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Abstract: - An efficient multiple-input multiple-output (MIMO) detection (MD) algorithm includes novel, low-
complexity, near-optimal and robust scheme is proposed in wireless communications when imperfect noise 
estimation is considered. By using MIMO technique, capacity increases proportionally as the number of 
antennas is increased, but the introduced inter-antenna interference (IAI) degrades system performance. To 
better mitigate IAI, we propose a two-stage procedure to achieve maximum likelihood (ML) performance while 
keeping at acceptable level of computational complexity. A novel two-stage procedure is proposed as follows 
that is suitable for either in an overdetermined or an underdetermined MIMO system. In an overdetermined 
system, interference cancellation is first processed at Stage-1 using sorted QR decomposition (SQRD) followed 
by Stage-2 that performs a genetic algorithm (GA). In terms of computational complexity, this procedure 
provides three significant advantages: 1) The SQRD scheme provides excellent interference cancellation so as 
to largely improve initial setting of GA. 2) By using QRD, fitness value evaluation of GA involves less 
complexity due to reducing the matrix multiplication. 3) In aspect of diversity knowledge, lately decoded sub-
streams expect to have lower error probabilities by using SQRD. In this paper, each mutated gene is decoded 
from the various diversity gains, termed as a diversity mutation (DM) scheme. To achieve the fore-mentioned 
three significant advantages in an underdetermined system, on the other hand, we propose zero forcing (ZF) 
assisted SQRD GA-MD (ZF-SQRD GA-MD) to achieve ML performance. Beside, the proposed two-stage 
detection procedure is quite robust as it does not rely on noise information. Simulation results show that the 
proposed two-stage detection procedure can achieve a near-ML performance, but at a low-complexity level.  
 
Key-Words: multiple-input multiple-output, inter-antenna interference, maximum likelihood detector, sorted 
QR decomposition, genetic algorithm, underdetermined.   
 
1 Introduction 

In future wireless communications [1]-[3], to make sure a 
reliable and efficient transmission, the multiple-input 
multiple-output (MIMO) technique is often employed 
[4]-[5]. However, MIMO technique calls for a reliable 
data detection scheme to mitigate the introduced inter-
antenna interference (IAI) caused by the mutual 
interference between the different transmitting antennas. 
Moreover, detection complexity becomes an issue 
especially at detector when the number of employed 
antennas and/or modulation order is increased. In this 
study, an efficient MIMO detection (MD) algorithm 
includes novel, low-complexity, near-optimal and robust 
scheme is proposed in wireless communications when 

imperfect noise estimation is considered. 

To reduce IAI, the maximum likelihood (ML) 
detector [6] can achieve remarkable performance; 
however, it suffers from high computational 
complexity in practice especially when we intend to 
improve transmission capacity by increasing the 
number of antennas. Various near-optimal MIMO 
detection (MD) techniques have been proposed in 
open literatures including those based on zero 
forcing (ZF) [7], minimum mean-squared-error 
(MMSE) [7], successive interference cancellation 
(SIC) [8], parallel interference cancellation (PIC) 
[9] and ordered SIC (OSIC) [10]-[11]. 
Unfortunately, they all can not approach 
performance of an ML detector. To achieve the ML 
performance, sphere decoder (SD) [12]-[20] has 
been investigated by using reliable radius. However, 
it relies heavily on the accuracy of noise power 
estimation [13]-[14]. In practical outdoor 
environments, however, noise power estimation 
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may be error-prone, leading to complexity increase 
in SD when inaccurate radius is estimated. As a 
result, an excessive complexity is required for cases 
that the initial radius is over-estimated [16]. If the 
initial radius is under-estimated, on the other hand, 
SD might choose to restart the search procedure 
again by gradually increasing radius or terminate the 
search procedure. As such, SD always cannot 
guarantee optimal performance. To enhance 
robustness without utilizing noise information [21]-
[30], Jiang, Ng and Hanzo [27] give contributions to 
propose a two-stage procedure that employs a 
genetic algorithm (GA) aided MMSE MD (MMSE 
GA-MD) to achieve ML performance. However, 
MMSE GA-MD requires both complicated full 
matrix inversion [31] for inherent “MMSE” 
operation and costly full matrix multiplication for 
fitness value evaluation in GA. In this paper, we 
propose a novel two-stage procedure that 
outperforms conventional detectors at quite low 
complexity as follows. 

When the number of receiving antennas (M) is 
larger than or equal to the number of transmitting 
antennas (N) (for overdetermined MIMO system), 
Stage-1 performs interference cancellation using 
sorted QR decomposition (SQRD) followed by 
Stage-2 that performs GA to further refine the 
accuracy of all data substreams [32]-[34]. In terms 
of computational complexity, this procedure 
provides three significant advantages: 1) The SQRD 
scheme provides excellent interference cancellation 
so as to largely improve initial setting of GA [23], 
[30]. 2) By using QRD, fitness value evaluation of 
GA involves less complexity due to reducing matrix 
multiplication [35]-[37]. 3) In aspect of diversity 
knowledge [32], lately detected sub-streams tend to 
have lower error probabilities by using SQRD. In 
this paper, each mutated gene [38] is decoded from 
the various diversity gains, termed as a diversity 
mutation (DM) scheme. 

With N > M (for underdetermined MIMO 
system), the SQRD detector fails because the 
MIMO channel matrix is not in full column rank. To 
achieve the fore-mentioned three significant 
advantages, we propose a ZF detector assisted 
SQRD (ZF-SQRD) to realize the OSIC scheme. 
Based on column-reordering strategy in ZF-SQRD, 
the ZF detector is employed in Stage-1 to detect 
partial transmitted signals. By successively nulling 
the interference of the previously detected signal in 
the followed SQRD detection procedure, the 
remainder of the transmitted signals can be well 
detected. At the end of Stage-1, all the detected 

signals will be treated as chromosome for initial 
setting in GA-MD of Stage-2. The two-stage 
procedure is called ZF-SQRD GA-MD in this paper. 
Extensive simulations show that, at the same level 
of bit error rate performance, the proposed two-
stage procedure can largely save the required 
computational complexity comparing to other 
existing schemes when inaccurate noise power 
estimation is employed [35]-[37]. 

This paper is organized as follows. In Section 2, 
conventional GA-MD consists of initial population, 
fitness value evaluation and mutation is depicted. In 
Section 3, the proposed QR-based GA-MD consists 
of initial population, fitness value evaluation and 
mutation is developed. In Section 4, we analyze the 
computational complexity of the GA-based 
detectors in multiplications. In Section 5, we 
conduct computer simulation to confirm the 
effectiveness of the proposed algorithms. Finally, 
we conclude the contributions in this paper and 
suggest future work in Section 6. The proposed 
algorithm is a convex optimization problem that is 
relegated to the appendix.  

 

 
Fig. 1. The proposed SQRD GA-MD for interference 
cancellation and performance optimization based on the sorted 
QR decomposition technique when M ≥ N (assume the detected 
layer is from N to 1). 
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2 Conventional detection in MIMO 
system 

In this section, we will introduce several 
conventional MIMO detectors as follows: A) ML B) 
conventional MD C) SQRD and D) sphere decoder 
(SD).   

2.1 ML detector in MIMO System   

We consider a communication system with N 
transmitting and M receiving antennas (M ≥ N) over 
the MIMO channel. The sampled basedband 
received signals are given by [9] 

 

y(k) = H(k)x(k) + v(k),                            (1) 
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where y(k) ~ CMx1  is the received signal vector, x(k) 
~ CNx1 is the transmitted signal vector and H(k) ~ 
CMxN is the MIMO channel matrix and the noise 
vector v(k) ~ CMx1 has an i.i.d. complex Gaussian 
entries and noise power is . Consider 
optimization problem under the assumption of 
equally probable transmitted symbols, the ML 
detection with the additive white Gaussian noise 
(AWGN) channel model is given as [6]-[7], [35]-
[37]: 

2
vσ
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where ))(|)(( kkp xy  is the conditional probability as 
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and therefore maximization of (3) equals the 
minimization of 2)()( kk Hxy − , the ML estimation 
can be denoted as  

2

)(

*
ML )()(minarg)(

1
kkk

NCk
Hxyx

x
−=

×∈

.            (4) 

where  is the optimum decision of the ML 
detector invoking exhaustive search for all possible 
symbol vectors, especially in a large solution space.  

)(*
ML kx

 
2.2 Conventional MD  
 

  To avoid the ML complexity, we will introduce 
several detectors when low-complexity is 
considered as follows: 
1) GA-MD: GA-MD has been introduced in [35]-

[37], where the analysis was based on an MIMO 
channel given as 

 
2
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k
Hxyx

x
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where  is the detected signal vector of 
GA and Ω  denotes the feasible set containing 

the possible symbol vector x(k) in the evolution 
of GA. The conventional GA evaluates 
potential solutions to solve an optimization 
problem in terms of population, selection, 
mutation, and crossover. For fitness value 
evaluation, the full MIMO channel matrix (H) 
of (5) is used for multiplying possible 
candidates to obtain the fitness values given as 
[21]-[30] 

)(*
GA kx
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where  is the fitness value (score) at the 

ith candidate . 

))(( kS ix

(ix )k

2) ZF MD: This ZF detector invokes the inverse 
operation [27], [31] which estimated signal is 
given by  

 

)())()(()(~ 1
ZF kkkk HH HHHx −= ,              (7) 

where (⋅)-1 is the inverse operation. 
3) ZF-OSIC MD: In this detector, the ordered SIC 

algorithm is incorporated to the ZF detector, in 
which the optimal detection order at each layer is 
determined by the associated channel gain [7]-
[10]. 

4) ZF GA-MD: In this detector, a two-stage 
procedure involving ZF detection and GA-MD is 
employed [6]. The ZF detector is executed as a 
pre-processor for a better initial point to improve 
GA-MD evolution. Furthermore, in this paper, 
considering the low-complexity detector via QR-
based detection, we will introduce the SQRD 
detector, SD detector and proposed GA-MD in 
next.   

2.3 SQRD detector in the MIMO System   

To realize the OSIC scheme under considering 
the low complexity in Stage-1, in Fig. 1, we 
introduce the SQRD detector which is the QR-based 
successive cancellation detector with an optimal 
ordered detection via (1) as follows  

 

 y(k) = H(k)x(k) + v(k)                                                

 = H(k)F(k)F-1(k)x(k) + v(k)                                 
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= H(k)F(k)xo(k) + v(k),                                  (8) 

where xo(k) = F-1(k)x(k) is the re-ordering signal 
vector with inverse matrix F-1(k), and F(k) is the 
permutation matrix [32]-[34] that involves re-
ordering the sub-streams given by  
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where F = [f1, f2,…, fN] is achieved by minimizing 
the norm of the column of the channel from left to 
right.   Therefore, the M×N MIMO channel matrix 
involves the re-ordering method in (9) where the 
SQRD method can be expressed as follows [32]: 
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where Q = [Q1 , Q2 ] is an M×

N  unitary matrix so QHQ = I and R is an N×N 
upper triangular matrix as [32]  
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where rN,N achieves the largest signal-to-noise ratio 
(SNR) in the lowest layer (layer N) and the detected 
step is from rN,N to r1,1 [32]. By pre-multiplying (1) 
with QH(k), the modified received signal vector is 
given by 

 

z(k)  = QH(k)y(k) = R(k)xo(k) + )(~ kv ,          (12) 

where )(~ kv  is given by 

 

)(~ kv  = QH(k) v(k).                         (13) 

Because Q(k) is a unitary matrix, the statistics of the 
noise term QH(k)v(k) remain unchanged and noise 
power is . Then, the modified received signal 
at the lth layer of the SQRD detector can be written 
as [35]-[37] 
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Assuming the decisions of xi(k) for i = l+1,…, N are 
correct, so their effects can be perfectly removed 
from the lth layer signal zl(k), we have the cleaned 
received signal at the lth layer: 
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Then, the symbol decision at the lth layer is given by 

 

))(~()(ˆ kzDecisionkx ll = ,                 (16) 

where l is from 1 to N and 
 is the symbol decision 

vector and Decision(⋅) stands for mapping to the 
nearest symbol in the symbol constellation. 
Therefore, the SQRD detector with (8)-(16) is 
proposed in Stage-1 of hybrid GA-MD [35]-[37]. 
Especially, the unsorted QR (or called QR) is 
similar to SQRD when the permutation matrix of (8) 
is the identity matrix. 
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2.4 Sphere decoder (SD)  

To compare computational complexity 
between SD and GA-based detector; we thus 
introduce SD with desired radius involving the 
accuracy of the noise power estimation to 
achieve the near-ML performance as follows 
[16]. We consider SD with a “list” of candidate 
symbol vectors, and find the minimum in the 
list instead of the exhausted search. Consider M 
≥ N in the QR factorization, the solution of (4) 
satisfies the following bound as [12]-[16] 
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where d is the desired radius given as [13] 
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where α ≥ 1 is a constant factor. For SD, the 
search process for seeking candidate symbols 
can be written as [13]-[14] 

 

2

1 1

2
,ZF

2
,

2
,ZF

2
, )()(ˆ)()()(ˆ)( dkxkxkrkxkxkr

N

i

N

ij
iijiiiii ≤

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−+−∑ ∑

= +=

.(19) 

Specifically, based on (19), we start from i = N 
and accumulate the distance, layer by layer. If 
the distance of one branch is smaller than the 
desired radius, we continue to calculate the 
branch distance extending from this branch. If 
the distance is larger than the desired radius, we 
prune this branch. In the QAM transmission, we 
can transform the original complex-value 
problem to the real-value problem with 2⋅N 
dimensions as 
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With N > M, SD fails because H is not full 
column rank and thus cannot be decoded by the 
QR factorization [17]-[19]. To solve this 
underdetermined MIMO system in generalized 

sphere decoding (GSD), the augment H is 
extended to full column rank as [19] 
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where a is either a small real of complex value with 
various modulation schemes and I is the identity 
matrix. Therefore, the pseudo received vector is 
given as [19] 
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(25) 

With (25), H~  is full column rank and therefore 
GSD can be employed in standard QR 
factorization algorithms at (19). Further, the 
desired radius of GSD is given as [19] 

 

))(( 222
vMaMNd σφα +−= ,               (26) 

where φ  is a constant value for various modulation 
orders. Like SQRD in this paper, we consider SD 
and GSD involve column-reordering of (9) in the 
following simulations, respectively.  

3 The proposed efficient near-ML 
algorithms in MIMO system 

In this section, a novel, low-complexity, near-
optimal and robust SQRD GA-MD is proposed to 
achieve a near-ML performance as follows: A) 
SQRD aided GA-MD (SQRD GA-MD) is proposed 
to realize the ML performance when M ≥ N. B) ZF-
SQRD aided GA-MD (ZF-SQRD GA-MD) is 
proposed to realize the ML performance when N > 
M. Finally, the proposed pseudo-procedure will be 
presented.  

3.1 Proposed SQRD GA-MD for M ≥ N   

In this subsection, with M ≥ N, the proposed 
SQRD GA-MD has three significant advantages for 
initial population, fitness value evaluation and 
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mutation. First, for the initial population, GA is 
employed to refine the accuracy of the data 
substreams (by removing the residual IAI) after the 
SQRD detection. Therefore, according to (5) and 
(12), the optimization problem can be expressed as 

 

NMkkkk o

ko
≥−=

Ω∈
   ,)()()(minarg)(

2

)(

*
GAo, xRzx

x

.     (27) 

where  is the detected signal vector in the 
evolution of GA and shows that (27) is a convex 
optimization problem in appendix. Obviously, the 
feasible set in (5) and (27) is a critical issue 
significantly influencing the complexity of GA-MD. 
The feasible set which is too large leads to the 
evolution of GA containing a very high number of 
hypotheses and therefore detection complexity. 
Selecting a feasible set is too small that may involve 
a less diverse search in the GA evolution. The aim 
of this work is to show, for this two-stage 
procedure, which QR-based MDs (SQRD, QR and 
ZF-SQRD) of the MIMO channel may be 
equivalently used. Note, using QR-based MDs may 
be advantageous for carrying transmitted signals 
information in the initial setting of GA-MD. In this 
paper, we examine the initial setting criteria in the 
process of GA, and derive an approximation to (27) 
as 

)(*
GAo, kx
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In the above, Ω  denotes a set involving information 
of transmitted signals generated by the detected 
signals with the SQRD (QR and ZF-SQRD) detector 
to reduce the complexity of the search process in 
(28). Then, the detected signals of (28) will be 
processed by the reorder strategy to approach the 
original transmitted signals which can be given as 
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Also, for the initial setting of the SQRD (ZF, QR 
and ZF-SQRD) GA-MD, the transmitted 
information about any given symbol x  is 
possibly contained in the lth layer of the candidate 

. To achieve this, in this paper, this initial 
setting of (28) means transmitted signals 
information can be represented as 
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where  is a bit string of symbol of the lth layer 
that is modified by the inverse at the dth position, 
“or” is an operator in the Boolean arithmetic, (⋅)2 is 
a binary number system and D denotes the 
modulation order. Specifically, the proposed 
population for the initial setting in the process of 
GA that creation can be depicted as 
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where  ),(ˆ ,),(ˆ ,),(ˆ ),(ˆ ,),(ˆ),(ˆ{ 1,,2,2,1,10 kkkkkk Ndddd xxxxxx KKK

Ω⊂+ }),(ˆ),(ˆ ,1, KK kk dNdN xx  and mod(⋅) is the 
modulation operator converting bit strings to a 
symbol is proposed set for the initial population by 
(31). Thus, with the aid of transmitted signals 
information, better initial populations are produced 
to enhance the performance of GA’s convergence, 
this is called the bit flipping (BF) strategy in this 
paper.  

Second, to analyze the low computational 
complexity of the fitness value evaluation, in Fig. 2, 
we assume the number of transmit antennas is four 
and the number of receive antennas is five. Based on 
using QR decomposition (10), the figure describes 
the MIMO channel matrix which has been reduced 
to a triangle matrix (R), which reduces the 
computational complexity of the fitness value 
evaluation for (6) in the evolution of GA [35]-[37]. 
Thus, the computational complexity of (27) and (28) 
are much less than (6) due to reducing the matrix 
multiplication, which involves a lot of zeros. In this 
analysis, a triangular matrix (R) is used for 
multiplying the possible candidates to obtain the 
fitness values given as 
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where  is the fitness value at the ith 
candidate .   
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Fig. 2. Matrix multiplication reduction for fitness value 
evaluation in GA-MD with the triangle matrix operation. 

 Third, to derive the reliable mutation scheme in 
QR-based GA-MDs, the diversity gain is derived 
from QR-based detection as follows. Based on (16), 
the pairwise error probability (PEP) of the lth layer 
P(xl(k) → ) is the probability that the decoder 
decides as its output  ˆ , when the transmitted 
symbol of the lth layer was in fact xl(k). This 
scenario occurs if 

)(ˆ kxl

)(kxl

 
2

, )()(~ kxrkz llll −  ≥ 2
, )(ˆ)(~ kxrkz llll − ,             (33) 

or equivalently, it can be rewritten as 

 
2

,, ))(ˆ)(())}(ˆ)(()(~Re{2 kxkxrkxkxrkv lllllllll −≥−             

  := ,       (34) ))(ˆ),((2 kxkxd ll

For a given H (or equivalently the matrix R), the 
left hand side of (34) is a Gaussian random variable 
with zero mean. As a result, applying the Chernoff 
bound ( 0,

2
)( 2 ≥≤ xexQ 1 − x ), the conditional PEP for a 

given H is upper-bounded by 
 

)|)(ˆ)(( HkxkxP ll → ≤ )
4

))(ˆ),((exp(
2
1

0

2
N
E

kxkxd s
ll−      
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4

|)(ˆ)(|||exp(
0

22
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E
kxkxr s

llll −− , (35) 

 where Es is the energy per symbol at each transmit 
antenna, 

0N
Es  is the average symbol energy to noise 

power spectral density ratio and |rl,l|2 is a sum of 
2(M − l) Gaussian random variable with zero-mean 
and variance 0.5. That is, |rl,l|2 is chi-square 
distribution with 2(M − l) degree of freedom which 
probability density function (PDF) is given by  [29] 

)(2
)(

212
,

D
etrtf D

tD

ll
Γ

==
−− ,                  (36) 

where Γ(D) = (D‒ 1)! is a gamma function and D = 

M‒ l is a integer variable. The average PEP can be 
expressed in term of the moment generating 
function (MGF) of t which is denoted as Mt (s) and 
Mt (s) is given by 
 

Dtt
s

dttfststEsM
)21(

1)()exp()][exp()(
0 −

=== ∫
∞ .     (37) 

Then, we can obtain the average PEP of (35) via 

(36) and (37) is given as 

P(xl(k) → ) := Et{P(xl(k) → )|H}                

      ≤ Et{exp

)(ˆ kxl )(ˆ kxl

))
4

|)(ˆ)(kxl −|||
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22
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2 sE )}
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ll N

kxkx −−−+{ .  (38) 

Equation (38) shows that the average PEP of the 
first layer detection in the SIC process is inversely 
proportional to the (M − N + 1)th power of SNR, and 
the Mth power SNR for last layer. This implies that 
different layer has different diversity order in the 
SIC detection, ranging from M − N + 1 to M (from 
the first layer to the last layer), which mean that a 
diversity order for a later detection stage is more 
than that for an earlier one. Therefore, the error 
probability for the lth detected substream can be 
approximated as [32] 
 

MlP lM
le ≤≤∝ +−− 1,SNR)SNR( )1(

, .      (39) 
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Based on (39), in this paper, a mutation scheme 
based on the diversity technique is proposed; it is 
also called diversity mutation (DM). That is, the 
proposed mutation rate for each layer (1≤ l ≤ M) can 
be approximated as 
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Fig. 3.  The proposed ZF-SQRD GA-MD for achieving the ML performance when N > M. 

 

Pm,l ≅ )SNR(,leP⋅κ ,                       (40) 

where κ ≥ 0 is a real constant to realize a suitable 
mutation rate. Equation (40) shows a different gene 
(layer) that has a different mutation rate in the GA 
processes.   

3.2 Proposed ZF-SQRD GA-MD for N > M  

  Consider N > M, the SQRD detector fails 
because H is not full column rank. To achieve the 
fore-mentioned three significant advantages in this 
underdetermined system, we propose the ZF 
detector assisted SQRD (ZF-SQRD) to realize the 
OSIC operation. Based on column-reordering 
strategy in ZF-SQRD, the ZF detector is employed 
in Stage-1 to estimate transmitted signals from xM(k) 
to xN(k). Then, by applying these estimated signals 
to realize OSIC, the interference of these signals is 
subsequently nulled and therefore the remainder 
transmitted signals are estimated. After Stage-1, to 
achieve the ML performance, these estimated 
signals will be a chromosome of initial setting in 
GA-MD of Stage-2; it is called ZF-SQRD GA-MD 
in Fig. 3. In this ZF-SQRD GA-MD, there are three 
processes are described as follows. First, by 
applying the SQRD operation, (1) can be expressed 
as 
 

)()()()()()()()( 1 kkkkkkkk HH vQxFFHQz += −
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             ,                                (41) )(~)()( kkk o vxR +=

where R is an M × N triangular matrix is given as 
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Second, by applying the ZF detector in Stage-1, 
 of the reordering signals can 

be estimated by (7). Therefore, in Stage-1, the 
SQRD-based detector realizes the OSIC operation 
by sequential signal detection can be expressed as 
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end.       

Third, by obtaining x̂  
from Stage-1, these estimated signals can be a 
chromosome of initial setting of GA-MD of Stage-2. 
Therefore, in Stage-2, ZF-SQRD GA-MD can be 
expressed as 

To
N

o
N

oo kxkxkxk )](ˆ),(ˆ,),(ˆ[)( 11 −= K

 

MNkkkk o
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Ω⊂ΩΩ∈
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GA xRzx

x
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With (43), remember the initial setting of (28) in Ω  
and therefore the optimum solution can be achieved 
efficiently in (43). Like (29), the detected signals of 
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(44) will be processed by the reorder strategy to 
approach original transmitted signals, depicted in 
Fig. 3.  

Finally, based on these contributions, the 
proposed QR-based GA-MDs consisting of the 
initial population, selection, fitness value evaluation, 
crossover, mutation and elitism is described as 
follows.  

1) Population Initialization: The population method 
strongly depends on the initial setting knowledge 
[21]-[30]. In the proposed two-stage procedure, 
the single seed chromosome from the output of 
the SQRD detector (or ZF-SQRD) carries the 
transmitted signal information. This transmitted 
signal information will be inserted into the initial 
population to generate the parent chromosomes 
for enhancing the evolution of GA. Consider the 
BF strategy in this paper, the first chromosome is 
the same as the seed chromosome. The second 
chromosome randomly changes one gene from 
the seed chromosome. The third and fourth 
chromosomes also change one gene from the seed 
chromosome. In addition, other chromosomes are 
created randomly when large populations are 
considered.  For example, we have N = M = 2, 4-
QAM modulation, and the seed chromosome (1, 
j). Thus, based on the BF strategy, the 
chromosomes (1, j), (1, −1), (1, 1), (−j, 1) and (j, 
1) can be selected to the set in population 
initialization.  

2) Fitness Value Evaluation: The fitness value 
evaluation evaluates the fitness value for each 
chromosome. The fitness value can be seen as an 
indication of how well each chromosome adapts 
to its current environment. Based on these values, 
the target chromosomes can be identified. In this 
research, the evaluation of GA is based on (28) 
and (30) to obtain the fitness value. Then, the 
GA’s task is to find the optimum individual 
chromosomes using the objective function to 
yield the high-fitness values [21]-[30].  

3) Selection: After a fitness value evaluation for 
each chromosome is obtained, a selection 
operation is used to select chromosomes from the 
existing population and to breed the next 
generation. There are many selection schemes, 
such as ranking selection, roulette wheel 
selection, and tournament selection. The ranking 
method selects chromosomes with the rule of 
first-rate score [21]. The roulette wheel selection 
method gives each chromosome a different 

chosen rate [21]. In contrast, the tournament 
selection chooses several pairs of chromosomes 
and selects the better one of each pair. In this 
paper, the tournament selection for popular parent 
selection [21] in GA’s evolution is used.   

4) Crossover: Crossover operation combines 
subparts of two selected parent chromosomes to 
generate the fitness offsprings containing some 
parts of both parents’ genetic material. In this 
paper, a single-point crossover with [21] is 
applied to generate offsprings.   

5) Mutation: Mutation operation is responsible for 
the permanent exploration of the new region’s 
divergent space and preventing a population from 
collapse and degradation [21], [23], [27], [29]. 
That is, a mutation operation can prevent the 
population from converging at any local optima. 
However, the mutation is low that good 
individuals may loss and the GA performance 
will approach a random search. In this paper, 
considering the proposed mutation scheme, each 
gene is mutated when a randomly generated value 
is less than the DM, depicted in (33)-(40). For 
example, we have N = M = 2, BPSK modulation, 
an original individual (layer 1, layer 2) = (1, −1), 
a random value 0.2, Pm,l = 0.3, and Pm,2 = 0.2. 
Then, after mutation operation, we have a new 
individual (−1, −1) ((1, −1) → (−1, −1)). In 
addition, when mutation is occurred, the mutating 
gene can be replaced by the nearest neighboring 
symbol as the mutation target candidate.  

6) Elitism: Among the operational characteristics of 
GA, elitism can reduce the genetic drift by 
ensuring the best candidate chromosome(s) is 
included in the next generation [21]. Based on 
elitism, some chromosome genes may be more 
important to the final solution obtained by the 
minimization strategy [25], [27]. This 
minimization strategy with (31) is similar to the 
high-fitness (highest-merit) value invoked in the 
process of elitism [21]-[30]. Further, the proposed 
pseudo-procedure is shown in Fig. 4. 

  
(G.1)    Initialize Population:  // (Proposal GA-MD) 
(G.2)      PopulationPool ← ; //  is obtained by (7) or (43). 0x̂ 0x̂
(G.3)      for i = 1 to Np -1  // Np is the number of populations 
(G.4)             is modified by the BF strategy via     Genei .x̂ Gene.ˆ 0x
(G.5)      end 
(G.6)          PopulationPool ←  11 ˆ,,ˆ −Npxx K

(G.7)   while ( iterations < NG) do   
(G.8)    Fitness Value Evaluation: 
(G.9)             for i=0 to Np-1  
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(G.10)            2
ˆ ˆ ii

Score xRzx −=  with high-fitness value strategy  

(G.11)           end 
(G.12)    Selection:    // Selection of parents through the tournament. 
(G.13)      Push the best candidate of PopulationPool into survivalPool. 
(G.14)            for i =1 to  ⎡Np/2⎤ 
(G.15)               ChromosomeA=RandomChoose(PopulationPool); 
(G.16)               ChromosomeB=RandomChoose(PopulationPool); 
(G.17)               if  ChromosomeA.Score < ChromosomeB.Score 
(G.18)                    Push ChromosomeA into WinnerPool; 
(G.19)                    Push ChromosomeB into LoserPool; 
(G.20)               Else 
(G.21)                    Push ChromosomeA into LoserPool; 
(G.22)                    Push ChromosomeB into WinnerPool; 
(G.23)               end 
(G.24)          end 
(G.25)   Push candidates of  ⎡Np/2⎤ with random strategy into RandomPool. 
(G.26)   Crossover:  // CrossPool is the pool of the crossover operation 
(G.27)          for i=1 to ⎡Np/2⎤ 
(G.28)              ParentA=RandomChoose(WinnerPool); 
(G.29)              ParentB=RandomChoose(WinnerPool); 
(G.30)              CrossPool=singlecrossover(ParentA, ParentB); 
(G.31)         end                    
(G.32)   Mutation:  // MutPool is the pool of the mutation operation 
(G.33)          for i=1 to Np 
(G.34)               ChrM is created from (WinnerPool,CrossPool); 
(G.35)               MutationRate=random(0,1);  // random(0,1): 0~1 
(G.36)               for j=1 to N                                                             
(G.37)                 if  MutationRate < DM rate (or UM rate) 
(G.38)                    ChrM.Gene is instead of the nearest neighboring symbol  
(G.39)                  end  
(G.40)              end  
(G.41)               Push ChrM  into MutPool 
(G.42)          end // ChrM is the chromoseome in the mutation process 
(G.43)      Update MutPool and RandomPool to survivalPool;    

(G.44)             for i=1 to size of survivalPool 
(G.45)                  S(xi) = ||z-Rxi||2; 
(G.46)            end 
(G.47)    Elitism:    
(G.48)        Candidates of Np is selected with Eq. (32) by minimum strategy; 
(G.49)        Push candidates into PopulationPool  and goto  (G.12); 

(G.50)   end while  // CanSelPool is the pool of candidate selection 

(G.51)   detection;  optimumby   obtained  isGAx   

Fig. 4. Proposed pseudo code for QR-based GA-MDs. 

 
4 Computational Complexity  

The computational complexity of the ML detector 
is O(D N·N·M) where D is the modulation order. 
Though the ML detector can achieve remarkable 
performance, it suffers from high computational 
complexity in practical implementation. For the 
implementation and efficiency consideration, 
computational complexity is a very important factor. 
Therefore, we address the comparison of 
computational complexity with various generations 
in various GA-based detectors, where SNR and 
populations are fixed, and therefore a requirement of 
BER can be denoted as  
 

     (45) ,,...,2,1,),|( * NiBoundOptimumNSNRxxP Pii =≅≠

where optimum bound is the ML bound in this 
paper and NP is the population size of GA-MD. 
Then, for simplicity, the computational complexity 
is only in terms of the number of complex 
multiplications [39], the computational complexity 
of ZF GA-MD can be approximated as [23], [31], 
[39] 

 

)(5.1223
MUD-GA ZF MMNNNMNMNMNNComp ZF

GP +⋅⋅⋅⋅+⋅+⋅+⋅+≅ , (46) 

where  is the generation size of ZF GA-MD. In 
this work, to reduce the complexity of the inversion 
of the ZF detector, the QR-based detector is 
employed because this QR complexity is about 
O(2M⋅N2 − 2N3/3) [40]. In addition, with (6), it 
increases the computational complexity of fitness 
value evaluation in (4) and (5) due to the full MIMO 
channel matrix. Thus, reducing matrix 
multiplication in (32), the computational complexity 
of QR GA-MD can be approximated as [23], [30], 
[40] 
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where  is the generation size of QR GA-MD. 
Further, the computational complexity of SQRD 
GA-MD can be approximated as [23], [30], [40] 
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where  is the generation size of SQRD GA-
MD. Based on (45), assuming possible candidates 
are large enough and NP is equal in various GA-
based detectors, the computational requirements of 
ZF GA-MD and SQRD GA-MD are compared by 
the CE ratio: 
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Indeed,  is less than  due to good initial 
setting [35]-[37]. Next, with N > M, the 
computational complexity of ZF-SQRD GA-MD 
can be approximated as  

SQRD
GN ZF

GN
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where  denotes the number of generations 
in ZF-SQRD GA-MD. Based on (45), assuming 
possible candidates are large enough and NP is equal 
in various GA-based detectors, the CE ratio of ZF 
GA-MD to ZF-SQRD GA-MD when N > M can be 
approximated as  
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Clearly, with (49) and (51), by applying QR 
decomposition, proposal QR-based GA-MD is less 
computational complexity than the conventional ZF 
GA-MD [35]-[37] because of the matrix 
multiplication reduction and less generations.  

TABLE I. 
SIMULATIONS USING OF VARIOUS PARAMETER TECHNIQUES 

Parameter Type or values 
GA 

Stage-1 ZF, QR and SQRD 
Comparison Symbol vector 
Population creation Bit flipping (BF) 
Fitness evaluation Minimum value criteria 
Selection Tournament 
Crossover Single-point 
Mutation UM and DM  

MIMO system 
Channel impulse response 
(CIR) 

Complex Gaussian channel 

Modulation consideration BPSK and 16QAM 
Number of antenna issues M   N or N > M 

  
5 Simulation Result    

In this section, assuming perfect channel state 
information (CSI) is given at receiver, computer 
simulation results are presented to characterize the 
BER performance of the various detectors described 
in [35]-[37]. In this MIMO system [41]-[43], the 
channel coefficient is obtained from the transmitting 

antenna n (n = 1, 2,…, N) to the receiving antenna m  
(m = 1, 2,…, M) as 

)()()( IR, kjhkhkh nm += ,                 (52) 

where hR(k) and hI(k) are complex Gaussian random 
variables with zero mean representing the real part 
and the image part, respectively. For the GA’s 
setting, the method of single-point crossover in [21] 
is employed. The scheme for selecting offspring is 
the Tournament method which is depicted in [21]. 
Each point on the curves was obtained by averaging 
over 107 trials in the Monte-Carlo simulation. 
TABLE I shows the proposed QR-based GA-MD 
schemes evaluating the effects of A) initial setting 
techniques, B) mutation schemes and C) 
computational complexity. 

A. Effect of Initial Setting techniques  

To describe the various creations from the initial 
setting in each population, the Lim strategy [30] and 
the BF strategy of (30) are used for the SQRD GA-
MD. In this Lim strategy, the detected signals of the 
SQRD detector are treated as one of the populations 
and the others are created randomly when the noise 
information is unknown [30]. In Fig. 5, the 
simulation results show the proposed BF strategy 
provides a better performance than the Lim strategy 
[30] by about 3 dB when BPSK and 16QAM are 
employed, respectively. This is better because the 
BF strategy transmits more signal information with 
which to enhance the performance of GA. 
Therefore, the BF scheme is considered as follows. 
For BPSK signals, Fig. 6(a) shows SQRD GA-MD 
is better than other detectors by 2 dB to 25 dB. For 
16QAM signals, Fig. 6(b) shows SQRD GA-MD is 
better than other detectors by 2 dB to 15 dB. These 
simulation results show useful knowledge 
concerning the initial setting can actually enhance 
the performance of GA. This is better because 
Stage-1 creates a suitable seed chromosome, which 
contains the information of the transmitted signal. 
This information enables GA to achieve a faster 
convergence. In addition, with N > M, Fig. 7(a) 
shows ZF-SQRD GA-MD is better than other 
detectors for BPSK signals. For 16QAM in Fig 7(b), 
the performance of QR-based detectors decays more 
steeply than others when SNR > 21 dB. Further, the 
performance of ZF-SQRD MD is worse than the 
performance of ZF MD when SNR < 21 dB. This 
worsens because the noise energy dominates the 
performance of the ZF-SQRD detector in Stage-1. 
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Particularly, with N > M, ZF-SQRD GA-MD has a 
better performance than others due to invoking the 
OSIC scheme.   
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Fig. 5. BER versus SNR performance comparison of the various 
creation strategy employing in (a)  N  = 9,  M  = 10 for BPSK 
modulation and N  = 2,  M  = 3 for 16QAM modulation and the 
GA-related configuration is  NP = 10 and NG = 15. (b) N  = 10,  
M  = 9 for BPSK modulation and N  = 3,  M  = 2 for 16QAM 
modulation and the GA-related configuration is NP = 25 and NG 
= 5 (The UM rate is 0.1). 
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Fig. 6. BER versus SNR performance for different initial setting 
methods employing in (a) N  = 10, M  = 10, BPSK modulation 
and the GA-related configuration is  NP =21 and NG =10. (b) N  
= 4, M = 4, 16QAM modulation and the GA-related 
configuration is  NG = 50 and NP = 33 (BF is used in the initial 
setting and UM = 0.1). 
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(b) 

Fig. 7. BER versus SNR performance for different initial setting 
methods employing in (a) N  = 8, M  = 6, BPSK modulation and 
the GA-related configuration is NP = 17 and NG = 10. (b) N  =3, 
M  = 2, 16QAM modulation and the GA-related configuration is 
NP = 25 and NG = 15 (BF and UM = 0.1).   
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(b) 

Fig. 8. BER versus SNR performance comparison for various 
mutation schemes employing in (a) N  = 5, M  = 5, BPSK 
modulation and the GA-related configuration is NP = 6 and NG = 

3. (b) N  = 5, M  = 4, BPSK modulation and the GA-related 
configuration is NP = 6 and NG = 3 (BF and UM = 0.2). 
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Fig. 9. Generations versus SNR performance comparison for 
various mutation schemes employing in N  = 2, M  = 2, 16QAM 
modulation, and the GA-related configuration is NP = 10 when 
BF is used.  

B. Effect of Mutation Schemes  

The proposed DM scheme is developed from (40) 
as depicted in [32]. In Fig. 8, various mutation 
schemes include DM and uniform mutation (UM) 
[21], [38]. These mutation schemes are employed in 
both SQRD GA-MD and unsorted QR GA-MD. 
With N = M, Fig. 8(a) shows the proposed DM 
scheme is better than the UM scheme by about 1 dB 
for both SQRD GA-MD and unsorted QR GA-MD, 
respectively. The DM rate from layer 1 to layer 5 is 
given as Pm,1 = 0.25, Pm,2 = 0.2, Pm,3 = 0.15, Pm,4 = 
0.1, and Pm,5 = 0.05. With N > M, Fig. 8(b) shows 
the proposed DM scheme is better than the UM 
scheme by about 1 dB for both ZF-SQRD GA-MD 
and unsorted ZF-QR GA-MD, respectively. The 
DM rate from layer 1 to layer 5 is given as Pm,1 = 
0.3, Pm,2 = 0.2 5, Pm,3 = 0.2, Pm,4 = 0.15, and Pm,5 = 
0.1. This is better because the DM scheme invoking 
the SIC operation of (7) and (43) considers the 
diversity order, modulation order and SNR issue. 
Specifically, using the DM scheme, the mutation 
rate of upper layers decay more steeply due to 
higher diversity levels than the layer detected first 
(see Fig. 1). That is, substreams in high diversity 
levels will be less mutated and therefore obtain 
reliable offspring to enter the population of GA.  

Beside, the choice of mutation probability has also 
effects on the residual BER and the convergence 
rate. This is illustrated in Fig. 9 employing different 
κ values, where Pm,1 = 0.3, Pm,2 = 0.1.  It is seen that 
higher values of mutation rate can improve the 
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SQRD GA-MD performance. It indicates the higher 
mutation rate in order to produce new individuals.  

C. Evaluation of Computational Complexity  

To compare the computational complexity 
(multiplications) for SD, we derive the inaccurate 
radius from (18) when the error of the noise 
estimation is considered as 

                                           

)1()(
~ 2222 εσασεσασα +=+== MMMd vvvv

( ,       (53) 

where 2
vσ(  is an estimated noise power and ε is an 

error factor. With N = M in Fig. 10(a), because of an 
increase of the error factor of the noise estimation, 
the computational complexity of SD increases when 
the radius is enlarged [14]-[16]. Obviously, the 
proposed SQRD GA-MD has fewer multiplications 
than SD when ε > 0.01 in (53). With N > M, we 
derive the inaccurate radius from (30) and (53) 
when the error of the noise estimation is considered 
as 

))1()(( 222 εσφα ++−= vMaMNd ,          (54) 

where φ  = 1.8 employing at normalized 16QAM 
signals in this simulation. In Fig. 10(b), the 
proposed QR-based GA-MD has fewer 
multiplications than GSD when a = 0.1 + 0.1i in 
(25) and ε ≥ 0 in (54) at the underdetermined MIMO 
systems. This is better because the choice of the 
parameter a of (24) is more sensitive to 
approximating the pseudo received vector of (25) in 
affecting the computational complexity of GSD 
[19]. Therefore, consider a robust detector in RVC, 
GA-based detectors can achieve optimal 
performance without utilizing the noise information, 
and therefore the complexity of the GA-based 
detectors is unchanged when ε is increasing. Also, 
proposed QR-based GA-MD has fewer 
multiplications than ZF GA-MD due to good initial 
setting and reducing matrix multiplication, as 
depicted in (50) and (51).  
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Fig. 10. (a) Average multiplications of the four algorithms 
versus different error factors of the noise estimation for 16QAM 
modulation employing in (a) SNR = 12 dB, BER = 0.13, α = 7, 
N = 3 and M = 3. (b) SNR = 24 dB, BER = 0.032, α = 100, N = 
3 and M = 2 (BF and UM = 0.1). 
 
6 Conclusion 

  In this paper, without the needs of noise 
information, a robust two-stage procedure is 
proposed to achieve ML performance with low 
computational complexity for MIMO 
communications. Moreover, this novel two-stage 
can realize OSIC when an overdetermined and/or 
underdetermined is employed. Consider low-
complexity, we propose a novel, near-optimal and 
robust two-stage which has three main contributions 
as follows. First, the QR-based schemes can be 
applied to GA-MD to obtain better performance due 
to reliable initial knowledge concerning the setting. 
Second, the proposed QR-based GA-MDs are made 
computationally cost-effective due to applying a 
triangular form of the MIMO channel matrix. Third, 
the effect of the mutation scheme on the various 
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diversity gains was also explored in this study; it is 
called the DM scheme. However, this sample DM 
scheme is not easy to obtain a suitable κ value. Our 
future work will develop an adaptive probability of 
mutation in SQRD GA-MD for mobile broadband 
wireless access applications.  
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Appendix 

To show that if (27) is a convex optimization 
problem via (5) and (6) and hence we have 

))(~)(())(~)((minarg)()(minarg
)(

2

)(
kkHHkkkk HH

kk
xxxxHxy

xx
−−=−

Ω∈Ω∈

= ))(~)(())(~)((minarg
)(

kkkk HH

k
xxRRxx

x
−−

Ω∈

                               

                      = 2

)(
)()(minarg kk

k
Rxz

x
−

Ω∈

,          (A.1) 

where )()()(~ 1 kk HH yHHHx −= . In addition, the error 
distance vector is denoted as e(k) = (x(k) − )(~ kx ) 
between transmit signal vector and estimated signal 
vector and L = RHR. Therefore, (5) can be rewrite 
as 
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where tr(⋅) is the trace of matrix and error matrix is 
given as 
 

E(k) = e(k)e(k)H.                                 (A.3) 

Then, we begin with the Definition 1 and Definition 
2 to introduce the prototypes that the objective 

function is the convex function and the feasible set 
is also the convex set, respectively, as follows [39]. 

Definition 1: Let a function f  : Ω→   is given by 

a convex set Ω⊂  n is convex if and only if for all 

u, v ∈Ω and allα ∈ (0,1), we have 
 

   f(αu + (1‒ α) v) ≤  αf(u) + (1‒ α) f(v).         (A.4) 

Definition 2: A set Ω is convex if the line segment 
between any two points in Ω lies in Ω, i.e. if for 
any u, v ∈Ω and any α with 0  α  1, we have  ≤ ≤

≥

                 αu + (1‒ α) v∈Ω.                     (A.5) 

First, we prove the objective function of (A.2) is 
the convex function as follow. 

Proof: The result follows from Definition 1. Indeed, 
the objective function f(E(k)) = tr(LE(k)) of (A.2) is 
the convex function if and only if for every α ∈ 
(0,1), and every u, v ∈Ω  we can obtain the 
equivalent equation from (A.4) as 

      f(αu + (1‒ α) v) – αf(u) – (1‒ α) f(v)   0.  (A.6) 

Substituting for f into the left-hand side of the 
above equation yields as 
 
      tr(L(αu + (1–α)v)  –  α(tr(Lu)) – (1–α)(tr(Lv))                    

= tr(L(αu) + L((1–α)v))  –  α(tr(Lu)) – (1–α)(tr(Lv))           

    = tr(α(Lu) + (1–α)(Lv))  –  α(tr(Lu)) – (1–α)(tr(Lv))           

= tr(α(Lu) + (1–α)(Lv))  –  α(tr(Lu)) – (1–α)(tr(Lv))           
= α(tr(Lu)) + (1–α)( tr(Lv)) – α(tr(Lu)) – (1–α)(tr(Lv))=0  

  0.                                                          (A.7) 

Thus, the proof is completed.  

Second, we prove the feasible set of (A.2) is the 

convex set as follows. 

Proof: The result follows from Definition 2. Indeed, 

with (A.2), the feasible set E(k)  0 is the convex 

set if and only if for every α ∈ (0,1), and every u, v 
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∈Ω. Then, we let αu + (1‒ α) v = w and w∈Ω. 

Note that E(k) is the positive semidefinite and 

symmetric; the quadratic form wTE(k)w with (A.2) 

can be expressed as 

wHE(k)w  = (αu + (1–α) v)HE(k) (αu + (1–α) v)                    

  = α2uHE(k)u + 2α(1–α)vHE(k)u +  (1–α)2vHE(k)v                 

=α2uHe(k)eH(k)u+2α(1–α)vHe(k)eH(k)u+(1–α)2vHe(k)eH(k)v  

       = ||αuHe(k) + (1–α)vHe(k)||2 0.                               

(A.8) 

≥

Thus, the proof is completed. 
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