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Abstract: - Multiple-input-multiple-output (MIMO) technique is often employed to increase capacity in 
comparing to systems with single antenna. However, the computational complexity in evaluating channel 
capacity or transmission rate (data rate) grows proportionally to the number of employed antennas at both ends 
of the wireless link. Recently, the QR decomposition (QRD) based detection schemes have emerged as a low-
complexity solution. After conducting QRD on a full channel matrix that results in a triangular matrix, we 
claim that computational complexity can be simplified by the following ways. First, to simplify channel 
capacity calculation, we prove that eigenvalues of the full channel matrix multiplication equals eigenvalues of 
the triangular channel matrix multiplication. Second, to simply evaluate optimal transmission rate constrained 
constellation, we propose a simplified multiplication of the resulted simple triangular matrix and a transmitted 
signal vector. Then, we also propose a modified mutual information calculation (MMIC) to reduce the 
multiplication complexity in combinational multiplication processes via the divided calculation. This divided 
calculation is employed in the parallel architecture for the field-programmable gate array (FPGA) 
implementation. That is, the number of multiplications can be reduced via increasing the number of additions in 
the FPGA implementation. By using the computer and FPGA implementation, simulation results show that the 
proposed QRD-based schemes are capable of achieving conventional performance, but at a low-complexity 
level.  
 
Key-Words: Multiple-input multiple-output, channel capacity, QR decomposition, eigenvalues, mutual 
information, field-programmable gate array.   
 
1 Introduction 

Multiple-input-multiple-output (MIMO) 
technique [1]-[3] is often employed to increase 
capacity in comparing to systems with single 
antenna [4]-[5]. In wirless MIMO communications, 
the design of an optimal transmission is essential in 
order to meet demands from a large number of 
simultaneous data transmissions [1]-[3]. Bertrand et 
al. [6] shows the mutual information constrained 
constellation to achieve the maxim achievable rate 
at various signal-to-noise ration (SNR) conditions in 
MIMO system. However, with full MIMO channel 
matrix (H) [6]-[10], the computational 
complexity in calculating channel capacity or 
transmission rate (data rate) increases proportionally 
as the number of antennas and/or modulation order 
getting higher [6]-[9]. More specifically, the full 
MIMO channel matrix multiplication [6] leads to 

complicated field-programmable gate array (FPGA) 
implementation [10] and very-large-scale 
integration (VLSI) [11]. To simplify the 
computational complexity, the QR-decomposition 
(QRD) scheme [12]-[15] with restraining 
complexity has been devised to reduce the MIMO 
channel matrix multiplication due to involving a lot 
of zeros in a triangular matrix [13]-[15].  

In this paper, we propose a simple way to realize 
Bertrand’s scheme [6]. Towards this end, the MIMO 
channel matrix can be uniquely represented a 
triangular matrix (R) and a unitary matrix after 
QRD [13]-[15], provided that the number of 
receiving antennas (M) is larger than or equal to the 
number of transmitting antennas (N). Thus, 
computational complexity can be simplified by the 
following ways. First, to simplify channel capacity 
calculation, we prove that eigenvalues of the full 
channel matrix multiplication (HHH) [6] equals 
eigenvalues of the triangular channel matrix 
multiplication (RRH) [13]-[15]. Based on this 
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equivalence, we can reduce the eigenvalue 
processes because RRH with N-by-N has fewer 
dimensions than HHH with M-by-M [16]-[18]. This 
(⋅)H is the Hermitian transpose. Furthermore, this 
eigenvalue processes must establish a sin/cos look 
up table in the hardware implementation. 
Nevertheless, the memory size severely limits the 
precision in the hardware implementation. 
Therefore, for the FPGA implementation, we adopt 
the Coordinate Rotation Digital Computer 
(CORDIC) algorithm instead of the sin/cos table to 
achieve the memory efficiency in the eigenvalue 
processes [11]. Second, to design an optimal 
transmission rate via evaluating mutual information 
constrained constellation [6], we propose a 
simplified multiplication of the resulted simple 
triangular matrix and a transmitted signal vector. In 
addition, we propose a modified mutual information 
calculation (MMIC) to reduce the multiplication 
complexity in combinational multiplication 
processes via the divided calculation. This divided 
calculation is employed in the parallel architecture 
for the FPGA implementation. By using computer 
and FPGA implementation [19], simulation results 
show that the proposed QRD-based schemes are 
capable of achieving conventional performance 
(Bertrand’s scheme), but at a low-complexity level 
[16]-[18].  

This paper is organized as follows. In Section II, 
we give conventional MIMO equations in 
computing channel capacity [20]-[22]. Section III, 
The proposed QRD-based scheme in computing 
channel capacity and mutual information of 
constrained constellation are developed. In Section 
IV, we analyze the computational efficiency (CE) in 
the proposed QRD-based scheme. In Section V, we 
conduct computer simulation and FPGA 
implementation to confirm the effectiveness of the 
proposed QRD-based schemes. Finally, we 
conclude the paper and suggest future work in 
Section VI.   

 
2 Conventional MIMO Capacity 
Equations 

We consider a communication system with N 
transmitting and M receiving antennas (M ≥ N) over 
a MIMO channel. The sampled basedband received 
signals [9] are given by  
 

y = Hx + v,                                     (1) 
 

where y ∈ CMx1  is the received signal vector, x ∈ 
CNx1 is the transmitted signal vector and H ∈ CMxN is 
the MIMO channel matrix and the noise vector v ∈ 
CMx1 has an i.i.d. complex Gaussian entries and 
noise power is σ . Then, the MIMO technique 
promises to become the technology of future 
wireless communication when high spectral 
efficiency is required. Therefore, the capacity of a 
random MIMO channel [6]-[9] can be expressed as 
follows: 

2
v

 

⎭
⎬
⎫

⎩
⎨
⎧

=
=

);(max
)(:)(

yx
Rx

ΙEC
Ntrp xx

,                      (2) 

 
where Rxx := E{xxH}is the covariance matrix of the 
transmitted symbol vector x and p(x) denotes all 
possible transmitter statistical distribution. By using 
a MIMO channel, the mutual information [6]-[9] 
between x and y which can be given as 
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where total power PT is limited, irrespective of the 
number of transmitting antennas. Substituting (3) 
into (2), we have 
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In this work, assuming the channel coefficient is 
unknown to the transmitter and hence the uniform 
power distribution is considered in transmitter. The 
covariance matrix of x is then given by Rxx = IM, 
which implies that the transmitted symbol x is an 
i.i.d. random variable with zero-mean and unit-
variance. As a result, the ergodic capacity for a 
spatially white MIMO channel [6]-[9] can be given 
as  
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where 

2:
v

TP
σ

ρ =  is the average SNR at each receiver 

branch. By using the eigenvalue decomposition 
(EVD) [16]-[17], we can get  
 

HHH = EΛHEH,                                (6) 
 

where E is an M x M matrix which EEH = EHE = IM 
and ΛH = diag{ΛH,1, ΛH,2,…ΛH,M} is a diagonal 
matrix with ΛH,i   0 employed in full MIMO 
channel matrix. Assuming ΛH,i’s are ordered so that 
ΛH,i   ΛH,i+1, then we have ΛH,i = 0 if d +1   i   
M, where d is given as 
 

d = rank(H)   N,                               (7) 
 

therefore, the capacity of a MIMO channel [6]-[9] 
can  be rewritten as  
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In outage analysis, we consider the q% outage 
capacity Cout,q as the information rate that is 
guaranteed for (100 - q)% of the channel realization 
as 
 

Prob(C ≤ Cout,q) = q%,                              (9) 
 
in upper bound, the outage capacity is larger than 
the channel capacity when a finite probability q is 
considered. Furthermore, when the channel 
knowledge is known at the transmitter, the capacity 
of a MIMO channel is the sum of the capacities 
associated with the parallel SISO channels [7]-[9] 
given by  
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where transmitting power in the ith sub-channel is Pi 
:= E{|xi|2} for i = 1, 2,…, r and total power satisfies 
P1 + P2 + …+ Pr = N. Therefore, the transmitter can 

access the spatial sub-channels, it can allocate 
variable power across the sub-channels to maximize 
the channel capacity. The channel capacity with 
power loaded optimization is  

∑
== ⎭

⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ Λ+=

r

i
ii

NP N
PEC

T 1
,2 1logmax H

ρ .         (11) 

 

Hence, the solution can be obtained by using the 
Lagrangian methods [7]-[9]. The optimal power 
allocation of the ith sub-channel is denoted as 
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where μ is a constant chosen to satisfy the power 
constraint of (12) and (x)+ denotes 
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The optimal power allocation in (13) is found 

iteratively through the “waterfilling” algorithm [7]-
[9].  

3 Reduced-complexity for MIMO 
Capacity Equations   

In this section, the QRD-based scheme is 
proposed to reduce matrix multiplication in 
computing A) channel capacity and B) mutual 
information of constrained constellation as follows.   

3.1 Channel Capacity  

In this subsection, we consider the triangular 
matrix multiplication to achieve low computational 
complexity via the QRD-based scheme. Thus, the 
full MIMO channel matrix [13]-[15] can be 
expressed as  
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where Q = [Q1∈CN×N, Q2∈CN×(M−N)] is an M×N  
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unitary matrix so QHQ = I and R is an N×N upper 
triangular matrix [13]-[15] as 
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where R involves a lot of zeros and hence matrix 
multiplication can be reduced. Based on (10), 
considering low-complexity in the matrix 
multiplication, we thus prove that the eigenvalues of 
full channel matrix multiplication are equivalent to 
the eigenvalues of triangular channel matrix 
multiplication as follows. 

Theorem 1: Assuming H ∈ CMxN, let Q and R be the 
QR decomposition of H (i.e. H = QR). Then, we 
have Λ(HHH) = Λ(RRH) where Λ(⋅) is the set of 
eigenvalues. 

  Proof: We first consider the “⊆” case, let ΛH ∈ 
Λ(HHH). There is a a ≠ 0, such that  
 

HHHa = ΛHa.                             (16) 
 

So H = QR implies  
 

QH(QRRHQHa) = QH(ΛHa) = ΛHQHa.        (17) 
 

Since QHa ≠ 0, we have ΛH ∈ Λ(RRH) and hence 
proof is done. Next, for the “⊇” case, let ΛR ∈ 
Λ(RRH). There is a b ≠ 0. So a = Qb implies 
 

 QHa = b,   0a ≠∀ .                         (18) 
 

So RRHb = ΛRb implies 
 

RRHQHa = ΛRQHa.                        (19) 
 

By multiplying Q on left of (14), we have 
 

               QRRHQHa = ΛRQQHa = ΛRa.             (20) 

 

Notice that because of (16), we have QRRHQHa = 
HHHa = ΛRa. Thus, proof is done. 
 

 
Fig. 1. Pseudo code for EVD in computer implementation.  

(S.1) Symmetric QR algorithm [16 p.421] is applied to  

     ; //P is the Givens processes       
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(D.1) procedure DC(T, Q, Λ, n : input size) // DC: divide-and-conquer 
(D.2)   begin 
(D.2)      if n < = n0 then   
(D.3)        Solve problem without sub-division; 
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(D.9)          Return Q and Λ; 
(D.10)     endif 
(D.11)  end DC.

 
Based on the Theorem 1, to reduce the eigenvalue 

processes, the capacity of a MIMO channel of (8) 
can be rewritten as 
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where eigenvalues ΛR are obtained by RRH = 
UΛRUH and ΛR = ΛH, depicted in Theorem 1. 
Similarly, the channel capacity with power loaded 
optimization of (11) can be rewritten as 
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Thus, by using RRH, we can reduce the eigenvalue 
processes as the capacity value of (21) and (22) are 
equivalent to the capacity value of (5) and (8). In 
this paper, channel capacity calculation will be 
developed in computer and FPGA implementation 
as follows. For computer implementation, the 
symmetric QR and divide-and-conquer algorithm 
[16 p.421-444] are proposed to process the 
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symmetric eigenvalue problem in Fig. 1. For FPGA 
implementation, we consider the Jacobi method to 
realize symmetric eigenvalue problem [16] as 
follows  
 

UHAU = = Λ, (23) nn
HH

n
H
n UUAUUUU 1111 ...... −−

 

where U, the jacobi matrix, performs a sequence of 
orthogonal two sided plan rotations to the 
symmetric matrix A (A = RRH). The Jacobi rotation 
matrices U(p, q, θ) is formed as 
 

U(p, q, θ) = .               (24) 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

10

θcos0θsin
010

sinθ0θcos

01

OMN

LL

LLL

LL

NMO

 
Then, assuming Ui (1 ≤ i ≤ n) is an orthonormal 
plane rotation via an angle θ, we thus have Upp = 
cosθ, Upq = sinθ, Uqp = −sinθ, and Uqq = cosθ. The 2-
by-2 EVD algorithm [16] is presented as follows 
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where app, aqq, apq, aqp ∈ Ai is ith (1 ≤ i ≤ n) iteration 
in processing EVD of A. To compute θ in (24), the 
algorithm gives symmetric A, p and q to satisfy bpq 
= bqp = 0, these processes can be depicted in Fig. 2. 
To achieve the memory efficiency in the channel 
capacity evaluation, we use the coordinate rotation 
digital computer (CORDIC) algorithm to realize the 
sin/cos generator instead of lookup table in the 
FPGA implementation [11]. In Fig. 3, the three 
main blocks of the EVD process are depicted as 
follows: 1) The CORDIC blocks work in vector 
rotation and arctangent process. In Fig. 3, we use 
two CORDICs to achieve the speed efficiency of the 
system computation. In these two CORDICs, one 
works in the vector rotations and the other works in 

the arctangent calculations to solve (23)-(25). 2) The 
memory block stores the eigenvalue and eigenvector 
temporarily when data bus is busy. 3) The random 
access memory (RAM) stores the eigenvectors and 
eigenvalues via the CORDIC processes as well as 
the variable data with various iterations. Especially, 
in this paper, the EVD process can be calculated 
easily due to invoking symmetric characteristic 
[16]-[18].   
   

 
Fig. 2. Pseudo code for achieving the rotation angle in 
FPGA implementation. 

(A.1)        if A(p, q) ≠ 0 
(A.2)          τ = (A(q, q) − A(p, p))/2A(p, q); 
(A.3)             if τ ≥ 0 
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(A.7)             endif 
(A.8)        else 
(A.9)               θ = 0; 
(A.10)      endif.  

 
Fig. 3. Channel capacity calculation for FPGA 
implementation.  

3.2 Mutual Information of Constrained 
Constellation 

 
In this section, to design an optimal transmission 

rate, the mutual information of constrained 
constellation is essentially evaluated. To achieve the 
effort of various constellations on achieving 
maximum rate in (1), the mutual information 
between received signals and transmitted signals [6] 
can be denoted as 
 

I(x;y) = H(y) − H(y|x),                         (26) 

where H(y|x) = N⋅log(2π e) is a standard division 
assuming Gaussian channel for any symbol 
constellation. H(y) is entropy function as 
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H(y) =  − E log p(y) = ,    (27) ∑−
x

xxy )()|(log ppE

where probability of event x is given as p(x) = 2−mN 

and m is an modulation order. The condition 
probability p(y|x) [6] can be given as 
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therefore, mutual information of (26) can be written 

as 
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In this paper, we will simplify the multiplication 
(Hx) of the resulted a full channel matrix and 
transmitting signal vector in (29). By using QRD, a 
simplified multiplication of the resulted a simple 
triangular matrix and transmitted signal vector [13]-
[15] can be given as  
 

 ||y − Hx||2 = xHHHHx − 2yHHx + yHy                        

                 = xHRHRx − 2zHRx + zHz                          

                = ||z− Rx||2.                                         (30) 

 

By applying this simplified multiplication (Rx) of 
(30), the mutual information of (29) can be rewritten 
as 
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Therefore, we can simplify multiplication as the 
mutual information value of (31) because it is 
equivalent to the mutual information value of (29). 
In practical, calculating all possible symbol vectors 
in (31) are high complex when number of antennas 
is large. Especially, in the FPGA implementation, 
the number of multiplications is limited when the 
parallel architecture is considered. Therefore, to 

reduce the number of multiplications via increasing 
the number of additions in the FPGA 
implementation, the terms calculation inside the 
norm in (31) will be divided two parts as 
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where R  ∈CN−1×N, R1∈ CN and x  = [x2, x3,…, xN]T 

∈ CN−1. Specifically, to reduce mN (m is a 
modulation order) iterations to mN-1 iterations in 
(31), the terms calculation inside the norm of (32) is 
divided into brackets and the equivalent received 
signals z = QHy. That is, in this brackets (Rx = 

11xRxR + ), the size of x  is less than the size of x. 
Thus, the number of iterations in xR  has only mN-1 
iterations for calculating all possible symbol 
vectors. To depict this multiplication reduction, we 
give an example by using BPSK (m = 2) and N = M 
= 3 as follows 
 

Rxi = +  = R1x1,i + ix
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,3

,2

3,3

3,22,2

3,12,1

0
ixR ,    

(33) 
 

where i (1 ≤ i ≤ m) is a constellation index and x1,i, 
x2,i, x3,i ∈ {−1, 1}. Then, the processes for 
calculating all possible combinational signal vectors 
are given as 
 

Rx1 = R1x1,1 + 1xR ,                                      

Rx2 = R1x1,1 + 2xR ,                                     

M                                                       

Rx4 = R1x1,1 + 4xR ,                                     

Rx5 = R1x1,2 + 1xR ,                                      

M                                                      

Rx8 = R1x1,2 + 4xR .                             (34) 
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Based on (32)-(34), the block diagram of the 
modified mutual information calculation (MMIC) is 
proposed in Fig. 4.  

 

Fig. 4. The block diagram of the mutual information 
calculation.  

4 Computational Complexity  

In this subsection, we analyze the computational 
efficiency (CE) in evaluating channel capacity and 
mutual information of constrained constellation as 
follows. For simplicity, the computational 
complexity is only in terms of the number of 
complex multiplications. To evaluate channel 
capacity, the symmetric QR and divide-and-conquer 
algorithms [16 p.421-444] are proposed to process 
the symmetric eigenvalue problem, where 
algorithms require about 4n3/3 and O(n2) [17]-[18], 
respectively. Considering the multiplication of the 
full channel matrix (HHH ∈ CMxM) [6]-[9], the 
computational complexity of (8) [16]-[17] is given 
as 
 

223
3
4 NMMMCompl ++≅H .                  (35) 

 

To reduce the eigenvalue processes in computing 
channel capacity, the QR-based method is employed 
where QR-decomposition complexity is about 
O(2MN2−2N3/3) [16]. Considering the 
multiplication of triangular channel matrix (RRH ∈ 
CNxN), the computational complexity of (21) [16]-
[17] is given as 
 

33
4 3

2

1

223 NMNiNNCompl
N

i
−+++≅ ∑

=
R .       (36) 

 

Based on (32) and (35), the computational 
complexity requirements of (8) and (21) for 
evaluating channel capacity are compared by the CE 
ratio: 
 

223

3
2

1

223

3
4

33
4

)capacity(
)capacity (:

NMMM

NMNiNN

Complex
ComplexCE

N

i
c
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∑
=

H

R . 

(37) 
 

To compute mutual information under various 
constellations, by using a full MIMO channel matrix 
multiplication [6], the computational complexity of 
mutual information of (29) is given as  
 

ComplexH(mutual) ≅  2mN
 · M ⋅N +2mN(M +1),     (38) 

 

where m is an modulation order. By using the 
triangular channel multiplication, the computational 
complexity of mutual information of (31) [13]-[15] 
is given as  
 

ComplexR(mutual) ≅  2m(N-1) ·
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
2

2 NN +2m⋅N          

+ 2mN(M +1) + 2MN2 − 2N3/3. (39) 
 

Based on (36) and (39), assuming m and/or N is 
large enough, the computational complexity 
requirements of (28) and (31) for computing mutual 
information is compared by the CE ratio: 
 

NM
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Complex
ComplexCE mm ≥∀≤
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12

1
2
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2
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(40) 
 

Clearly, by using (40), the proposal QRD-based 
scheme in (31) is less computational complexity 
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than the conventional scheme in (29) [6] because of 
the triangular matrix multiplication. Beside, 
analyzing channel capacity evaluation and mutual 
information evaluation in FPGA implementations, 
the complexity of the proposed QR-based schemes 
are analyzed by using the number of logic elements 
(LEs) in next.  

  
5 Simulation Result    

In this section, first, computer simulation results 
are presented to characterize the proposed QRD-
based scheme [13]-[15] described in capacity. 
Second, we also demonstrate the proposed QRD-
based method which can reduce computational 
complexity in achieving mutual information under 
various constellations. In this MIMO system, the 
channel coefficient of (1) is obtained from the 
transmitting antenna n (n = 1, 2,…, N) to the 
receiving antenna m  (m = 1, 2,…, M) [13]-[15] as  
 

                            IR, jhhh nm += ,                       (41) 
 

where hR and hI are complex Gaussian random 
variables with a zero mean that denote the real part 
and the image part, respectively. Each point on the 
curves was obtained with averaging over 105 trials 
in the Monte-Carlo simulation. Assuming channel is 
perfectly known at receiver, the proposed QRD-
based schemes evaluate the effects of A) channel 
capacity, optimal power, B) the mutual information 
of constrained various constellations and C) 
reduced-complexity analysis.  
 
5.1 Channel capacity and optimal power  

Based on (10) and (21), Fig. 5 and Fig. 6 
respectively show the ergodic capacity and 10% 
outage capacity for different SNR conditions and 
numbers of antennas. As expected, the ergodic 
capacity and outage capacity increases when SNR 
or the number of antennas was increased, 
respectively. For optimal power in (11) and (22), 
Fig. 7 shows the complementary cumulative 
distribution function (ccdf) versus capacity for 
various antenna configurations at SNR = 10 dB. As 
observed, assuming the same antenna configuration, 
the figure shows that the capacity is larger with 
channel knowledge known at the transmitter than 
without channel knowledge at the transmitter. That 
is, this capacity gains because the transmitter 
involves power allocation when the channel 

knowledge is given at transmitter. In Fig. 7, K and 
U denote that the channel knowledge is known and 
unknown at transmitter. Thus, Fig. 5, Fig. 6 and Fig. 
7 demonstrate that the proposed triangular matrix 
(R) in (21) and (22) can be employed to realize the 
full MIMO channel matrix (H) in (10) and (11) [6]-
[9], where it involves less computational complexity 
by using the triangular matrix multiplication.  
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Fig. 5. Ergodic capacity versus SNR performance for 
various antenna configurations (s denotes second). 
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Fig. 6. Outage capacity versus SNR performance for various 
antenna configurations.    
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Fig. 7. CCDF versus capacity for various antenna 
configurations at SNR = 10 dB. 
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5.2 Mutual information of constrained various 
constellations  
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                                        (b) 
Fig. 8. Ergodic capacity versus SNR performance for 
various modulation orders employing (a) N = 3, M = 3, (b) N 
= 4 and M = 4. 

In Fig. 8(a), with N = M = 3, the theoretic channel 
capacity of (5) is represented by the highest curve. 
Based on (29) and (32), the remaining curves 
indicate mutual information of constrained various 
constellations when various SNR conditions are 
employed. That is, the curves show maximum 
transmiision rate variability achieved with 64-QAM, 
16-QAM and 4-QAM. As a result, the design of a 
suitable transmitted data rate (C) can be ensured by 
channel code rate (R), modulation order (m) and the 
number of transmitting antennas (N). For example, 
considering an error-free transmission rate possibly 
for R⋅N⋅m ≤ C in Fig. 8(a), we can be sure R = 1 at 
SNR ≥ 24 dB when C = 18 (bits/channel use), N = 3 
and m = 6 are employed. Beside, we can ensure R = 
0.5 at about SNR = 10 dB when C = 9 (bits/channel 
use), N = 3 and m = 6 are employed. Similarly, with 
increasing the number of antennas, Fig. 8(b) shows 
the capacity increase when modulation order and/or 
SNR is increased. As expected, Fig. 8(a) and Fig. 
8(b) demonstrate that the proposed triangular matrix 
(R) in (32) can be employed to realize the full 

MIMO channel matrix (H) in (29) [6], but at a low 
complexity level.  

5.3 Reduced-complexity analysis in the proposed 
QRD-based scheme  

In this subsection, we investigate 1) channel 
capacity evaluation and 2) mutual information 
evaluation in both computer simulation and FPGA 
implementation. First, regarding channel capacity 
evaluation in computer simulation, considering M is 
fixed, Table I demonstrates that the CE ratio of (37) 
decreases when N is decreased in practical. 
Specifically, in Table I, the proposed QRD-based 
scheme can reduce the computational complexity by 
about 91% over [6]-[9], when N = 10 and M = 30. 
That is, we can reduce the eigenvalue processes 
because RRH with N-by-N has fewer dimensions 
than HHH with M-by-M. In Fig. 3, channel capacity 
evaluation has been designed in Verilog and 
implemented with FPGA via Xilinx Virtex-5 
(XC5VSX240T) [19]. Table II demonstrates that the 
CE ratio of (37) decreases when N is decreased. 
Second, regarding mutual information evaluation in 
computer simulation, in practical, Table III 
demonstrates that the proposed QRD-based scheme 
in (32) has less computational complexity than 
conventional scheme in (29). For FPGA 
implementation in Fig. 4, Table IV shows that the 
proposed QRD-based scheme can reduce the 
computational complexity than conventional scheme 
[6]. Thus, the CE ratio of (37) and (40) are claimed 
via Table 1 - IV in computer and FPGA 
implementation.  

TABLE I. EVALUATING CHANNEL CAPACITY COMPLEXITY WITH 
COMPUTATIONAL IMPELMENTATION 

CEc (Mul./ Mul.) with QPSK Empolying in (34) 

M=30, N=30 81131/81153=0.9997 

M=30, N=26 56811/76581=0.7418 

M=30, N=22 37398/72009=0.5193 

M=30, N=18 22841/67437=0.3387 

M=30, N=14 12491/62856=0.1987 

M=30, N=10 5695/45900=0.0977  
TABLE II. EVALUATING CHANNEL CAPACITY COMPLEXITY WITH 

FPGA IMPELMENTATION 

 

CEc  (LEs/LEs) with QPSK Empolying in (34) 

M=20, N=20 23279/24473=0.9512 

M=20, N=19 21476/23707=0.9 

M=20, N=18 18726/23199=0.8072 

M=20, N=17 16214/22691=0.7146 

M=20, N=16 13929/22183= 0.6279 

M=20, N=15 7421/12237= 0.5473 
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TABLE III. EVALUATING MUTUAL INFORMATION COMPLEXITY WITH 
COMPUTATIONAL IMPELMENTATION 

 

TABLE IV. EVALUATING MUTUAL INFORMATION COMPLEXITY WITH 
FPGA IMPELMENTATION 

 
 
6 Conclusion 

   In this paper, considering low-complexity, the 
triangular matrix multiplication is proposed to 
achieve channel capacity, optimal power and mutual 
information of constrained constellation for MIMO 
communications. Beside, we also propose a 
modified mutual information calculation (MMIC) to 
reduce the multiplication complexity via the divided 
calculation in the FPGA implementation. To 
evaluate low-complexity in the computer and FPGA 
implementation, the MIMO channel capacity and 
mutual information was analyzed by using the 
proposed computational efficiency (CE) in 
simulation results. Our future work will investigate 
MIMO techniques in accordance with precoder and 
STBC for mobile broadband wireless access 
applications.  
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