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Abstract: - We propose a new LMS algorithm with an adaptive neural network cost function (ANNCFLMS) for 
application to unknown channel estimation or system identification. The algorithm employs the weighted 
average of a neural network with two input signals—the squared errors at adjacent time intervals—to modify 
the cost function and update the respective weight according to a gradient descent algorithm designed to track 
the minimum mean squared error (MSE). For fast convergence, the step-size updates recursively until the 
modified cost function attains its minimum value. Simulation results demonstrate that the proposed algorithm 
converges faster and is especially robust in low-SNR or colored input environments. 
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1 Introduction 

The least mean square (LMS) algorithm is the most 
popular and widely used due to its simplicity and 
robustness for adaptive finite-impulse response (FIR) 
filters. It is described by the following [1]: 

( ) ( ) ( ) ( )Te n d n n n= −w x  (1) 

( 1) ( ) ( ) ( )+ = +n n e n nμw w x  (2) 

where e(n) is the instantaneous error at the output of 
the filter for the time instant n, d(n) is the desired 
signal,  is the input 
signal vector, N is the length of the filter, (   is the 
vector transpose operator, and 0  

1  is the filter coefficient (weight) vector. 
The step-size parameter μ is critical to the performa-
nce of the LMS and determines how fast the algorit-
hm converges along the error performance surface 
defined by the cost function (1/2)e2(n). As is well 
known, if the step-size is large, the convergence rate 
of the LMS algorithm will be rapid, but the steady-
state MSE will increase. In contrast, if the step-size 
is small, the steady-state MSE will be small, but the 
convergence rate will be slow. Thus, the step-size 
provides a tradeoff between the convergence rate 
and the size of the steady-state MSE of the LMS 
algorithm. 

( ) [ ( ), , ( 1)]Tn x n x n N= −x … +
)⋅ T

( ) [ ( ), ,n w n=w …
( )]T

Nw n−

Many variable step-size LMS (VSLMS) algorith-
ms have been proposed that improve on the perfor-
mance of the LMS algorithm by using large step-

sizes at the early stages of the adaptive process and 
small step-sizes when the system approaches conve-
rgence. Typical methods can be found in [2–9]. The 
mathematical formulae for updating the step-size 
μ(n) in these algorithms are summarized in Table 1, 
based upon the equations describing the LMS 
algorithm, 

In practical applications, high-level measurement 
noise or colored input data tends to deteriorate the 
convergence performance and, in order to overcome 
this problem, the step-size in [3] is controlled by the 
squared instantaneous error, and robustness to un-
correlated noise is introduced in [5] by using the 
squared autocorrelation of errors at adjacent interv-
als. The step-size in [4] is adjusted by the inner 
product between adjacent gradient vectors and this 
is improved upon in [6] (a simplified version of the 
original algorithms in [2,4]), where a smoothing 
operation is exploited on one gradient vector to 
reduce the influence of measurement noise. The 
step-size in [7] is controlled by exploiting the 
augmented Lagrangian multipliers and knowledge 
of the channel noise variance to constrain the MSE 
minimized to the noise variance. This is expanded in 
[9] by using the same constrained method by which 
the noise variance is estimated (i.e., without any 
assumptions of noise required). The learning rate in 
[8] represents an extension of the normalized LMS 
(NLMS) algorithm by means of an additional grad-
ient adaptive term in the denominator of the learning 
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Table 1. Simulation parameters of the adaptive algorithms for the channel estimation problem and summary of 
the step-size updates of their algorithms 

Algorithm Parameters SNR = 0 dB SNR = 10 dB Update of the step-size 

LMS μ  0.004 0.004 A fixed value μ  

GASS [4] ρ  6.7×10−6 6.7×10−5 ( ) ( 1) ( ) ( 1) ( ) ( 1)Tn n e n e n n nμ μ ρ= − + − −x x  

MVSS [5] 
, ,α β

γ  0.97, 0.99, 
0.0133 

0.97, 0.99, 
0.133 2

( ) ( 1) (1 ) ( ) ( 1),
( 1) ( ) ( )

p n p n e n e n
n n p n

β β
μ αμ γ

= − + − −
+ = +

 

VSLMS [6] , β ρ  0.95, 2×10−5 0.95, 2×10−4 
( ) ( 1) ( 1) ( 1),
( ) ( 1) ( ) ( ) ( )T
n n e n n
n n e n n n

β
μ μ ρ

= − + − −
= − +

p p x

x p
 

NCLMS [7] 
, ,α λμ μ

γ
 0.0027, 0.01, 

14.1 

1

2

2 2( 1) ( ) ( ( ( ) ) ( )),
( 1) (1 ( ))

nn n e n
n n

λ

α

λ λ μ σ λ
μ μ γλ

+ = + − −

+ = +
0.0027, 0.01, 
141.07 

n
 

GNGD [8] , μ ρ  0.015, 0.002 0.015, 0.002 
2 2
2

2
2

( ) ( 1) ( ) ( 1)( ) ( 1) ,
( ( 1) ( 1))

( )
( ) ( )

Te n e n n nn n
n n

n
n n

ε ε ρμ
ε

μη
ε

− −
= − −

− + −

=
+

x x

x

x

 

AECLMS [9] 
0.0022, 
6×10−4, 15.6, 
6×10−4, 0.25 

0.0022, 
6×10−5, 156, 
6×10−5, 2.5 

1

2

2

( 1) ( ) ( ( ) 2 ( )),

( 1) ( ) ( ( ( ) ( )) ( )),
( 1) (1 ( ))

n n n n

n n e n n
n n

ζ

λ

α

,
, ,
,

α

λ

ζ

μ
μ γ
μ ρ

 n

ζ ζ μ γλ ρζ

λ λ μ ζ λ
μ μ γλ

+ = + −

+ = + − −

+ = +

 

ANNCFLMS 
,
, (0)

α
ρ μ  0.00025, 

4×10−5, 0.013 
0.002, 
3×10−4, 0.025 

2 2

2

2
1 ( )

( 1) ( )( 1) ( ) ( ) ( ( ))
(1 ( ))

( ) ( 1) ( ( ))

 ( ) ( 1) ( ) ( 1) ( )
 ( 1) ( 2) ( 1) ( 2)

T

T

n

e n e nn n n J n
n

n n J n

e n e n n n n
e n e n n n

α
λ

λ λ ρε Φ
λ

μ μ Φ

λ
+

⎡ ⎤− −′+ = + ⎢ ⎥+⎣ ⎦
′= − +

⎡× − − +⎣
⎤× − − − − ⎦

x x

x x

Note that parameters represented by the same symbols in different algorithms are not necessarily related. 

The output ( )J nΦ  is obtained from J(n) via the 
activation function ( ( ))J nΦ : 

rate of the NLMS; this preserves stability for close-
to-zero input vectors. (See Table 1) 

This paper proposes an approach in which the 
cost function of the weighted-averaging of a neural 
network is used to enhance the convergence rate and 
obtain a low steady-state misadjustment error than 
the existing schemes for application, such as unkno-
wn channel estimation. 

( )
( )

( )

1( ) ( )
1

−

−

−
= =

+

J n

J n

eJ n J n
eΦ Φ , (4) 

where e2(n) and 2 ( 1)−e n  (squared errors at time 
index n and 1−n  from (1)) are the input signals, 
and the weights for the NN are 1/(1+λ(n)) and 
λ(n)/(1+λ(n)). Consider that the cost function of the 
ANNCFLMS for online learning is defined by 

 

2 ANNCFLMS Algorithm 
21( ) ( )

2
E n ε=Consider a neural network (NN) with a weighted 

average net function having two input taps and 
employing a threshold activation function having 
one output, as shown in Fig. 1. The net function J(n) 
is defined by 

n , (5) 

min( ) ( )n J J nΦε = −  
2 1 ( )T
d J nΦσ −= − −p R p , (6) 

2 2( ) ( ) ( 1)( )
1 ( )
+

=
+

e n n e nJ n
n

λ
λ

− . (3) 
where J n denotes the minimum MSE produced by 

er filter, 
mi

the Wien 2 2{ ( )}d E d nσ =  is the variance of 
the desired response d(n), { ( ) ( )}TE n n=R x x  denot-
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1Z −
2 ( )e n

( )
1 ( )+

n
n

λ
λ

1
1 ( )+ nλ

2 ( 1)−e n

( )J n ( )J nΦ ( )nε

Φ

minJ

 
Fig. 1. The ANNCFLMS algorithm modifies the cost 
function using an NN architecture to track the 
minimum MSE. 

es the correlation matrix of the tap input x(n), and 
{ ( ) ( )}E n d n=p x  denotes the cross-correlation vect-

or between the tap inputs of the filter and the desired 
response. 

The concept involves using the weighted average 
sum of an NN with two input signals—the squared 
errors at time index n and 1−n —to modify the cost 
function and update the respective weight according 
to the gradient descent algorithm to track Jmin. The 
result leads to the gradient ( ) ( )∇ n E nλ  being minimi-
zed. The cost function (5) is minimized with regard 
to λ(n) as follows: 

( )
( )( 1) ( ) ( )

( ) ( ) ( )
nn n E n

n n J n
λλ λ ρ

λ ρε Φ

+ = − ∇

′= +
 

( )

2 2

2
( 1) ( )
1 ( )

e n e n
nλ

⎡ ⎤− −
×⎢

+⎢ ⎥⎣ ⎦
⎥ , (7) 

where ρ is learning rate parameter and ( ( ))J nΦ′ =  
denotes the first derivative of ( ) ( ) 22 /(1 )J n J ne e− −+

( ( ))J nΦ . This implies that ( )J nΦ  can be minimiz-
ed when Jmin is tracked by ( )J nΦ . Therefore, (4) is 
minimized according to the gradient descent algorit-
hm with regard to the step-size μ(n) as follows: 

( )

( 1)( ) ( 1) ( )

2( 1) ( )
1 ( )

    ( ) ( 1) ( ) ( 1) ( )

n

T

n n J n

n J n
n

e n e n n n n

μ Φμ μ α

αμ Φ
λ

λ

−= − − ∇

′= − +
+

⎡× − − +⎣ x x

 

 ( 1) ( 2) ( 1) ( 2)Te n e n n n ⎤× − − − − ⎦x x (8) 

, where α is learning rate parameter. The update eq-
uation for the adaptive filter weights of the proposed 
algorithm can be rewritten as follows: 

( 1) ( ) ( ) ( ) ( )+ = +n n n e n nμw w x . (9) 

Hence, (1) and (7)–(9) constitute the proposed 
ANNCFLMS algorithm. 
 

2.1 Convergence Analysis and Computation-
al Complexity of ANNCFLMS Algorithm 

The classical analysis of ANNCFLMS in terms of 
convergence in the mean, mean-squared, and steady 
-state follows the well-known analyses from the 
literature [4,8,10,11]. The adaptive step-size of 
ANNCFLMS is essentially bounded by the stability 
limits of the step-size of the LMS algorithm. (A 
sufficient, but not necessary, condition on μ(n) to 
ensure mean-squared convergence of the adaptive 

filter is [3–5,7,9]: 0 2 /(3tr{ })μ< < R , where tr{ }⋅  
es the trace of the matrix.) denot

The computational complexity of ANNCFLMS 
may appear to be somewhat high when compared 
with that of other adaptive algorithms, as observed 
in Table 1. But it is possible to reduce the computat-
ional complexity of ANNCFLMS as follows: 1) use 
a simple look-up table method or a lower-order 
Taylor series expansion to obtain an approximation 
of the sigmoid nonlinear activation function for the 
NN; 2) exploit a known channel noise variance 
instead of the tracked minimum MSE (Jmin); and 3) 
stop adaptation after convergence. In the experime-
nts, however, ANNCFLMS was found suitable for 
general environments and was especially robust in 
low-SNR or colored input environments due to the 
nonlinear nature of the neural network. The results 
of the simulation are shown in the next section. 
 

3 Simulation Results 

Consider a FIR channel estimation problem and the 
following channel (as used in [7,9]): 

 [ ]0.227, 0.460, 0.688, 0.460, 0.227 T . 

The input vectors are white Gaussian sequences 
with zero mean and the autocorrelation matrix 

=R I . The SNR is calculated by SNR = 10log10 

(E[y2(n)/E[v2(n)]), where y(n) is the output of the 
unknown system, and v(k) is the system noise, 

o , wo is the optimal tap-weight vector. 
The measurement noise v(n) is added to y(n) so that 
SNR = 0 and 10 dB. The simulation parameters 
used here and in other algorithms are listed in Table 
1 and set to achieve a steady-state misadjustment of 
0.01 according to the data in the original papers. 
The results presented in this paper are averages 
taken over 1000 independent runs. 

( ) ( )Ty n n= w x
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3.1 White Gaussian Input 

Fig. 2 compares the convergence curves of the MSE 
for the LMS, GASS in [4], MVSS in [5], VSLMS in 
[6], NCLMS in [7], GNGD in [8], AECLMS in [9], 
and proposed ANNCFLMS algorithm when the 
noise variance is 1.0 (SNR = 0 dB) and 0.1 (SNR = 
10 dB). The experimental misadjustments of the 
algorithm are shown in Table 2. As can be seen, the 
convergence of the MSE for the proposed algorithm 
is fastest than that of the other algorithms at low 
SNR (0 dB) and slightly faster than those of the 
NCLMS and AECLMS algorithms at high SNR (10 
dB). 
 

3.2 Nonwhite Gaussian Input 

Consider the experiment adopted in [4,7]: the input 
vectors {x(n)} are obtained from the output of a 
third-order low-pass filter with the transfer function 

1 2

0.44( )
1 1.5 0.25

H z
z z z− − −=

− + − 3 , 

when the input is white Gaussian noise with zero 
mean and unit variance. 

Fig. 3 compares the convergence curves of our 
algorithm with those of other adaptive algorithms in 
(a) and that of the third weight in (b) with nonwhite 
Gaussian inputs (SNR = 0 dB). The convergence 
speeds of the MSE and the third weight for the 
proposed algorithm are greater than those achieved 
with that other algorithms and are similar to those in 
the case where white Gaussian inputs were used. 
The ANNCFLMS algorithm reaches almost the 
same convergence speed as that with white 
Gaussian inputs at high SNR (10 dB; results omitted 
here). Table 3 lists the experimental misadjustments 
for nonwhite Gaussian inputs, as is similar to Table 
2, the misadjustment of the proposed algorithm is 
very close to the setting value of 0.01 at the steady-
state. 
 

3.3 Correlated Input 

Consider the following correlated input [3,5]: both 
the unknown system (or channel) and the adaptive 
filter are excited by ( ) 0.9 ( 1) ( )x n x n nδ= − + , where 
δ(n) is a zero mean, uncorrelated Gaussian noise of 
unity variance. 

The convergence curves of the MSE with correl-
ated inputs when SNR = 0 dB are shown in Fig. 4. 
We can observe that the convergence rate of the 

MSE appears to be the fastest for the proposed 
method, as is similar to those of with uncorrelated 
inputs (i.e., white and nonwhite Gaussian inputs 
presented in Section 3.1 and 3.2). The experimental 
misadjustments of the algorithm are also listed in 
Table 4. 
 

3.4 Comparison of Step-size for Various 
Adaptive Algorithms 

In a comparison of the step-size from the perspecti-
ve of the robustness of low-SNR environments, it 
can be clearly seen from Table 1 that the experi-
mental results in [2–4,6,8] were sensitive to high-
level noise, since the instantaneous error value e(n) 
was used in their implementations and could, 
therefore, be contaminated by the noise, while the 
method in [5] needs the noise signal to be un-
correlated. [8] is attractive compared with [2] and [4] 
in the experiments of a linear prediction and a 
nonlinear signal of the speech, but the performance 
will be degraded on channel estimation problem. 
Thus, the method used here is no longer reasonable. 
Wei et al. [7] and Choi et al. [9] exploited the 
augmented Lagrangian multipliers to enhance the 
convergence rate. The simulated results show that 
[7,9] have a better performance. 

In the proposed method, it is not only the exploit-
ation of a linear combination (similar to Mathows’ 
(GASS) [4]) which reduces the square estimate error 
during each iteration, but also the use of a nonlinear 
update (similar to Mandic’s (GNGD) [8]) which 
deals with the potentially non-Gaussian nature of 
the data. This enables the step-size to be processed 
like it is via a combination of both terms. In addition, 
as can be observed in Fig. 1, the modified cost 
function always tracks the minimum MSE (i.e., the 
variance of the estimate noise) and attains its 
minimum value at steady-state, and therefore, the 
step-size is also converged into a smaller value to 
obtain a low misadjustment error. The simulated 
results demonstrate that the proposed method can 
perform well and robustly in low-SNR or colored 
input conditions. 
 

4 Conclusion 

This paper introduced a new LMS algorithm, 
ANNCFLMS. The cost function of the adaptive 
neural network is used as a criterion of noise 
estimation to determine how close the adaptive filter 
attains to optimum performance. The results 
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Fig. 2. Comparison of the convergence curves of the 
MSE for various adaptive algorithms in the channel 
estimation problem: (a) SNR = 0 dB and (b) SNR = 10 
dB. 
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demonstrate that it is a good approach to unknown 
channel estimation. 
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Fig. 3. Comparison of the convergence curves of 
(a) the MSE and (b) the third weight for various 
adaptive algorithms with nonwhite Gaussian inputs 
when SNR = 0 dB in the channel estimation 
problem. 

Fig. 4. Comparison of the convergence curves of the 
MSE for various adaptive algorithms with correlated 
inputs when SNR = 0 dB in the channel estimation 
problem. 

 
Table 2. Experiment misadjustment of the adaptive algotrithm for the constant channel 
with design misadjustment of 0.01 (White Gaussian inputs) 

 
Misadjustment 

SNR LMS GASS MVSS VSLMS NCLMS GNGD AECLMS Proposed

0 dB 0.0094 0.0095 0.0102 0.0112 0.0098 0.0116 0.0098 0.0101 

10 dB 0.0098 0.0117 0.0089 0.0122 0.0092 0.0122 0.0094 0.0113 

 
Table 3. Experiment misadjustment of the adaptive algotrithm for the constant channel 
with design misadjustment of 0.01 (Nonwhite Gaussian inputs) 

 
Misadjustment 

SNR LMS GASS MVSS VSLMS NCLMS GNGD AECLMS Proposed

0 dB 0.0102 0.0112 0.0085 0.0093 0.0082 0.0125 0.0092 0.0099 

10 dB 0.0098 0.0142 0.0067 0.0086 0.0062 0.0133 0.0116 0.0101 
 
 

Table 4. Experiment misadjustment of the adaptive algotrithm for the constant channel 
with design misadjustment of 0.01 (Correlated inputs) 

 
Misadjustment 

SNR LMS GASS MVSS VSLMS NCLMS GNGD AECLMS Proposed

0 dB 0.0103 0.0115 0.0073 0.0118 0.0113 0.0132 0.0099 0.0107 

10 dB 0.0083 0.009 0.0081 0.0122 0.0087 0.0146 0.0092 0.0089 
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