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Abstract: -  To negotiate a session key can benefit from the technique of the public-key cryptography 

such as key exchange and digital signature.  This key cannot be used until the session is finished.  In 

current model such as SSL, if the sender desires to re-establish another new session with the same 

receiver, the both sides, for security consideration, should repeat the same key exchange and digital 

signature processes to generate a new session key.  Apparently, the two processes must lower the 

communication system efficiency.  Therefore, a new session key generation protocol is proposed to 

overcome this demerit.  In our new model, the key exchange and digital signature process only 

perform once, and the subsequent session keys can be computed in both sides without the two 

processes.  Because the two processes can be eliminated, our protocol can promote more performance 

than the current-used model. 
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1 Introduction 
The purpose of the session key generation is to 

assure communication security between sender and 

receiver. The sender deliver the message encrypted 

by the session key to the receiver and the receiver 

can decrypts it by the same session key, so the 

session key generation should be finished before 

communication. 

  To negotiate a session key can benefit from the 

technique of the public-key cryptography such as 

key exchange [1] and digital signature [2].  In most 

practical implementations, public-key cryptography 

is used to authentication and negotiation of session 

keys; those session keys are used with symmetric 

algorithms to secure message traffic.  So if based on 

public-key cryptography, the session key generation 

process should include two phases; the first is key 

exchange process: two sides cooperate to negotiate a 

session key; the other is mutual authentication 

process: two sides authenticate each other by using 

the technique of digital signature to make sure the 

session key is not forged. 

 In current-used model such as SSL handshake 

protocol [15], while the session key is generated, it 

cannot be used until the session is finished.  If the 

two parties desire to communicate each other again, 

the session key generation process should restart to 

generate a new session key [4,8].  This restart 

process wastes time and bandwidth and increases 

computational load for both sides, so many 

proposed protocols called Multiple-Key agreement 

protocols [3,6,7,9,10,11,12,13,14] are designed to 

generate several session keys in one round of 

session key generation process.  For example, in [3], 

it can generate four shared secret keys in one round 

of the session key generation process.  These keys 

can be used in four sessions for the same sender and 

receiver.  The session key generation process 

restarts only after the four session keys are used, so 

the protocol can reduce overall computational load 

and increase the communicational efficiency. 

Basically, our protocol inherits the same idea 

of the proposed protocols but further more efficient 

than them, because the new model can generate 

more secret session keys, theoretically no limitation, 

in one round of session key generation process 

without increasing too much computation load for 

both sides.  Next section, SSL handshake protocol is 

described and the Multiple-Key agreement protocol 

[14] is described in Section 3. We describe our 

model in Section 4 and analyses our scheme to be 

secure in Section 5.  In Section 6, we compare our 

scheme with current-used SSL model and the 

Multiple-Key agreement protocols to show the 

performance of our scheme is the best among them.  

Finally, the conclusions are given in Section 7.      
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2 SSL Handshake protocol 
The SSL protocol [15] uses a combination of public-

key and symmetric key encryption. Symmetric key 

encryption is much faster than public-key 

encryption, but public-key encryption provides 

better authentication techniques. An SSL session 

always begins with an exchange of messages called 

the SSL handshake. The handshake allows the server 

to authenticate itself to the client using public-key 

techniques, then allows the client and the server to 

cooperate in the creation of a symmetric key used 

for rapid encryption, decryption, and tamper 

detection during the session that follows. 

Optionally, the handshake also allows the client to 

authenticate itself to the server.  The steps involved 
can be summarized as follows  

1. The client sends the server the client's SSL 

version number, cipher settings, randomly 

generated data, and other information the 

server needs to communicate with the client 

using SSL.  

2. The server sends the client the server's SSL 

version number, cipher settings, randomly 

generated data, and other information the 

client needs to communicate with the server 

over SSL. The server also sends its own 

certificate and, if the client is requesting a 

server resource that requires client 

authentication, requests the client's 
certificate.  

3. The client uses some of the information sent 

by the server to authenticate the server. If 

the server cannot be authenticated, the user 

is warned of the problem and informed that 

an encrypted and authenticated connection 

cannot be established. If the server can be 

successfully authenticated, the client goes 

on to Step 4.  

4. Using all data generated in the handshake so 

far, the client (with the cooperation of the 

server, depending on the cipher being used) 

creates the premaster secret for the session, 

encrypts it with the server's public key 

(obtained from the server's certificate, sent 

in Step 2), and sends the encrypted 

premaster secret to the server.  

5. If the server has requested client 

authentication (an optional step in the 

handshake), the client also signs another 

piece of data that is unique to this 

handshake and known by both the client and 

server. In this case the client sends both the 

signed data and the client's own certificate 

to the server along with the encrypted 
premaster secret.  

6. If the server has requested client 

authentication, the server attempts to 

authenticate the client. If the client cannot 

be authenticated, the session is terminated. 

If the client can be successfully 

authenticated, the server uses its private key 

to decrypt the premaster secret, then 

performs a series of steps (which the client 

also performs, starting from the same 

premaster secret) to generate the master 
secret.  

7. Both the client and the server use the master 

secret to generate the session key, which are 

symmetric keys used to encrypt and decrypt 

information exchanged during the SSL 

session and to verify its integrity-that is, to 

detect any changes in the data between the 

time it was sent and the time it is received 
over the SSL connection.  

8. The client sends a message to the server 

informing it that future messages from the 

client will be encrypted with the session 

key. It then sends a separate (encrypted) 

message indicating that the client portion of 
the handshake is finished.  

9. The server sends a message to the client 

informing it that future messages from the 

server will be encrypted with the session 

key. It then sends a separate (encrypted) 

message indicating that the server portion of 

the handshake is finished.  

10. The SSL handshake is now complete, and 

the SSL session has begun. The client and 

the server use the session keys to encrypt 

and decrypt the data they send to each other 
and to validate its integrity.  

It's important to note that both client and server 

authentication involves encrypting some piece of 

data with one key of a public-private key pair and 

decrypting it with the other key: 

     In the case of server authentication, the client 
encrypts the premaster secret with the server's 

public key. Only the corresponding private key can 

correctly decrypt the secret, so the client has some 

assurance that the identity associated with the public 

key is in fact the server with which the client is 
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connected. Otherwise, the server cannot decrypt the 

premaster secret and cannot generate the symmetric 

keys required for the session, and the session will be 

terminated.  

    In the case of client authentication, the client 

encrypts some random data with the client's private 

key-that is, it creates a digital signature. The public 

key in the client's certificate can correctly validate 

the digital signature only if the corresponding 

private key was used. Otherwise, the server cannot 

validate the digital signature and the session is 

terminated. 

    According the above description, one session key 

can generalized in one round of handshake protocol.  

If another session key is needed in both sides, the 

handshake protocol must be restarted.  In other word, 

the digital signature and key exchange process must 

repeat to generate a new session key. Obviously, 

these restart processes will lower the whole 

performance 

 

 

3 Review of Multiple-Key agreement 

protocol 
Diffie-Hellman key exchange technique is applied 

to the Multiple-Key agreement protocol.  So, the 

Diffie-Hellman key exchange technique should be 

described before introducing the Multiple-Key 

agreement protocol. 

    Diffie-Hellman key exchange, also called 

exponential key exchange, is a method of digital 

encryption that uses numbers raised to specific 

powers to produce decryption keys on the basis of 

components that are never directly transmitted, 

making the task of a would-be code breaker 

mathematically overwhelming. 

    To implement Diffie-Hellman, the two end users 

Alice and Bob, while communicating over a channel 

they know to be private, mutually agree on positive 

whole numbers p and q, such that p is a prime 

number and q is a generator of p. The generator q is 

a number that, when raised to positive whole-

number powers less than p, never produces the same 

result for any two such whole numbers. The value of 
p may be large but the value of q is usually small. 

    Once Alice and Bob have agreed on p and q in 

private, they choose positive whole-number 

personal keys a and b, both less than the prime-

number modulus p. Neither user divulges their 

personal key to anyone; ideally they memorize these 

numbers and do not write them down or store them 

anywhere. Next, Alice and Bob compute public 

keys a* and b* based on their personal keys 

according to the formulas 

    a* = qa
 mod p 

and 

b* = q
b
 mod p 

    The two users can share their public keys a* and 

b* over a communications medium assumed to be 

insecure, such as the Internet or a corporate wide 

area network (WAN). From these public keys, a 

number x can be generated by either user on the 

basis of their own personal keys. Alice computes x 
using the formula 

x = (b*)
a
 mod p 

Bob computes x using the formula 

x = (a*)
b
 mod p 

    The value of x turns out to be the same according 

to either of the above two formulas. However, the 

personal keys a and b, which are critical in the 

calculation of x, have not been transmitted over a 

public medium. Because it is a large and apparently 

random number, a potential hacker has almost no 

chance of correctly guessing x, even with the help of 

a powerful computer to conduct millions of trials. 

The two users can therefore, in theory, communicate 

privately over a public medium with an encryption 

method of their choice using the decryption key x. 

    The most serious limitation of Diffie-Hellman in 

its basic or "pure" form is the lack of authentication. 

Communications using Diffie-Hellman all by itself 

are vulnerable to man in the middle attacks. Ideally, 

Diffie-Hellman should be used in conjunction with a 

recognized authentication method such as digital 

signatures to verify the identities of the users over 

the public communications medium. Diffie-Hellman 

is well suited for use in data communication but is 

less often used for data stored or archived over long 

periods of time. 

    Inherited from Diffie-Hellman technique, the 
Multiple-Key agreement [14] is introduced.  

    The system authority publishes a large prime p 

and a primitive element g with order p-1 in GF(p).  

We assume that A and B want to establish four 

secret keys in a protocol round.  Long term 

public/private key pairs for A and B are ( AA xy , ) 

and ( BB xy , ), where 

pgy Ax

A mod=  

pgy Bx

B mod= . 
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“mod p” will be omitted in this section for easily 

described.  We assume that long term public keys 

are exchanged via certificates, where CertA denotes 

A’s public key certificate, containing a string of 

information that uniquely identifies A, her static 

public key Ay  and a certifying authority CA’s 

signature over this information.  The protocol runs 

as follows: 

1. A selects two random integers 1Ak  and 2AK , 

called short term secret keys, compute short 

term public keys 
1

1
AK

BA yr =  

2

2
AK

BA yr =  

such that 2/)1(,0 21 −<< prr AA .  Then A 

computes 
21

1
AA kk

A gr +
=  

and generates its signature As  on { 21 , AA rr } as 

follows: 

1mod)()( 2121 −+⋅+−⋅= pkkrrrxs AAAAAAA . 

Next, A sends the authenticated messages 

{ AAAA Certsrr ,,, 21 } to B. 

2. Similarly, B also chooses 1Bk  and 2BK and 

computes 

21

2

1

,

,

2

1

BB

B

B

kk

BB

k

AB

k

AB

yr

yr

yr

+

=

=

=

 

1mod)()( 2121 −+⋅+−⋅= pkkrrrxs BBBBBBB . 

Then B sends { BBBB Certsrr ,,, 21 } to A. 

3. After receiving the message from B, A 

computes )( 21 BBB rrr ⋅= and verifies B’s signature 

by checking  
BBBB srr

B

r

B gry ⋅=
+ )( 21 . 

If its verification holds, A computes four 

common secret keys as follows: 

,1!1
1

11
BAAA kkkx

B grK ==
−

 

,122
1

12
BAAA kkkx

B grK ==
−

 

2!1
1

23
BAAA kkkx

B grK ==
−

, 

222
1

24
BAAA kkkx

B grK ==
−

. 

4. Similarly, B verifies A’s signature by checking 

the verification equation 
AAAA srr

A

r

A gry ⋅=
+ )( 21 . 

 Finally, B also computes four common secret 

keys as follows. 

,1!1
1

11
BABB kkkx

A grK ==
−

 

,121
1

22
BABB kkkx

A grK ==
−

 

2!2
1

13
BABB kkkx

A grK ==
−

, 

222
1

24
BABB kkkx

A grK ==
−

. 

 

 

4 Our model 

 
Our scheme includes four phases: Initialization, 

Authentication, The first session key generation and 

the subsequent session keys generation.  The 

technique of the subsequent session keys generation 

phase is the key point of our scheme since it 

eliminates the key exchange process and has an 

effective mutual authentication process by using the 

technique of SAS protocol [5] instead of digital 

signature technique.  And it carries as follows. 

 

 

4.1 Initialization 

Let p be a large prime number (1024 bits) and g be a 

generator for Z
*
p.  A randomly selects xA as the 

private key and calculates 

pgy Ax

A mod=  

as the corresponding public key.  B randomly selects 

xB as the private key and calculates 

pgy Bx

B mod=  

as the corresponding public key.  

 

 

4.2  Authentication 

Step 1 

    A sends yA to B and B sends yB to A. Upon 

receiving yB from B, A generates two random 

number kA and 1A
t and calculates 

Ak

BA yr = mod p 

)(
11

2

AA thm =  

AAAAA krmxs **
1
+= mod p-1, 

where h(.) is a one way hash function and 

)(
1

2

Ath implies executes h(.) twice.  Upon receiving 

yA from A, B generates two random number kB and 

1B
t and calculates 

Bk

AB yr = mod p 

)(
11

2

BB thm =  

BBBBB krmxs **
1
+= mod p-1 

Step 2 
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    A sends rA, sA and 
1A

m  to B and B sends rB, sB and 

1B
m to A.  While receiving the messages from B, A 

verifies the messages by checking 

pgyg BBBB rkm

B

s
mod][*1=  

If the equation doesn't hold, reject the request; 

otherwise the request is valid that implies B is 

authenticated by A and only A can authenticate B 

since 

prg AB x

B

k
mod)(

1−

=  

and xA
-1
 can only be calculated by A, where 

xA* xA
-1
 mod p=1. 

On the other hand, while receiving the messages 

from A, B verifies the messages by checking 

pgyg AAAA rkm

A

s
mod][*1=  

If the equation doesn't hold, reject the request; 

otherwise the request is valid that implies A is 

authenticated by B and only B can authenticate A 

since 

prg BA x

A

k
mod)(

1−

=  

and xB
-1
 can only be calculated by B, where 

xB* xB
-1
 mod p=1. 

The authentication process is illustrated in Figure 1. 

 

 

4.3 The first session key generation 

BA kk
gg ,  and BAkk

g  are shared by A and B after the 

authentication phase.  A polynomial 

cbxaxxf ++=
2)(  

can only be constructed by A and B, where 

pga Ak mod=  

pgb Bk mod=  

pgc BAkk
mod= . 

The first session key is 

cfC == )0(1
 

The first session key generation process is illustrated 

as figure 2. 

 

 

4.4 The subsequent session keys generation 

This phase can be executed repeatedly to generate 

more session keys without executing the former 

phases such as Initialization, Authentication and 

First session key generation phase. 

A randomly generates a random number 
iAt and 

calculates 

ii AA mth =)(2  

where i is an integer larger than 1. A sends 

1]),([
1 −
−

iAA Cmth
ii

 to B, where 1]),([
1 −
−

iAA Cmth
ii

 

denotes message
ii AA mandth )(

1−
 encrypted by 

key
1−iC , and B verifies the messages by checking 

whether 

11
))((

−−

=
ii AA mthh  

If the equation doesn't hold, reject the request; 

otherwise the request is valid and the ith session key 

))((
1−

=
iAi thfC  

is generated on both sides.  Then, B updates 
1−iAm  

to
iA

m .   

On the other hand, B can also start the same 

process.  B randomly generates 
iBt and calculates 

ii BB mth =)(2 , 

where i is an integer larger than 1.  B sends 

1]),([
1 −
−

iBB Cmth
ii

 to A and A verifies the messages 

by checking whether 

11
))((

−−

=
ii BB mthh  

If the equation doesn't hold, reject the request; 

otherwise the request is valid and the ith session key 

))((
1−

=
iBi thfC  

is generated on both sides.  Then, A updates 
1−iBm  

to
iBm .  The subsequent session keys generation can 

be organized as figure 3. 

 

 

5 Security analysis  
We prove our model is secure according to the each 

step of the whole process. 

 

 

5.1 Initialization 

Both parties generate their own private key and 

corresponding public key internally. No message is 

transmitted out; the opponent cannot learn any 

knowledge from this step. 

 

 

5.2 Authentication Step 1 
In this step, A and B exchange public keys each 

other in clear. It is difficult to calculate the private 

key only knowing the public key since the opponent 

is forced to take a discrete logarithm to determine 

the key, so it is useless to only intercept the public 

key for the attacker. 
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5.3 Authentication Step 2 

A sends rA, sA and 
1A

m  to B where 

Ak

BA yr = mod p , )(
11

2

AA thm =  

AAAAA krmxs **
1
+= mod p-1. 

kA, 
1A

t and xA must be kept secret in this step.  It is 

difficult to calculate kA only knowing rA and yB for 

the opponent because it is the problem of discrete 

logarithm.  It is hard to get )(
1A

th  and 
1A

t from 

1A
m  since h(.) is a one way hash function. In the 

equation 

AAAAA krmxs **
1
+= mod p-1 

AAA randms
1

,  are public and AA kandx are kept 

secret. It is hard to get AA korx from the equation 

AAAAA krmxs **
1
+= mod p-1 

since there are two variables in one equation.  

On the other hand,  B sends rB, sB and 
1B

m  to A. 

To get kB, 
1B

t and xB are also difficult according the 

same analyses. After that, user A and B authenticate 

each other based on the equation 

pgyg BBBB rkm

B

s mod][*1=  and 

pgyg AAAA rkm

A

s
mod][*1= . 

If these equations hold that implies that A and B are 

the legal users and they keep the same secret values 

such as pgpgpg BABA kkkk
mod,mod,mod . 

 

 

5.4 The first session key generation 

prg AB x

B

k
mod)(

1−

=  

can only be derived by A since xA
-1
 can only be 

calculated by A, where 

xA* xA
-1
 mod p=1 

For the same reason,  

prg BA x

A

k
mod)(

1−

=  

can only be derived by B since xB
-1
 can only be 

calculated by B, where 

xB* xB
-1
 mod p=1 

In such a way, a polynomial 

cbxaxxf ++=
2)(  

can only be constructed by A and B, where 

pga Ak mod=  

pgb Bk mod=  

pgc BAkk mod= . 

 Very clearly, nobody can compute the first session 
key 

C1=f(0)=c 

except A and B. 

 

 

5.5 The subsequent session keys generation 

A generates the message 1]),([
1 −
−

iAA Cmth
ii

 and sends 

it to B.  B decrypts the message to get 
iA

m which is 

equal to )(2
iA

th , where 
iA

t is a random number 

selected by A.  It is very difficult to compute )(
iA

th  

according to )(2
iA

th , since h(.) is a one way hash 

function which is relatively easy to compute, but 

significantly harder to reverse.  If any attacker tries 

to replay this message to pass the authentication 

process, he cannot succeed since B will find out that 

the value ))((
1−iA

thh  doesn’t equal to 
iA

m  which is 

updated to )(2
iA

th .  If any attacker tries to forge this 

message to pass the authentication process, he 

cannot succeed since the message is encrypted by a 

session key Ci which is different from time to time 

and only known to A and B. 

    For security considerations, it is not reasonable to 

do this process all the time.  Hence, a predefined 

constant n should be set to a reasonable constraint 

on the times to do the subsequent session keys 

generation process.  In other words, after n times of 

the subsequent session keys generation process are 

used, the authentication process and the first session 

key generation process should restart again. 

 

 

6 Performance evaluation  
In this section, SSL protocol and the Multiple-Key 

agreement protocols will be compared with our 

scheme to show our scheme has the best efficiency 

among them. 

     Initialization and Authentication phases are 

needed in the three compared protocols.  Therefore, 

the pubic key cryptography is needed in the SSL 

protocol, the Multiple-Key protocols and our new 

protocol.  The pubic key cryptography is a very 

time-consumed computation.  So, in the two phases, 

the computation load is heavy in the three compared 

protocols. 

    In SSL protocol, only one session key is 

generated after the two phases.  Repeated 

authentication process is needed to generate another 

new session key while another new session is 

connected.   In the Multiple-Key agreement 

protocols, four or eight session keys are generated 

after the two phases.  It implies that executing one 
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initialization and authentication process supports 

four or eight sessions.  The subsequent session key 

generation process must restarts the authentication 

process after the four or eight session keys are used, 

so the protocols can reduce overall computational 

load and increase the communicational efficiency 

compared with SSL protocol. 

      In our protocol, no session key is generated after 

the two phases.  Even our protocol needs extra 

phase, called the first key generation phase, to 

generate the first session key after the two phases.  

It seems our protocol has the worst efficiency.   As a 

matter of fact, the key point is that our new protocol 

has the subsequent session keys generation protocol, 

which is not found in SSL and Multiple-Key 

schemes.   This phase can generate more session 

keys, theoretically no limitation, in one round of 

authentication process without increasing too much 

computation load for both sides.  For example, in 

the subsequent session keys generation, only some 

simple computations such as hash computation and 

secret-key cryptography are needed. These 

computation loads is very light compared to the 

public-key cryptography. 

     In the SSL and Multiple-key schemes, they have 

to repeat the authentication process to perform the 

subsequent key generation process.  For example, if 

100 session keys are needed, it is necessary to repeat 

99 times and 24 times authentication processes for 

SSL and Multiple-key schemes, respectively.  

Hence, the computation load is very heavy since 

pubic key cryptography is applied many times.  

Table 1 shows the comparison results between the 

three protocols. Obviously, we can find the new 

model can benefit the best performance although it 

has extra first key generation process. 

 

 

7 Conclusion 
Many Multiple-Key agreement protocols are 

designed to generate several session keys in one 

round of session key generation process.  In 

these protocols, public-key cryptography is 

needed to initiate key exchange and mutual 

authentication process.  However, when these 

session keys are used, the second round of 

session key generation process must start again.  

The restart process is vulnerable to reapply 

public-key cryptography for key exchange and 

mutual authentication.  Obviously, the 

computation load is heavy.  In our new model, 

only one round of session key generation 

process is necessary and the subsequent session 

keys can be computed in both sides without any 

key exchange process.  In other words, the 

public-key cryptography only performs once.  

Because the public-key cryptography could be 

eliminated, our protocol can promote more 

performance than current-used models. 
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Table 1 The performance comparisons between the three protocols if 100 session keys are needed 

                                       SSL Scheme                           Multiple-Key scheme            New scheme 
Initialization Public-key system Public-key system Public-key system 

Authentication Public-key system Public-key system Public-key system 

First key generation no no yes 

Subsequent key generation restart 99 times 

authentication  processes 

restart 24 times  

authentication processes 

not to restart authentication 

process 
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