
 A Secure and Efficient Protocol of Multiple Session Keys Generation
Chang-Kuo Yeh

Department of Information Management

National Taichung Institute of Technology

129 Sanmin Rd., Sec. 3, Taichung,

Taiwan , R.O.C.

yehlin@ntit.edu.tw

Abstract: - To negotiate a session key can benefit from the technique of the public-key cryptography

such as key exchange and digital signature. This key cannot be used until the session is finished. In

current model such as SSL, if the sender desires to re-establish another new session with the same

receiver, the both sides, for security consideration, should repeat the same key exchange and digital

signature processes to generate a new session key. Apparently, the two processes must lower the

communication system efficiency. Therefore, a new session key generation protocol is proposed to

overcome this demerit. In our new model, the key exchange and digital signature process only

perform once, and the subsequent session keys can be computed in both sides without the two

processes. Because the two processes can be eliminated, our protocol can promote more performance

than the current-used model.

Key-Words: - Public-key cryptography, SSL, Authentication, Key Agreement

1 Introduction
The purpose of the session key generation is to

assure communication security between sender and

receiver. The sender deliver the message encrypted

by the session key to the receiver and the receiver

can decrypts it by the same session key, so the

session key generation should be finished before

communication.

 To negotiate a session key can benefit from the

technique of the public-key cryptography such as

key exchange [1] and digital signature [2]. In most

practical implementations, public-key cryptography

is used to authentication and negotiation of session

keys; those session keys are used with symmetric

algorithms to secure message traffic. So if based on

public-key cryptography, the session key generation

process should include two phases; the first is key

exchange process: two sides cooperate to negotiate a

session key; the other is mutual authentication

process: two sides authenticate each other by using

the technique of digital signature to make sure the

session key is not forged.

 In current-used model such as SSL handshake

protocol [15], while the session key is generated, it

cannot be used until the session is finished. If the

two parties desire to communicate each other again,

the session key generation process should restart to

generate a new session key [4,8]. This restart

process wastes time and bandwidth and increases

computational load for both sides, so many

proposed protocols called Multiple-Key agreement

protocols [3,6,7,9,10,11,12,13,14] are designed to

generate several session keys in one round of

session key generation process. For example, in [3],

it can generate four shared secret keys in one round

of the session key generation process. These keys

can be used in four sessions for the same sender and

receiver. The session key generation process

restarts only after the four session keys are used, so

the protocol can reduce overall computational load

and increase the communicational efficiency.

Basically, our protocol inherits the same idea

of the proposed protocols but further more efficient

than them, because the new model can generate

more secret session keys, theoretically no limitation,

in one round of session key generation process

without increasing too much computation load for

both sides. Next section, SSL handshake protocol is

described and the Multiple-Key agreement protocol

[14] is described in Section 3. We describe our

model in Section 4 and analyses our scheme to be

secure in Section 5. In Section 6, we compare our

scheme with current-used SSL model and the

Multiple-Key agreement protocols to show the

performance of our scheme is the best among them.

Finally, the conclusions are given in Section 7.

WSEAS TRANSACTIONS on COMMUNICATIONS Chang-Kuo Yeh

ISSN: 1109-2742 291 Issue 5, Volume 9, May 2010

2 SSL Handshake protocol
The SSL protocol [15] uses a combination of public-

key and symmetric key encryption. Symmetric key

encryption is much faster than public-key

encryption, but public-key encryption provides

better authentication techniques. An SSL session

always begins with an exchange of messages called

the SSL handshake. The handshake allows the server

to authenticate itself to the client using public-key

techniques, then allows the client and the server to

cooperate in the creation of a symmetric key used

for rapid encryption, decryption, and tamper

detection during the session that follows.

Optionally, the handshake also allows the client to

authenticate itself to the server. The steps involved
can be summarized as follows

1. The client sends the server the client's SSL

version number, cipher settings, randomly

generated data, and other information the

server needs to communicate with the client

using SSL.

2. The server sends the client the server's SSL

version number, cipher settings, randomly

generated data, and other information the

client needs to communicate with the server

over SSL. The server also sends its own

certificate and, if the client is requesting a

server resource that requires client

authentication, requests the client's
certificate.

3. The client uses some of the information sent

by the server to authenticate the server. If

the server cannot be authenticated, the user

is warned of the problem and informed that

an encrypted and authenticated connection

cannot be established. If the server can be

successfully authenticated, the client goes

on to Step 4.

4. Using all data generated in the handshake so

far, the client (with the cooperation of the

server, depending on the cipher being used)

creates the premaster secret for the session,

encrypts it with the server's public key

(obtained from the server's certificate, sent

in Step 2), and sends the encrypted

premaster secret to the server.

5. If the server has requested client

authentication (an optional step in the

handshake), the client also signs another

piece of data that is unique to this

handshake and known by both the client and

server. In this case the client sends both the

signed data and the client's own certificate

to the server along with the encrypted
premaster secret.

6. If the server has requested client

authentication, the server attempts to

authenticate the client. If the client cannot

be authenticated, the session is terminated.

If the client can be successfully

authenticated, the server uses its private key

to decrypt the premaster secret, then

performs a series of steps (which the client

also performs, starting from the same

premaster secret) to generate the master
secret.

7. Both the client and the server use the master

secret to generate the session key, which are

symmetric keys used to encrypt and decrypt

information exchanged during the SSL

session and to verify its integrity-that is, to

detect any changes in the data between the

time it was sent and the time it is received
over the SSL connection.

8. The client sends a message to the server

informing it that future messages from the

client will be encrypted with the session

key. It then sends a separate (encrypted)

message indicating that the client portion of
the handshake is finished.

9. The server sends a message to the client

informing it that future messages from the

server will be encrypted with the session

key. It then sends a separate (encrypted)

message indicating that the server portion of

the handshake is finished.

10. The SSL handshake is now complete, and

the SSL session has begun. The client and

the server use the session keys to encrypt

and decrypt the data they send to each other
and to validate its integrity.

It's important to note that both client and server

authentication involves encrypting some piece of

data with one key of a public-private key pair and

decrypting it with the other key:

 In the case of server authentication, the client
encrypts the premaster secret with the server's

public key. Only the corresponding private key can

correctly decrypt the secret, so the client has some

assurance that the identity associated with the public

key is in fact the server with which the client is

WSEAS TRANSACTIONS on COMMUNICATIONS Chang-Kuo Yeh

ISSN: 1109-2742 292 Issue 5, Volume 9, May 2010

connected. Otherwise, the server cannot decrypt the

premaster secret and cannot generate the symmetric

keys required for the session, and the session will be

terminated.

 In the case of client authentication, the client

encrypts some random data with the client's private

key-that is, it creates a digital signature. The public

key in the client's certificate can correctly validate

the digital signature only if the corresponding

private key was used. Otherwise, the server cannot

validate the digital signature and the session is

terminated.

 According the above description, one session key

can generalized in one round of handshake protocol.

If another session key is needed in both sides, the

handshake protocol must be restarted. In other word,

the digital signature and key exchange process must

repeat to generate a new session key. Obviously,

these restart processes will lower the whole

performance

3 Review of Multiple-Key agreement

protocol
Diffie-Hellman key exchange technique is applied

to the Multiple-Key agreement protocol. So, the

Diffie-Hellman key exchange technique should be

described before introducing the Multiple-Key

agreement protocol.

 Diffie-Hellman key exchange, also called

exponential key exchange, is a method of digital

encryption that uses numbers raised to specific

powers to produce decryption keys on the basis of

components that are never directly transmitted,

making the task of a would-be code breaker

mathematically overwhelming.

 To implement Diffie-Hellman, the two end users

Alice and Bob, while communicating over a channel

they know to be private, mutually agree on positive

whole numbers p and q, such that p is a prime

number and q is a generator of p. The generator q is

a number that, when raised to positive whole-

number powers less than p, never produces the same

result for any two such whole numbers. The value of
p may be large but the value of q is usually small.

 Once Alice and Bob have agreed on p and q in

private, they choose positive whole-number

personal keys a and b, both less than the prime-

number modulus p. Neither user divulges their

personal key to anyone; ideally they memorize these

numbers and do not write them down or store them

anywhere. Next, Alice and Bob compute public

keys a* and b* based on their personal keys

according to the formulas

 a* = qa
 mod p

and

b* = q
b
 mod p

 The two users can share their public keys a* and

b* over a communications medium assumed to be

insecure, such as the Internet or a corporate wide

area network (WAN). From these public keys, a

number x can be generated by either user on the

basis of their own personal keys. Alice computes x
using the formula

x = (b*)
a
 mod p

Bob computes x using the formula

x = (a*)
b
 mod p

 The value of x turns out to be the same according

to either of the above two formulas. However, the

personal keys a and b, which are critical in the

calculation of x, have not been transmitted over a

public medium. Because it is a large and apparently

random number, a potential hacker has almost no

chance of correctly guessing x, even with the help of

a powerful computer to conduct millions of trials.

The two users can therefore, in theory, communicate

privately over a public medium with an encryption

method of their choice using the decryption key x.

 The most serious limitation of Diffie-Hellman in

its basic or "pure" form is the lack of authentication.

Communications using Diffie-Hellman all by itself

are vulnerable to man in the middle attacks. Ideally,

Diffie-Hellman should be used in conjunction with a

recognized authentication method such as digital

signatures to verify the identities of the users over

the public communications medium. Diffie-Hellman

is well suited for use in data communication but is

less often used for data stored or archived over long

periods of time.

 Inherited from Diffie-Hellman technique, the
Multiple-Key agreement [14] is introduced.

 The system authority publishes a large prime p

and a primitive element g with order p-1 in GF(p).

We assume that A and B want to establish four

secret keys in a protocol round. Long term

public/private key pairs for A and B are (AA xy ,)

and (BB xy ,), where

pgy Ax

A mod=

pgy Bx

B mod= .

WSEAS TRANSACTIONS on COMMUNICATIONS Chang-Kuo Yeh

ISSN: 1109-2742 293 Issue 5, Volume 9, May 2010

“mod p” will be omitted in this section for easily

described. We assume that long term public keys

are exchanged via certificates, where CertA denotes

A’s public key certificate, containing a string of

information that uniquely identifies A, her static

public key Ay and a certifying authority CA’s

signature over this information. The protocol runs

as follows:

1. A selects two random integers 1Ak and 2AK ,

called short term secret keys, compute short

term public keys
1

1
AK

BA yr =

2

2
AK

BA yr =

such that 2/)1(,0 21 −<< prr AA . Then A

computes
21

1
AA kk

A gr +
=

and generates its signature As on { 21 , AA rr } as

follows:

1mod)()(2121 −+⋅+−⋅= pkkrrrxs AAAAAAA .

Next, A sends the authenticated messages

{ AAAA Certsrr ,,, 21 } to B.

2. Similarly, B also chooses 1Bk and 2BK and

computes

21

2

1

,

,

2

1

BB

B

B

kk

BB

k

AB

k

AB

yr

yr

yr

+

=

=

=

1mod)()(2121 −+⋅+−⋅= pkkrrrxs BBBBBBB .

Then B sends { BBBB Certsrr ,,, 21 } to A.

3. After receiving the message from B, A

computes)(21 BBB rrr ⋅= and verifies B’s signature

by checking
BBBB srr

B

r

B gry ⋅=
+)(21 .

If its verification holds, A computes four

common secret keys as follows:

,1!1
1

11
BAAA kkkx

B grK ==
−

,122
1

12
BAAA kkkx

B grK ==
−

2!1
1

23
BAAA kkkx

B grK ==
−

,

222
1

24
BAAA kkkx

B grK ==
−

.

4. Similarly, B verifies A’s signature by checking

the verification equation
AAAA srr

A

r

A gry ⋅=
+)(21 .

 Finally, B also computes four common secret

keys as follows.

,1!1
1

11
BABB kkkx

A grK ==
−

,121
1

22
BABB kkkx

A grK ==
−

2!2
1

13
BABB kkkx

A grK ==
−

,

222
1

24
BABB kkkx

A grK ==
−

.

4 Our model

Our scheme includes four phases: Initialization,

Authentication, The first session key generation and

the subsequent session keys generation. The

technique of the subsequent session keys generation

phase is the key point of our scheme since it

eliminates the key exchange process and has an

effective mutual authentication process by using the

technique of SAS protocol [5] instead of digital

signature technique. And it carries as follows.

4.1 Initialization

Let p be a large prime number (1024 bits) and g be a

generator for Z
*
p. A randomly selects xA as the

private key and calculates

pgy Ax

A mod=

as the corresponding public key. B randomly selects

xB as the private key and calculates

pgy Bx

B mod=

as the corresponding public key.

4.2 Authentication

Step 1

 A sends yA to B and B sends yB to A. Upon

receiving yB from B, A generates two random

number kA and 1A
t and calculates

Ak

BA yr = mod p

)(
11

2

AA thm =

AAAAA krmxs **
1
+= mod p-1,

where h(.) is a one way hash function and

)(
1

2

Ath implies executes h(.) twice. Upon receiving

yA from A, B generates two random number kB and

1B
t and calculates

Bk

AB yr = mod p

)(
11

2

BB thm =

BBBBB krmxs **
1
+= mod p-1

Step 2

WSEAS TRANSACTIONS on COMMUNICATIONS Chang-Kuo Yeh

ISSN: 1109-2742 294 Issue 5, Volume 9, May 2010

 A sends rA, sA and
1A

m to B and B sends rB, sB and

1B
m to A. While receiving the messages from B, A

verifies the messages by checking

pgyg BBBB rkm

B

s
mod][*1=

If the equation doesn't hold, reject the request;

otherwise the request is valid that implies B is

authenticated by A and only A can authenticate B

since

prg AB x

B

k
mod)(

1−

=

and xA
-1
 can only be calculated by A, where

xA* xA
-1
 mod p=1.

On the other hand, while receiving the messages

from A, B verifies the messages by checking

pgyg AAAA rkm

A

s
mod][*1=

If the equation doesn't hold, reject the request;

otherwise the request is valid that implies A is

authenticated by B and only B can authenticate A

since

prg BA x

A

k
mod)(

1−

=

and xB
-1
 can only be calculated by B, where

xB* xB
-1
 mod p=1.

The authentication process is illustrated in Figure 1.

4.3 The first session key generation

BA kk
gg , and BAkk

g are shared by A and B after the

authentication phase. A polynomial

cbxaxxf ++=
2)(

can only be constructed by A and B, where

pga Ak mod=

pgb Bk mod=

pgc BAkk
mod= .

The first session key is

cfC ==)0(1

The first session key generation process is illustrated

as figure 2.

4.4 The subsequent session keys generation

This phase can be executed repeatedly to generate

more session keys without executing the former

phases such as Initialization, Authentication and

First session key generation phase.

A randomly generates a random number
iAt and

calculates

ii AA mth =)(2

where i is an integer larger than 1. A sends

1]),([
1 −
−

iAA Cmth
ii

 to B, where 1]),([
1 −
−

iAA Cmth
ii

denotes message
ii AA mandth)(

1−
 encrypted by

key
1−iC , and B verifies the messages by checking

whether

11
))((

−−

=
ii AA mthh

If the equation doesn't hold, reject the request;

otherwise the request is valid and the ith session key

))((
1−

=
iAi thfC

is generated on both sides. Then, B updates
1−iAm

to
iA

m .

On the other hand, B can also start the same

process. B randomly generates
iBt and calculates

ii BB mth =)(2 ,

where i is an integer larger than 1. B sends

1]),([
1 −
−

iBB Cmth
ii

 to A and A verifies the messages

by checking whether

11
))((

−−

=
ii BB mthh

If the equation doesn't hold, reject the request;

otherwise the request is valid and the ith session key

))((
1−

=
iBi thfC

is generated on both sides. Then, A updates
1−iBm

to
iBm . The subsequent session keys generation can

be organized as figure 3.

5 Security analysis
We prove our model is secure according to the each

step of the whole process.

5.1 Initialization

Both parties generate their own private key and

corresponding public key internally. No message is

transmitted out; the opponent cannot learn any

knowledge from this step.

5.2 Authentication Step 1
In this step, A and B exchange public keys each

other in clear. It is difficult to calculate the private

key only knowing the public key since the opponent

is forced to take a discrete logarithm to determine

the key, so it is useless to only intercept the public

key for the attacker.

WSEAS TRANSACTIONS on COMMUNICATIONS Chang-Kuo Yeh

ISSN: 1109-2742 295 Issue 5, Volume 9, May 2010

5.3 Authentication Step 2

A sends rA, sA and
1A

m to B where

Ak

BA yr = mod p ,)(
11

2

AA thm =

AAAAA krmxs **
1
+= mod p-1.

kA,
1A

t and xA must be kept secret in this step. It is

difficult to calculate kA only knowing rA and yB for

the opponent because it is the problem of discrete

logarithm. It is hard to get)(
1A

th and
1A

t from

1A
m since h(.) is a one way hash function. In the

equation

AAAAA krmxs **
1
+= mod p-1

AAA randms
1

, are public and AA kandx are kept

secret. It is hard to get AA korx from the equation

AAAAA krmxs **
1
+= mod p-1

since there are two variables in one equation.

On the other hand, B sends rB, sB and
1B

m to A.

To get kB,
1B

t and xB are also difficult according the

same analyses. After that, user A and B authenticate

each other based on the equation

pgyg BBBB rkm

B

s mod][*1= and

pgyg AAAA rkm

A

s
mod][*1= .

If these equations hold that implies that A and B are

the legal users and they keep the same secret values

such as pgpgpg BABA kkkk
mod,mod,mod .

5.4 The first session key generation

prg AB x

B

k
mod)(

1−

=

can only be derived by A since xA
-1
 can only be

calculated by A, where

xA* xA
-1
 mod p=1

For the same reason,

prg BA x

A

k
mod)(

1−

=

can only be derived by B since xB
-1
 can only be

calculated by B, where

xB* xB
-1
 mod p=1

In such a way, a polynomial

cbxaxxf ++=
2)(

can only be constructed by A and B, where

pga Ak mod=

pgb Bk mod=

pgc BAkk mod= .

 Very clearly, nobody can compute the first session
key

C1=f(0)=c

except A and B.

5.5 The subsequent session keys generation

A generates the message 1]),([
1 −
−

iAA Cmth
ii

 and sends

it to B. B decrypts the message to get
iA

m which is

equal to)(2
iA

th , where
iA

t is a random number

selected by A. It is very difficult to compute)(
iA

th

according to)(2
iA

th , since h(.) is a one way hash

function which is relatively easy to compute, but

significantly harder to reverse. If any attacker tries

to replay this message to pass the authentication

process, he cannot succeed since B will find out that

the value))((
1−iA

thh doesn’t equal to
iA

m which is

updated to)(2
iA

th . If any attacker tries to forge this

message to pass the authentication process, he

cannot succeed since the message is encrypted by a

session key Ci which is different from time to time

and only known to A and B.

 For security considerations, it is not reasonable to

do this process all the time. Hence, a predefined

constant n should be set to a reasonable constraint

on the times to do the subsequent session keys

generation process. In other words, after n times of

the subsequent session keys generation process are

used, the authentication process and the first session

key generation process should restart again.

6 Performance evaluation
In this section, SSL protocol and the Multiple-Key

agreement protocols will be compared with our

scheme to show our scheme has the best efficiency

among them.

 Initialization and Authentication phases are

needed in the three compared protocols. Therefore,

the pubic key cryptography is needed in the SSL

protocol, the Multiple-Key protocols and our new

protocol. The pubic key cryptography is a very

time-consumed computation. So, in the two phases,

the computation load is heavy in the three compared

protocols.

 In SSL protocol, only one session key is

generated after the two phases. Repeated

authentication process is needed to generate another

new session key while another new session is

connected. In the Multiple-Key agreement

protocols, four or eight session keys are generated

after the two phases. It implies that executing one

WSEAS TRANSACTIONS on COMMUNICATIONS Chang-Kuo Yeh

ISSN: 1109-2742 296 Issue 5, Volume 9, May 2010

initialization and authentication process supports

four or eight sessions. The subsequent session key

generation process must restarts the authentication

process after the four or eight session keys are used,

so the protocols can reduce overall computational

load and increase the communicational efficiency

compared with SSL protocol.

 In our protocol, no session key is generated after

the two phases. Even our protocol needs extra

phase, called the first key generation phase, to

generate the first session key after the two phases.

It seems our protocol has the worst efficiency. As a

matter of fact, the key point is that our new protocol

has the subsequent session keys generation protocol,

which is not found in SSL and Multiple-Key

schemes. This phase can generate more session

keys, theoretically no limitation, in one round of

authentication process without increasing too much

computation load for both sides. For example, in

the subsequent session keys generation, only some

simple computations such as hash computation and

secret-key cryptography are needed. These

computation loads is very light compared to the

public-key cryptography.

 In the SSL and Multiple-key schemes, they have

to repeat the authentication process to perform the

subsequent key generation process. For example, if

100 session keys are needed, it is necessary to repeat

99 times and 24 times authentication processes for

SSL and Multiple-key schemes, respectively.

Hence, the computation load is very heavy since

pubic key cryptography is applied many times.

Table 1 shows the comparison results between the

three protocols. Obviously, we can find the new

model can benefit the best performance although it

has extra first key generation process.

7 Conclusion
Many Multiple-Key agreement protocols are

designed to generate several session keys in one

round of session key generation process. In

these protocols, public-key cryptography is

needed to initiate key exchange and mutual

authentication process. However, when these

session keys are used, the second round of

session key generation process must start again.

The restart process is vulnerable to reapply

public-key cryptography for key exchange and

mutual authentication. Obviously, the

computation load is heavy. In our new model,

only one round of session key generation

process is necessary and the subsequent session

keys can be computed in both sides without any

key exchange process. In other words, the

public-key cryptography only performs once.

Because the public-key cryptography could be

eliminated, our protocol can promote more

performance than current-used models.

References:

[1] W. DIFFIE and M.E. HELLMAN, New

Directions in Cryptography, IEEE Transactions

on Information Theory, Vol. IT-22, No. 6, 1976,

pp. 644-654.

[2] T. ELGAMAL, A Public-Key Cryptosystem

and a Signature Scheme Based on Discrete

Logarithms, IEEE Transactions on Information

Theory, Vol. IT-31, No. 4, 1985, pp.469-47.

[3] L. Harn and H. Y. LIN, Authenticated Key

Agreement Without Using One-way Hash

functions, ELECTRONIC LETTERS 10
th
, Vol.

37 No. 10, May, 2001, pp. 620-630.

[4] J. H. Park and S. B. Lim, Key Distribution for

Secure VSAT Satellite Communications, IEEE

Transactions on Broadcasting, Vol. 44, No. 3,

Sep, 1998.

[5] M. SANDIRIGAMA, A. SHIMIZU and M. T.

NODA, Simple and Secure Password

Authentication Protocol, IEICE Transactions

on Communication, Vol. E83-B, No. 6, June,

2000, pp. 1363-1365.

[6] T. S. WU, W. H. HE, and C. L. HSU, Security

of Authenticated Multiple-Key Agreement

Protocols, ELECTRONIC LETTERS, Vol.35

No. 5, 1999, pp.391-392.

[7] S.M. YEN and M. JOYE, Improved

Authenticated Multiple-Key Agreement

Protocol, ELECTRONIC LETTERS, Vol. 34

No. 18, 1998, pp1738-1739.

[8] SSL Version 3.0, March 1996,

http://wp.netscape.com/eng/ssl3/ssl-toc.html

[9] H. T. Yeh, H. M. Sun, Tzonelih Hwang,

Improved Authenticated Multiple-Key

Agreement Protocol, Computers and

Mathematics with Applications, Vo. 46, Issue:

2-3, 2003, pp. 207-211.

[10] C. C. Yang and R. C. Wang, Cryptanalysis of

improved authenticated multiple-key agreement

protocol without using conventional one-way

function, Applied Mathematics and

Computation, Vol. 162, Issue: 1, March 4, 2005,

pp. 211-214.

[11] Kyungah Shim and Sungsik Woo, Weakness in

ID-based one round authenticated tripartite

multiple-key agreement protocol with pairings,

Vol. 166, Issue: 3, July 26, 2005, pp. 523-530.

WSEAS TRANSACTIONS on COMMUNICATIONS Chang-Kuo Yeh

ISSN: 1109-2742 297 Issue 5, Volume 9, May 2010

[12] C. C. Chang, H. C. Tsai and Y. C. Chiu, A

Simple and Robust Authenticated Multiple Key

Agreement Scheme, Security Technology,

2008. SECTECH '08. International Conference

on 13-15, Dec. 2008, pp. 214-218.

[13] C. C. Chang, H. C.n Tsai and S.Y. Lin, A token

free password authentication scheme with

multiple key agreements, Communications and

Networking in China, 2008. ChinaCom 2008.

Third International Conference on 25-27 Aug.

2008, pp. 1143-1150.

[14] Z. Shao, Security of robust generalized MQV

key agreement protocol without using one-way

hash functions, Computer Standards and

Interfaces, Vol. 25 No. 5, 2003 pp. 431–436.

[15] Mozilla Developer Center, Introduction to SSL

https://developer.mozilla.org/en/Introduction_to_SS

L

Table 1 The performance comparisons between the three protocols if 100 session keys are needed

 SSL Scheme Multiple-Key scheme New scheme
Initialization Public-key system Public-key system Public-key system

Authentication Public-key system Public-key system Public-key system

First key generation no no yes

Subsequent key generation restart 99 times

authentication processes

restart 24 times

authentication processes

not to restart authentication

process

WSEAS TRANSACTIONS on COMMUNICATIONS Chang-Kuo Yeh

ISSN: 1109-2742 298 Issue 5, Volume 9, May 2010

A B

Compute pgy Ax
A mod=

 Compute pgy Bx
B mod=

Ay

By

Select a random number
1A

t Select a random number
1B

t

Compute

pyr Ak
BA mod=

)(
11

2
AA thm =

1mod*
1

−+= pkrmxs AAAAA

Compute

pyr Bk
AB mod=

)(
11

2
BB thm =

1mod*
1

−+= pkrmxs BBBBB

1
,, AAA msr

1
,, BBB msr

Verify

pgyg BBBB rkm
B

s
mod][*? 1=

, where prg AB x

B

k mod)(
1−

=

A and B share BABA kkkk
ggg ,, .

Verify

pgyg AAAA rkm
A

s
mod][*? 1=

, where prg BA x

A

k
mod)(

1−

=

A and B share BABA kkkk
ggg ,, .

Fig. 1 The authentication phase

A B

Construct cbxaxxf ++=
2)(

, where BA kk gbga == , and BAkk
gc =

Compute first session key cfC ==)0(1

Construct cbxaxxf ++=
2)(

, where BA kk gbga == , and BAkk
gc =

Compute first session key cfC ==)0(1

Fig. 2 The first session key generation

WSEAS TRANSACTIONS on COMMUNICATIONS Chang-Kuo Yeh

ISSN: 1109-2742 299 Issue 5, Volume 9, May 2010

A B

Generate a random number 2, ≥it
iA

Compute)(2
ii AA thm =

Compute the ith session key

Ci=))((
1−iAthf mod p.

1]),([
1 −
−

iAA Cmth
ii

Check

11
?))((

−−
=

ii AA mthh

Compute the ith session key

Ci=))((
1−iAthf mod p.

Update
ii AA mtom

1−

Fig. 3 The subsequent session keys generation

OR

Generate a random number 2, ≥it
iB

Compute)(2
ii BB thm =

Compute the ith session key

Ci=))((
1−iBthf mod p.

Check

11
?))((

−−

=
ii BB mthh

Compute the ith session key

Ci=))((
1−iBthf mod p.

Update
ii BB mtom

1−

1]),([
1 −
−

iBB Cmth
ii

WSEAS TRANSACTIONS on COMMUNICATIONS Chang-Kuo Yeh

ISSN: 1109-2742 300 Issue 5, Volume 9, May 2010

