this data
structure, each data has a specific key and every
data is sorted by key.

Fig. 2 shows an example of skip list with three
levels. As shown in this figure, every data is doubly
linked in increasing order by key at level 0, and at
level i)0(i , each data in level 1i appears in

level i with probability p)10(p . The lists at
higher level allow the sequence of data to be
traversed quickly. Therefore, when data with a
particular key is searched, the searching process is
performed at higher level.

Recently, data structures similar to the skip list
have been utilized in large-scale P2P networks; skip
graph [14] and SkipNet [15]. P2P nodes in the two
networks correspond to data in the skip list. As

shown in Fig. 3, in a skip graph with h)1(h
levels, each P2P node has a specific key and all
nodes are doubly linked in increasing order by key
at level 0, as is the case with the skip list. At level i

)1(hi , there are one or more doubly linked lists
and each node belongs to one of the lists. Each node
has an identification called membership vector in
addition to its own key, and a list where a node
belongs at level i is determined by its own
membership vector.

On the other hand, in the SkipNet, ring data
structure is used instead of list data structure. Fig. 4
shows an example of SkipNet with four levels. As
shown in this figure, there are one or more rings at
each level, and rings at level i are obtained by
splitting a ring at level 1i into two disjoint sets.
Each node has two identifications called name ID
and numeric ID, and a node belongs to one of the
rings at each level according to its own numeric ID.
In every ring, nodes are sorted by name ID.

In both the skip graph and SkipNet, message
routing is performed according to the two
identifications. A message can be transmitted to a
node with pre-specified identifications. By using the
identifications effectively, the skip graph and
SkipNet can provide several functions such as
object storage, path locality, and constrained load
balancing for large-scale P2P networks.

3 Proposed Method
In this paper, we propose a capability-aware object
management in large-scale heterogeneous P2P
networks. The proposed method is based on the skip

H
E
A
D

T
A
I
L

2
4 7

11

16
19 22

Fig. 2: Skip list with three levels.

453831241491 52

4524141

319 52

241

4514

389 52

453831241491 52

Level 0

Level 1

Level 2

Level 3

000010 011 001101 100 111 110

Link 0 Link 0

Link 1 Link 1

Link 01

Link 00

Link 0

Link 10 Link 11

Route link Membership
vector

31

38

Fig. 3: Routing mechanisms for a skip graph.

WSEAS TRANSACTIONS on COMMUNICATIONS Takashi Tomimoto, Takuji Tachibana, Kenji Sugimoto

ISSN: 1109-2742 313 Issue 5, Volume 9, May 2010

list in order to consider node's capabilities, and ring
data structure is used as is the case with SkipNet for
the efficient message routing. In the following, we
explain our proposed method in terms of ID
assignment, node structure, message routing, and an
example of use.

3.1 ID Assignment
The proposed method utilizes two identifications
called TypeID and HashID. TypeID and HashID
correspond to name ID and numeric ID in SkipNet,
respectively.

The TypeID is assigned to each node for
specifying its capabilities such as forwarding
capability, data-storage capability, mobility, and
availability. In this paper, for the simplicity, we
assume that four-digit TypeID),,,(zyxw is used as
follows.
 First digit)(w : Forwarding capability
 Second digit)(x : Data-storage capability

 Third digit)(y : Mobility
 Fourth digit)(z : Availability

Here, the number of digits of TypeID can be
changed depending on how many capabilities
should be considered, and a capability can be
denoted with more than one digit in order to
represent the capability in more detail.

Table 1 shows an example about how each digit
number is determined. When the forwarding
capability)(wC is 1.0 Gbps, data-storage capability

)(xC is 150 Gbytes, mobility)(yC is low, and

availability)(zC is high for a high-performance

computer, TypeID is set to 0000wxyz (see Fig.
5(a)). In the case of a cell-phone whose)(wC is 2.4
Mbps,)(xC is 512 Mbytes,)(yC is high, and)(zC is

Table 1: Assignment of four-digit TypeID.

 0 1
w 1)(wC Gbps 1)(wC Gbps
x 50)(xC Gbytes 50)(xC Gbytes
y)(yC low)(yC high

z)(zC high)(zC low

high, TypeID of this node is set to 1110wxyz (see
Fig. 5(b)).

On the other hand, HashID is assigned to each
node by applying a collision-resistant hash function
to its IP address or others. For example, HashID of
the high-performance computer in Fig. 5(a) is set to
0111011 based on its IP address (see Fig. 6).
Moreover, a character “:” is used for each node in
order to discriminate its own TypeID and HashID as
TypeID:HashID. In the case of Fig. 5(a) and Fig. 6,
this high-performance computer is denoted as
0000:0111011.

3.2 Node Structure
Fig. 7 shows a node structure for the capability-
aware object management in a case of four-digit
TypeID. In this structure, there are one or more
rings at each level, and rings at level i are obtained
by splitting a ring at level 1i into multiple disjoint
sets. The number of levels is 1H when the
number of digits of HashID is H .

Each node belongs to a ring at every level so that
i -digits prefix of HashID is shared by other nodes.

C(w): 1.0 Gbps
C(x): 150 Gbytes
C(y): low
C(z): high

TypeID: 0000

C(w): 2.4 Mbps
C(x): 512 Mbytes
C(y): high
C(z): high

TypeID: 1110

Fig. 5: TypeID assignment.

(b) Cell-phone.

(a) High-performance computer.

HashID:0111011
Hash
function

IP address
192.168.0.1

Fig. 6: HashID assignment.

Level 0

Level 1

Level 2

Level 3

45 38

31

24149

1

52

Root ring

1

000 001 010 011 100 101 110 111
Ring Ring Ring Ring Ring Ring Ring Ring Numeric

ID

924 52 314514 38

Ring 0 Ring 1

Ring 00 Ring 01 Ring 10 Ring 11124 14

52
38

9

45

9

31

38

1

52 24

14

Name
ID

31

Name ID routing
Numeric ID routing

CW CCW

0

2

1

Lv

9 52
14 52

24 24

Routing table

45

Fig. 4: Data structure and message routing in
SkipNet.

WSEAS TRANSACTIONS on COMMUNICATIONS Takashi Tomimoto, Takuji Tachibana, Kenji Sugimoto

ISSN: 1109-2742 314 Issue 5, Volume 9, May 2010

For example, a node whose the first digit of HashID
is 1 belongs to Ring 1 at level 1.

Because nodes are sorted by TypeID at each ring,
nodes with the same TypeID, i.e., similar
capabilities, are located in a ring sequentially. Here,
the number of nodes in a top-level ring is one if all
nodes have different HashID. As the level becomes
low, the number of nodes in a ring becomes large.
Therefore, by using higher-level rings, messages are
traversed to a node quickly.

Under this node structure, each node has a
routing table which includes neighbor nodes at each
level (see node A in Fig. 7). This routing table is
used for message routing, which is explained in the
next subsection.

3.3 Message Routing
In the proposed method, message routing for storing
and searching an object is performed based on
TypeID and HashID. Moreover, message routing for
node join and departure procedures is also
performed based on the two identifications. Figs. 8
and 9 show two message routing algorithms. In the
following, we explain the routing algorithms in a
case where a source node sends a message to a
destination node.

At first, the source node starts message routing
based on TypeID as shown in Fig. 8 (solid lines in
Fig. 7). If the TypeID of the source node shares
some common prefixes with that of the destination
node, the source node determines a direction of
message routing from both its own TypeID and
destination node's TypeID (see (A) of Fig. 8). In Fig.
8, clockwise direction is denoted as true and counter
clockwise direction is denoted as false. On the other
hand, if the source TypeID and the destination

Ring 01

Level 0

Level 1

Root ring

Ring 0 Ring 1

Ring 00 Ring 10 Ring 11 Level 2

0001
0000 0010

0011

0100

0101

0110

0111

1000

1001

0110

1011

1100

1101

1110

1111

TypeID

CW CCW

0

2

1

Lv

Routing table

A

A

A

TypeID

HashID
routing

routing

Fig. 7: Node structure and message routing based on TypeID and HashID.

SendMsg(TypeID, HashID, msg) {
if(LongestPrefix(TypeID, localNode.TypeID) == 0) … (A)

msg.dir = RandomDirection();
else if(TypeID < localNode.TypeID)

msg.dir = false; // CounterClockwise
else

msg.dir = true; // Clockwise

msg.TypeID = TypeID; msg.HashID = HashID;
RouteByTypeID(msg);

}

RouteByTypeID(msg) {
h = localNode.MaxRoutingTableHeight; … (B)
while(h >= 0) {

if(LiesBetween(msg.dir, localNode.TypeID,
localNode.RoutingTable.[h][msg.dir].TypeID ,
msg.TypeID) == false) … (C)

{
h--;
continue;

}

if(LiesBetween(msg.dir, localNode.TypeID,
localNode.RoutingTable.[h][msg.dir].TypeID ,
msg.TypeID) == true) … (D)

{
NextCandidateNode = localNode.RoutingTable.[h][msg.dir];
if(CheckIfAlreadyVisited(msg, NextCandidateNode)) … (E)
{

h--;
continue;

}
msg.AlreadyVisited(localNode);
SendtoNode(NextCandidateNode, msg); … (F)
return;

}
}

if(localNode.TypeID != msg.TypeID) … (G)
{

NegativeAck(msg);
return;

}

msg.dir = true;
RouteByHashID(msg); … (H)

}

Fig. 8: Routing algorithm based on TypeID.

WSEAS TRANSACTIONS on COMMUNICATIONS Takashi Tomimoto, Takuji Tachibana, Kenji Sugimoto

ISSN: 1109-2742 315 Issue 5, Volume 9, May 2010

TypeID have no common prefix, a routing direction
is selected at random.

Then, along the selected direction, the source
node tries to find a candidate of the next node from
the top-level pointer in its own routing table (see
(B)), and if such a node cannot be found, the level
of pointer is decreased (see (C)). By using higher
level pointer preferentially, as is the case with the
skip list, the message reaches the destination node
quickly.

When a candidate of the next node is found, the
current node checks whether the candidate node has
already received the message (see (D) and (E)). If
the node has received the message previously, the
source node tries to find a new candidate of the next
node from lower level pointer again. Otherwise, the
source node sends the message to the candidate
node as the next node (see (F)). This process
continues until the message is received by a node
whose TypeID is the same as the destination
TypeID.

When the message arrives at a node with
destination TypeID, the message routing based on
TypeID terminates (see (H)). If there is no node
with destination TypeID, this message routing fails
and negative acknowledgment is sent back to the
source node (see (G)). Note that in the actual system,
a message will reach a node with the closest TypeID.

However, this is out of scope in this paper because it
depends on the implementation.

Just after the termination of the message routing
based on TypeID, message routing based on HashID
starts as shown in Fig. 9 (dotted lines in Fig. 7). This
message routing is performed only among nodes
with the destination TypeID. Note that the message
tends to be routed in a list structure at most of rings
(see Fig. 10(a)) but the message may be routed in a
ring structure at higher-level ring (see Fig. 10(b)).

In the message routing based on HashID, at first,
the node checks the number of digits which are
shared between its own HashID and the destination
HashID (see (C)). When the number of shared digits
is h , the message routing starts at level h . The
initial routing direction is set to true in Fig. 8.

The node checks whether TypeID of the
neighbor node is the same as its own TypeID. If the
neighbor node has the same TypeID, the node
forwards the message to the neighbor node (see (E)
of Fig. 9 and (1) of Fig. 10). At this time, when
HashID of the neighbor node is closer to the
destination HashID than its own HashID, the
information about the neighbor node is stored in the
message as the best node (see (D)). When the
neighbor node has a different TypeID, the current
node reverses the routing direction and continues
the message routing (see (F) of Fig. 9 and (2) of Fig.
10(a)).

The message routing based on HashID
terminates when the node with the destination
HashID is found (see (A)), when the message
routing for both directions finishes (see (G) of Fig. 9
and (3) of Fig. 10(a)), or when a node receives the
message again in the initial direction (see (B) of Fig.
9 and (2) of Fig. 10(b)).

In order to decrease the number of hops for
message routing over physical networks, we have to
consider the network proximity in our message

RouteByHashID(msg) {
if(msg.HashID == localNode.HashID ||

msg.FinalDestination == true) { … (A)
DeliverMessage(msg);
return;

}

if(msg.StartNode != null && localNode == msg.startNode) { … (B)
msg.FinalDestination = true;
SendtoNode(msg.bestNode);
return;

}

h = CommonPrefixLen(msg.HashID, localNode.HashID); … (C)

if(h > msg.ringLvl) {
msg.ringLvl = h;
msg.startNode = msg.bestNode = localNode;

}
if(abs(localNode.HashID - msg.HashID) < abs(msg.bestNode.HashID -

msg.HashID)){ … (D)
msg.bestNode = localNode;

}

if(localNode.RoutingTable[h][msg.dir].TypeID == msg.TypeID){ … (E)
SendtoNode(msg, localNode.RoutingTable[h][msg.dir]);

}
else if(msg.dir == true){ … (F)

msg.FinalDestination = false;
msg.startNode = null;
msg.dir = false;
SendtoNode(msg, localNode);

}
else if(msg.dir == false) { … (G)

msg.FinalDestination(true);
SendtoNode(msg, msg.bestNode);

}
}

Fig. 9: Routing algorithm based on HashID.

(1)(2) (3)

(2)
(1)

(a) List structure.

(b) Ring structure.

Fig. 10: Node structure for message routing
based on HashID.

WSEAS TRANSACTIONS on COMMUNICATIONS Takashi Tomimoto, Takuji Tachibana, Kenji Sugimoto

ISSN: 1109-2742 316 Issue 5, Volume 9, May 2010

routing algorithm. However, this is out of scope
because some solutions have been proposed in [15]
and those are available in our method.

3.4 Example of Use
Fig. 11 shows a P2P network where several types of
nodes have participated by using a P2P software
with our proposed method. In this network, we
assume that music files have been stored in high-
performance file servers. That is, TypeID of music
file is the same as that of high-performance file
server.

For example, when a driver (car node A) tries to
listen to a favorite song, the driver inputs its title
and file type into the software. In this software,
TypeID of the music file is determined from its file
type, and HashID is determined with a hash function
from its title.

Then, message routing starts in the P2P network
to find a destination node with the music file based
on the determined TypeID and HashID. If the
message reaches the destination node (server node
B), the driver can download the object from this
node.

If a DHT-based P2P network is built for each
node type, i.e., for each TypeID in our method, a
similar object management may be implemented.
However, this implementation requires that each
node has at least a pointer to each P2P network.
Therefore, the number of pointers becomes large
when the number of node types becomes large. On
the other hand, in our proposed method, each node
has only information about neighbor node's TypeIDs.
Therefore, in the future, it is expected that the
proposed method is effective in large-scale
heterogeneous P2P networks.

4 Numerical Examples
In this section, we evaluate the performance of the
proposed method by simulation. We assume that the
number of P2P nodes is N and the number of
objects is M . We consider how M objects are
stored in N nodes by using the proposed method.

In this P2P network, a four-digit TypeID is
assigned to each node and each object. For the
simplicity, in the following, we denote four-digit
TypeID with decimal number format, for example,
TypeID 0101 is denoted as TypeID 5. We assume
that TypeID i)150(i is assigned to a node (an

object) with probability i)(i . On the other hand,
HashID is denoted as 128 bits binary string, and it is
assigned to a node (an object) with a hash function.

Under this situation, we evaluate by simulation
the performance of the proposed capability-aware
object management. In order to perform the
performance comparison, we also evaluate the
performance of a conventional DHT-based method
where node's capabilities are not considered.

4.1 Impact of TypeID Assignment for Object
First, we investigate the impact of TypeID
assignment for each object. Here, the number of
nodes is 16384N , and TypeID i)150(i is

assigned to a node with probability 16/1i . In
addition, we assume that the number of objects
is 5000M .

Here, we consider two cases for probability i

with which TypeID i)150(i is assigned to

each object. In case 1, ,5.00 ,1.021

,05.043 5 ,02.014 and .0.015
That is, about half of objects should be stored in
nodes with TypeID 0 but no object should be stored
in nodes with TypeID 15. On the other hand, in case
2, ,0.00 101 ,02.0 ,05.01211

,1.01413 and 15 .5.0 In this case, about
half of objects should be stored in nodes with
TypeID 15 but no object should be stored in nodes
with TypeID 0.

Fig. 12(a) shows the total number of objects
which are stored in nodes with TypeID i in the case
1. From Fig. 12(a), we find that by using the
conventional method, objects are stored in all nodes
randomly regardless of those capabilities. As a
result, in the conventional method, capabilities of
each node are never considered, as expected.

On the other hand, we find that each object can
be stored in N nodes according to i by using the
proposed method. For example, nodes with TypeID
0 stores about half of objects and nodes with

Ring 01

Root ring

Ring 0 Ring 1

Ring 00 Ring 10 Ring 11
AA

BB

BB

BB

AA

AA

Fig. 11: Example of object management where car
node A downloads an object from server
node B.

WSEAS TRANSACTIONS on COMMUNICATIONS Takashi Tomimoto, Takuji Tachibana, Kenji Sugimoto

ISSN: 1109-2742 317 Issue 5, Volume 9, May 2010

TypeID 15 stores no object. Therefore, the proposed
method can manage objects by considering node's
capabilities. Note that in all the results for the
proposed method, an object with TypeID i has been
stored in a node with TypeID i necessarily.

Fig. 12(b) also shows the total number of objects
in the case 2. From this figure, we find that objects
can be stored in nodes with pre-specified
capabilities by using the proposed method. However,
in the conventional method, objects are stored in all
nodes randomly regardless of i . Therefore, the
proposed method is effective in heterogeneous
environments.

4.2 Impact of TypeID Assignment for Node
Next, we investigate the impact of TypeID
assignment for each node. In this subsection, the

number of nodes is 16384N and the number of
objects is 5000M .

Fig. 13(a) shows the total number of objects that
are stored in nodes with TypeID i , and Fig. 13(b)
shows the average number of objects. Here,

,2.00 ,15.01 ,1.02 ,09.03 ,08.04
,07.05 ,06.06 ,05.07 ,04.098

,03.01110 ,02.01312 and 1514

0.01. That is, the number of nodes with TypeID i
decreases as i becomes large. On the other hand,
TypeID i is assigned to each object with probability

.16/1i Hence, more or less the same number of
objects should be stored evenly for each TypeID.

From Fig. 13(a), we find that by using the
conventional method, the total number of objects for
each TypeID becomes small as TypeID i increases.

0

500

1000

1500

2000

2500

3000

0

Conventional method Capability-aware

Number of objects

TypeID
0 15105 0 15105

management

TypeID

0

500

1000

1500

2000

2500

3000
Conventional method Capability-aware

Number of objects

TypeID
0 15105 0 15105

management

TypeID

0

Fig. 12: Impact of TypeID assignment for each
object.

(a) Total number of objects stored in nodes with
each TypeID in case 1.

(b) Total number of objects stored in nodes with
each TypeID in case 2.

0 5 10 15 0 15105
TypeID

0

Number of objects

TypeID

1200

1000

800

600

400

200

Conventional method Capability-aware
management

2.5
Number of objects

0

0.5

1.0

1.5

2.0

0 5 10 15 0 15105
TypeIDTypeID

Conventional method Capability-aware
management

Fig. 13: Impact of TypeID assignment for each
node.

(a) Total number of objects stored in nodes with
each TypeID.

(b) Average number of objects stored in nodes
with each TypeID.

WSEAS TRANSACTIONS on COMMUNICATIONS Takashi Tomimoto, Takuji Tachibana, Kenji Sugimoto

ISSN: 1109-2742 318 Issue 5, Volume 9, May 2010

This is because the number of nodes becomes small
as i becomes large. As shown in Fig. 13(b), the
average number of objects which are stored in each
node is almost the same regardless of i .

However, by using the proposed method, each
object can be stored at nodes evenly according to

i regardless of the number of nodes with each
TypeID (see Fig. 13(a)). From Fig. 13(b), a node
with larger (smaller) TypeID stores a large (small)
number of objects. Therefore, in the proposed
method, a large number of objects can be stored in a
small number of high-performance computers and a
small number of objects can be stored in a large
number of low-performance computers.

4.3 Effect for Load Balancing
In this subsection, we investigate how the proposed
method can provide the load balancing among nodes
with the same TypeID. We assume that the number
of nodes is 256N and the number of objects
is .000,500M We assume that the number of
nodes with TypeID i is 16 for every i , and i is

equal to 1/16 for every i .
Fig. 14 shows the number of objects which are

stored in each node with TypeID 0. In the horizontal
axis of this figure, 16 nodes are represented as both
integer number and the first three-digits of HashID.
It is also shown how 16 nodes are spread in HashID
space.

From this figure, we find that the numbers of
objects for 16 nodes are much different. Therefore,
by using the proposed method, objects cannot be
stored randomly in nodes with the same TypeID.
However, from the node distribution in HashID
space, we find that a large (small) number of objects

are stored in sparsely-distributed (densely-
distributed) nodes. This is because objects are stored
in nodes according to HashID. Therefore, the
proposed method can provide the load balancing if
nodes are uniformly-distributed in HashID space,
for example, when the number of nodes is large.

4.4 Impact of Number of P2P Nodes
In this subsection, we investigate the impact of the
number of nodes on the performance of our
proposed method. In the following, the number of
nodes is N and the number of objects is given
by 2/NM .

In terms of TypeID assignment for each node,
we set 16/1i for every i . On the other hand, we
consider three cases in terms of TypeID assignment
for each object. In case 1, 16/1i for every i .

On the other hand, in case 2, 8/1i when i is

from 0 to 8 and 0i when i is from 9 to 15.

Moreover, in case 3, ,5.00 ,1.021 3

,05.04 5 ,02.014 and .0.015
Fig. 15 shows the average number of hops for the

proposed method in the three cases. From this figure,
we find that the average number of hops for every
case is almost the same. This denotes that the
average number of hops for the proposed method is
not affected by the TypeID assignment for each
object. Therefore, the proposed method is effective
even if various types of nodes have participated in a
P2P network.

In addition, we find that the average number of
hops increases as the number of nodes becomes
large as expected. Nevertheless, the average number
of hops is)(log NO for all the cases. This result
shows that our proposed method can provide
scalability in terms of the number of nodes.

0

2000

4000

6000

8000

<
0x04A

>

<
0x1D

A
>

<
0x22C

>

<
0x2A

0>

<
0x2B

A
>

<
0x2E

0>

<
0x301>

<
0x3E

A
>

<
0x439>

<
0x49F

>

<
0x500>

<
0x726>

<
0x760>

<
0xA

3F
>

<
0xB

A
0>

<
0xC

6A
>

Number of objects

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

11

0x00xF

1
2

16

15

14

13

12

10
9

8
73

4
6

5
HashID
space

Fig. 14: Total number of objects stored in each
node with TypeID 0.

0

10

20

30

40

1 10 100 1000 10000

Number of hops

Number of nodes

Case 1
Case 2
Case 3

Case 1
Case 2
Case 3

Case 1

Case 2

Case 3

Fig. 15: Average number of hops vs. number of
nodes.

WSEAS TRANSACTIONS on COMMUNICATIONS Takashi Tomimoto, Takuji Tachibana, Kenji Sugimoto

ISSN: 1109-2742 319 Issue 5, Volume 9, May 2010

4.5 Performance over Physical Networks
Finally, we evaluate the performance of our
proposed method over physical networks. We
generate a virtual physical network topology based
on Barabási-Albert (BA) model by using Boston
university Representative Internet Topology
gEnerator (BRITE) [16]. The generated network
consists of 5000 nodes in a square.

In this network, the number of P2P nodes is N ,
and the nodes are randomly selected among 5000
nodes. By using the proposed method, message
routing is performed among N P2P nodes based on
TypeID and HashID. In parallel, over the physical
network, messages are forwarded from a P2P node
to another P2P node via non-P2P nodes according to
Dijkstra's algorithm.

Fig. 16 shows the average number of hops over
the physical network against the number of P2P
nodes. In this figure, the number of objects is given
by 2/NM for the number of nodes N . TypeID

i)150(i is assigned to each node with

probability 16/1i . On the other hand, in terms of

probability i , we consider the same three cases as
the subsection 4.4.

From this figure, we find that the average
number of hops is)(log NO for all the cases, as is
the case with the previous subsection. Therefore, the
capability-aware object management has scalability
in terms of the number of nodes over physical
networks.

5 Conclusions
In this paper, we proposed the capability-aware
object management based on skip list, which is used
in large-scale heterogeneous P2P networks. In this
method, two identifications are utilized to consider
node's capabilities and provide the load balancing.

When objects are stored in and searched from a
node, message routing is performed according to the
two identifications. We evaluated the performance
of the proposed method by simulation. From
simulation results, we found that each object can be
stored in nodes by considering node's capabilities in
heterogeneous environments. In addition, we also
found that when the number of nodes is large, the
load balancing can be provided easily. The average
number of hops for the proposed method is

)(log NO , and hence the proposed method has
scalability in terms of the number of nodes. From
these results, our proposed method is one of the
most promising object management methods in
large-scale heterogeneous P2P networks.

References:
[1] http://www.skype.com/intl/en/welcomeback/.
[2] P. Druschel and A. Rowstron, PAST: A Large-

Scale, Persistent Peer-to-Peer Storage Utility,
Proc. HotOS VIII, Schoss Elmau, Germany,
2001.

[3] http://www.peercast.org/.
[4] S. Yamamoto, Y. Murata, K. Yasumoto, and M.

Ito, A Distributed Event Delivery Method with
Load Balancing for MMORPG, Proc. 4th ACM
SIGCOMM Workshop on Network and System
Support for Games, 2005.

[5] I. Stoica, R. Morris, D. Karger, F. Kaashoek,
and H. Balakrishnan, Chord: A Scalable Peer-
to-Peer Lookup Service for Internet
Applications, Proc. ACM SIGCOMM, August
2001.

[6] A. Rowstron and P. Druschel, Pastry: Scalable,
Distributed Object Location and Routing for
Large-Scale Peer-to-Peer Systems, Proc.
International Conference on Distributed
Systems Platforms, November 2001.

[7] Z. Xu, M. Mahalingam, and M. Karlsson,
Turning Heterogeneity into an Advantage in
Overlay Routing, Proc. IEEE INFOCOM'03,
April 2003.

[8] J. Hu, M. Li, H. Yu, and W. Zheng, Tourist: A
Self-Adaptive Structured Overlay in
Heterogeneous P2P Networks, Technical
Report THTR-CS-HPC-2006-001, Tsinghua
Universitfy, 2006.

[9] C. Chou, D. Wei, C. Kuo, and K. Naik,
Anonymous Peer-to-Peer Communication
Protocol over Mobile Ad-Hoc Networks, Proc.
IEEE Globecom 2006, November/December
2006.

0

50

100

150

200

250

64 128 256 512 1024
Number of nodes

Number of hops

Case1
Case2
Case3

Case1

Case2

Case3

Fig. 16: Average number of hops vs. number of
P2P nodes over physical network.

WSEAS TRANSACTIONS on COMMUNICATIONS Takashi Tomimoto, Takuji Tachibana, Kenji Sugimoto

ISSN: 1109-2742 320 Issue 5, Volume 9, May 2010

[10] Y. Zhang, W. Liu, and W. Lou, Anonymous
Communications in Mobile Ad Hoc Networks,
Proc. IEEE INFOCOM'05, March 2005.

[11] M. Demirbas and H. Ferhatosmanoglu, Peer-
to-Peer Spatial Queries in Sensor Networks,
Proc. the 3rd International Conference on
Peer-to-Peer Computing, September 2003.

[12] W. Pugh, Skip Lists: A Probabilistic
Alternative to Balanced Trees, Proc.
Workshop on Algorithms and Data Structures,
January 2003.

[13] T. Tomimoto, T. Tachibana, and K. Sugimoto,
Capability-Aware ID Assignment and
Message Routing based on Skip List in Large-
Scale Heterogeneous P2P Networks, Proc.
IEEE Globecom 2007, November 2007.

[14] J. Aspnes and G. Shah, Skip Graphs, Proc.
the 14th ACM-SIAM Symp. on Discrete
Algorithm (SODA)}, January 2003.

[15] N. Harvey, M. Jones, S. Saroiu, M. Theimer,
and A. Wolman, SkipNet: A Scalable Overlay
Network with Practical Locality Properties,
Proc. the Fourth USENIX Symposium on
Internet Technologies and Systems
(USITS'03), March 2003.

[16] http://www.cs.bu.edu/brite/.

WSEAS TRANSACTIONS on COMMUNICATIONS Takashi Tomimoto, Takuji Tachibana, Kenji Sugimoto

ISSN: 1109-2742 321 Issue 5, Volume 9, May 2010

