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Abstract: - Traditional stepped frequency chirp pulse train methods suffer from high sidelobes and ambiguous 
peaks, known as grating lobes and difficulty in compensating Doppler effect caused by target motion. This 
paper investigates a class of non-linear stepped frequency chirp pulse train with low sidelobes and capability to 
cancel clutter and to compensate motion. We present analytic expression for its autocorrelation function (ACF) 
and propose an improved method to produce the non-linear stepped frequency chirp pulse train with small 
grating lobes and small overlap ratio for sub-pulse of large time bandwidth product. A method for estimation 
a target’s radial velocity is developed, which avoids multiple bursts required by other methods. The 
high signal-to-noise (SNR) ratio as a result of sub-pulse compression assures the accuracy of estimation. The 
Cramer-Rao bound for lower limit on the velocity estimation of the pulse train is derived to demonstrate its 
performance. 
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1 Introduction 

Radars commonly use wide bandwidth pulses to 
attain high range resolution [1]. However when such 
wideband pulses are unavailable, high range 
resolution can still be achieved by coherently 
combining a sequence of narrowband pulses 
spanning the desired bandwidth [2]. This technique 
is known as stepped-frequency pulse train. The main 
advantage of such approach is that it achieves the 
large synthetic wideband while maintaining 
relatively small instantaneous system bandwidth.  

But this approach suffers from high sidelobes 
and grating lobes in the range response. 
Conventional technology uses heavy spectral 
weighting and highly overlapped pulses to control 
them with the cost of SNR loss and other 
undesirable attributes. Another unfortunate 
drawback of this approach is that target energy spills 
over into consecutive coarse range bins due to the 
matched-filter operation. This is the main reason 
why it is not regarded as a suitable method to 
process SAR images [3]. In addition, radar detection 
distance of the stepped-frequency pulse train is 
limited under the precondition of the definite range 
resolution. By substituting the conventional 
narrowband sub-pulses with chirp sub-pulses, high 

range resolution can be realized and the detection 
distance can also be increased accordingly [4]. 
Additional advantage of replacing the fix-frequency 
pulse with chirp pulses is help to lower the grating 
lobes that appear in the range response. 

The stepped-frequency pulse train is also 
sensitive to target motion. The Doppler effect 
introduces phase distortion and causes range cell 
shift, power spreading and false peaks in the range 
profile [5]. Motion compensation is necessary for 
this approach to obtain a reasonable one-
dimensional range profile. 

In this paper we investigate a class of non-linear 
stepped-frequency chirp pulse train modified from 
conventional stepped-frequency chirp pulse train 
with low sidelobes and capability to cancel clutter 
and to compensate target motion.  

The non-linear stepped-frequency chirp pulse 
train we consider here consists of N  steps with 
initial transmitted frequency 0f , frequency step 
size fΔ . Each sub-pulse is chirp waveform with 
bandwidth B , duration pT , pulse repetition 

interval rT  and frequency modulation slope 
/ pK B T= . All of these parameters are constant. The 

total signal bandwidth is NB N f= Δ . The center 
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frequency of the ith step frequency is 0if f i f= + Δ , 
where 0 1i N≤ ≤ − .We assume a positive frequency 
modulation slope here ( 0K > ), but the results apply 
to a negative slope as well.  

We analyses the grating lobes of the non-linear 
stepped-frequency chirp pulse train and suggest a 
modified approach to suppress them. It can be 
considered as an improvement of method introduced 
in [6], which allows us to widen the range of 
parameters selection and find waveforms with 
large pT B , small overlap ratio /B fΔ  and small 
grating lobes. It is easy to realize in a practical 
system. 

We also propose a new method to estimate the 
target radial velocity in one burst. The accuracy of 
estimation is assured by high SNR as a result of sub-
pulse compression. The Cramer-Rao bound for 
lower limit on the velocity estimation of the pulse 
train is derived to verify its performance. 

 
 

2 Non-Linear Stepped-Frequency 
Chirp Pulse Train 

In non-linear stepped-frequency chirp pulse train, 
the aggregate burst distributes energy across the 
desired band in a non-uniform fashion way. The 
non-linearity could be implemented by transmitting 
different number of repetitions on each frequency 
carrier [7]. In essence, more pulses are used near the 
center of the desired band and fewer pulses are used 
near the edges. By coherently integrating the pulses 
of the same frequency carrier, it will distribute 
energy in a way that approximates a desired spectral 
weighting. Through so, we could achieve a 
reduction in range sidelobes akin to that achieved by 
a similar spectral weighting function used on 
receive. However, since this weighting is done on 
transmit, we avoid the SNR loss associated with the 
traditional receive-weighting technology. So it will 
provide higher SNR of one-dimensional range 
profile and longer detection range. By adjusting the 
repetition number on each frequency carrier, it will 
distribute the energy similar to any spectral 
weighting function according to practical 
requirement and reach practically any desired 
sidelobes level. The transmitted signal of the non-
linear stepped-frequency chirp pulse train can be 
written as:  
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= ∑ . Fig.1 shows its 

waveform and frequency law. 
 

 
Fig.1a Waveform of non-linear stepped-frequency 

chirp pulse train 

 
Fig.1b Frequency law of non-linear stepped- 

frequency chirp pulse train 

 
 

3 ACF of the Non-linear Stepped- 
Frequency Chirp Pulse Train 
Because of its non-linearity, we have to derive it 
according to the AF definition: 
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where 2( ) ( ) exp( )
p

tu t rect j Kt
T

π= ⋅  

Applying replacement and reduction to Eq. (2), we 
can get: 
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where uχ  is AF of chirp sub-pulse.  
What we prefer is the center of AF, so we obtain: 
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By setting 0df = , we yield magnitude of its time 
domain ACF for pTτ ≤ : 
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The ACF of the non-linear stepped-frequency 
chirp pulse train is relevant to repetition number on 
each frequency carrier. According to the symmetry 
of the weighting function simulated, we can 
decompose and integrate the Eq. (5). 
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where 0 1 0 2 1[ , , ,...,1]b b b b b= − −ox ,

0 1 0 2 1[ , , ,...,1,1]b b b b b= − −ex , 
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exp( 2 )ia j i fπ τ= − Δ . 
By setting 0τ = , we yield magnitude of its 

frequency domain ACF: 
sin( )(0, ) (0, )
sin( )

r d
d u d

r d

lT ff f
l T f

π
χ χ

π
= ⋅                      (7) 

From Eq. (6) we find that the time domain 
ACF of the non-linear stepped-frequency pulse 
train is a kind of Sinc function. The range 
resolution is 1/ N fΔ . According to Eq. (7), the 
Doppler resolution is 1/ rlT . Compared to linear 
stepped-frequency train whose Doppler 
resolution is 1/ rNT , the Doppler resolution of 
non-linear stepped-frequency pulse train is 
higher because l  is much larger than N . 
 
 
4 Grating Lobes Analysis and 

Suppression 
Several methods to lower the range sidelobes and 
grating lobes of stepped-frequency pulse train were 
recently discussed. Reference [6] made use of the 
relationship between pT B  and pT fΔ  to nullify 
several or even all grating lobes. But it resulted in 
large overlap ratio and large step number for 
wideband and limited parameters chosen in a great 
measure. Reference [2],[8],[9] were to use variable 
frequency steps according to a non-linear law such 
as chebyshev weighting function to mitigate 
sidelobes and reshape the spectrum resulting in a 
reduction of range sidelobes as well. But it still need 
inter-pulse weighting to lower these undesirable 
lobes. The method suggested in [10] presented 
enhanced processing schemes to compress signals 
with lower sidelobes and grating lobes. [11] had 
proposed genetic algorithms to eliminate grating 
lobes during scanning. Reference [12], [13] applied 
spatial variant apodization as non-linear windowing 
to lower down the lobes. Indeed, they are not only 
difficult to realize in practical system but also 
increase the orange of the system. Reference [14] 
suggested an extended correlation method to 
suppress the grating lobes. Reference [15] used 
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frequency MIMO technology to suppress the grating 
lobes. In [16], grating lobes were reduced by 
varying the pulse width, which destroyed the 
periodicity. 
 
 
4.1 Grating Lobes Analysis 

Clearly, according to Eq. (6), when g
f

τ =
Δ

, 

⋅x h reaches its maximum and the polynome also 
reaches its maximum value. So ( ,0)χ τ  exhibits 
peaks at  

lobe
g
f

τ =
Δ

     1, 2,... pg T f⎢ ⎥= ± ± Δ⎣ ⎦                         (8) 

where x⎢ ⎥⎣ ⎦ implies the largest integer not exceeds x . 
At these peaks, we find that the coefficient of 

polynome is positive when N  is odd and N , g  are 
even; the coefficient of polynome is negative when 
N  is even and g  is odd. So we can simplify the 
absolute value of Eq. (8). 

1 ( ,0) ( )   

1( ,0) ( ,0) ( )     

1 ( ,0) ( )       

u

u

u

N is odd
l

N and g are even
l

N is even and g is odd
l

χ τ

χ τ χ τ

χ τ

⎧ ⋅ ⋅ ⋅⎪
⎪
⎪= ⋅ ⋅ ⋅⎨
⎪
⎪

⋅ ⋅ ⋅⎪⎩

o o

e ee

e eo

x h

x h

x h

                                                                               (9) 
where 

sin( ) sin[( 2) ] sin[( 4)][ , , ,...,1]
sin( ) sin( ) sin( )

N f N f N
f f f

π τ π τ
π τ π τ π τ

Δ − Δ −
=

Δ Δ Δ
T

oh

 

sin( ) sin[( 2) ][ , ,
sin( ) sin( )

sin[( 4)] ,...,1,1]
sin( )

N f N f
f f

N
f

π τ π τ
π τ π τ

π τ

Δ − Δ
=

Δ Δ

−
            

Δ

ee

T

h
 

sin( ) sin[( 2) ][ , ,
sin( ) sin( )

sin[( 4)] ,..., 1, 1]
sin( )

N f N f
f f

N
f

π τ π τ
π τ π τ

π τ

Δ − Δ
=

Δ Δ

−
            − −

Δ

eo

T

h
 

The time domain ACF of non-linear stepped- 
frequency chirp pulse train is can be written as:                                                                                                                    

1 2( ,0) ( ) ( )R Rχ τ τ τ= ⋅      pTτ ≤                       (10) 

where 

1( ) ( ,0) (1 )sin [ (1 )]u
p p

R c B
T T
τ τ

τ χ τ τ= = − − and 

2
1( ) x hτ = ⋅ ⋅R
l

. 

 2 ( )R τ causes the appearance of the grating 
lobes and the grating lobes appear at the points of 
the maxim of  2 ( )R τ . Fig.2 shows the two terms 
respectively. The simulation parameters are 

16N = , 0 10f GHz= , 120pT fΔ = , 248pT B = , 

3r pT T= , repetition number [2, 3, 5, 8,11,=       X    
13,15,16, ]   16, 15, 13, 11, 8,5, 3, 2 .  

 
Fig.2 Grating lobes of non-linear stepped-frequency 
chirp pulse train. 1( )R τ  (red line) and 2 ( )R τ (blue 
line) 

 
 
4.2 Grating Lobes Suppression  
Compared to conventional stepped-frequency chirp 
pulse train, the energy of smaller lobes between 
every two grating lobes is less and more energy lies 
on grating lobes. In order to nullify these grating 
lobes, we can let the nulls of  1( )R τ  coincide with 
the peaks of  2 ( )R τ , as [7] suggested. So we get: 

2 2 2( )
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au bvT B
uv u v au bv
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=

− −
                                     (11)  

2 2

p
au bvT f
au bv

−
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It forces that 1( )R τ  exhibits its a th and b th ( b a≥ ) 
nulls exactly at the 2 ( )R τ 's u th and v th ( v u≥ ) 
grating lobes. But it will result in large overlap ratio 

/B fΔ and large step number N  for large pT B  and 
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limit the parameters we can use for the most part. 
Also it may not take all grating lobes into account 
sometimes.  

2 2

( )
B au bv
f uv u v

−
=

Δ −
                                                   (13) 

In fact, as long as the grating lobes level is less 
than some small value we can accepted, we achieve 
our goal. Specially  

1( )lobeR τ δ≤                                                         (14) 

We denote δ  as the grating lobe suppression 
factor. Applying Eq. (8) and Eq. (10) into (14) 

sin[ (1 )]
p

g g BgB
f ft f

δππ − ≤
Δ Δ Δ

                           (15) 

Thus by appropriately choosing the values of 
, ,pB T f  Δ  which satisfy the inequalities in Eq. (15) 

we can suppress the grating lobes of non-linear 
stepped frequency chirp pulse train to the desired δ  
level.  

In these pT f⎢ ⎥Δ⎣ ⎦  inequalities, since the left hand 

side of Eq. (15) is no larger than 1, the inequalities 
with ' '1, 2,..., pg g g t f⎢ ⎥= + = Δ⎣ ⎦ already satisfy the 

Eq. (15), where 
'

1Bg
f

δπ
=

Δ
. Fig.3 presents the plot 

of the smallest possible overlap /B fΔ  as a function 
of pT fΔ for δ = 0.025 which produces grating lobes 
level 32dB≤ − . It is the largest suppression level by 
improved parameter selection method. 

 
Fig.3 Smallest possible overlap /B fΔ           

for pT fΔ  when 0.025δ =  

From Fig.3 we know that it is possible to find the 
compromise parameters with relatively small 
overlap /B fΔ and small grating lobes for large 

pT fΔ . And almost all grating lobes could be taken 
into account. Thus the approach to suppressing the 
grating lobes presented above allows us to widen the 
range of acceptable parameters significantly 
compared to [7]. The partial time domain ACF for 
three typical cases is shown in Fig.4.  
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Fig.4a Partial ACF of typical case 1 
60pT fΔ = , 186pT B = , / 3.1B fΔ =  
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Fig.4b Partial ACF of typical case 2 

120pT fΔ = , 248pT B = , / 2.06B fΔ =  
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Fig.4c Partial ACF of typical case 3 

200pT fΔ = , 206pT B = , / 1.03B fΔ =  

It is evident from Fig.4 that the almost all the 
grating lobes are effectively suppressed at least 
32dB. The small values are not only produced just at 
the lobeτ  themselves, but also around of the lobeτ . 
For large pT fΔ , the overlap ratio is smaller.  Fig.5 
shows the AF of typical case 2. 

From Fig.5 we can see that the grating lobe 
suppressing is effective for extended Doppler. The 
grating lobes build-up with Doppler is relatively 
slow. This behavior is typical of all the cases 
discussed here. Because of the overlap between 
pulses, there are relatively strong recurrent lobes 
volume in the recurrent lobes will be redistributed 
[7]. But the order of the pulses and step frequency 
repetition which simulates a similar spectral 
weighting do not alter the AF for pTτ ≤ , so it 

 

Fig.5 AF of typical case 2 120pT fΔ = , 248pT B = , / 2.06B fΔ =  
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does not affect the suppressing procession.  
 
 

5 Signal Processing of Non-linear 
Stepped-Frequency Chirp Pulse 
Train 

First procession to its returns is coherent mixing 
and accomplishing the sub-pulse compression 
in each pulse repetition period. Denote that the 
target is R  meters away from the radar and 
with the radial velocity v  relative to the radar. 
The normalized mixing output of returns is:  
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The output of sub-pulse compression is: 
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From Eq. (17) we find that the phase of step 
frequency part is not affected by sub-pulse 
compression. Next step is the motion target 
indication (MTI) procession on each frequency 
carrier to cancel clutter. A similar method of the 
ground clutter cancellation with respect to the 
stepped frequency pulse train can be found in [17]. 
The specific analysis is presented in [4]. Then 
coherently integrate the pulses of the same 
frequency carrier by FFT, we will get maximum 
value point on each frequency carrier. The output is: 
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 The times of SNR improvement of each 

coherent integration point is by factor ib , the 
repetition number on each frequency carrier. So 
there will be different amplitude on each frequency 
carrier after integration because of the different 
number of pulses transmitted. Thus implements the 
approximate spectral weighting. Now the energy 
distribution over the band is similar to one of the 
weighting functions with SNR much higher than 
conventional weighting on receive, where signal 
spectrum is multiplied by normalized weighting 
function. The phase factor of step frequency part 
required to complement the IDFT on each frequency 
carrier is also contained. The Doppler effect caused 
by target motion introduces phase distortion and 
causes range cell shift, power spreading and false 
peaks in the range profile [5]. Motion compensation 
is necessary for this approach to obtain recognizable 
one-dimensional range profile. Lastly, IDFT is 
performed to these integration points to synthesize 
the high range resolution one-dimensional profile of 
the target. Fig.6 shows its coherent integration 
comparison to standard Chebyshev weighting. The 
simulation parameters are the same as typical case 2. 
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Fig.6 Coherent integration (right bars) 

comparison to theoretical Chebyshev weighting  
(left bars), ripple = 40dB 

From Fig.6 we find that coherent integration 
implements the energy distribution over the band 
similar to theoretical Chebyshev weighting function. 
It will achieve a reduction in range sidelobes akin to 
that achieved by a similar spectral weighting. Also it 
will partially suppress the grating lobes. But further 
method is needed to lower down the grating lobes. 
Fig.7 shows the range profile of a static point target 
50 meters away in case 2. It is evident that the range 
sidelobes are efficiently suppressed by about 38dB 
as we hoped and grating lobes are suppressed by 
about 35dB. We think we reach our goal to control 
the lobes by approximate weighting and improved 
parameter selection method to suppress grating 
lobes. 
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Fig.7 Range profile of a static point                                

target by typical case 2 
 
 
6 Doppler Effect 
For a moving target with a uniform velocity, target 
motion will cause the Doppler effect. The Doppler 
effect impacts on the stepped frequency pulse train 
consists of two parts: (1) the effect on the sub-pulse 
compression, and (2) the step frequency part. 
 
 
6.1 The Effect on the Sub-pulse Compression  
Target motion will cause envelop drift after sub-
pulse compression. Generally the signal processing 
of pulse compression is done in the range of -4dB of 
the main lobe. If the drift in rlT  is less than the half 
of range bin after pulse compression, the envelop 
variance is within the range of -4dB of the main 
lobe. Its effect is negligible. Specially: 

4 r

cv
lBT

Δ ≤                                                     (19) 

6.2 The Effect on the Step Frequency Part 
Expand the phase of this part of the mth pulse in 
(2): 

0 0
2 2

2 42 42 ( )r r
i

mT f Rfmi fT iR fv v v v
c c c c

θ π θ Δ Δ
= + + + +  

                                                                (20) 

where 02( )
i

f i f R
c

θ − + Δ
= . 

iθ  is a phase term independent of v  and 
exerts no effect on range profile. The second 
term is linear phase term which leads to range 
walk and have almost no effect on the 
amplitude of the range profile. It will introduce 
range detection error. The third term is 

quadratic phase term which causes non-uniform 
sample on frequency domain and results in 
distortion and cross-range spread of the range 
profile. The latter is so small that could be 
ignored. If we define range error less than half 
of the synthetic range bin and variance of 
quadratic phase in rlT less than π  as condition 
of the range profile we can obtain reasonable 
target’s rang profile, we can obtain 
compensation requirement： 

04 r

cv
lT f

Δ ≤                                           (21) 

28 r

cv
l fT

Δ ≤
Δ

                                                 (22) 

Input the simulation parameters of typical case 2 
from Eq. (19) into Eq. (21) and Eq. (22), we 
obtain 2054vΔ ≤ m/s, 2.05vΔ ≤ m/s and 

7.05vΔ ≤ m/s. So the Doppler effect impacts on the 
range profile of non-linear stepped-frequency pulse 
train is mainly on step frequency part. As 0f  and 

fΔ  increase, the requirement for accuracy of 
motion compensation increase significantly 
especially for Eq. (21). 

 
 

7 Motion Compensation 
Methods to estimate the target velocity and 
synthesize the range profile of stepped-frequency 
pulse train were recently discussed in [18-21]. 
Reference [18] has suggested a modified waveform 
with 64 pulses to be transmitted on each carrier. It 
need more time to obtain the range profile and the 
accuracy of estimation was affected by limited 
integration time of FFT. [19-21] proposed least 
bursts error, time-frequency compound approach 
and phase cancellation respectively to estimate the 
target velocity or synthesize the range profile. But 
they all need two bursts with different parameters to 
obtain a range profile. 
 
 
7.1 Velocity Estimation  
Under wideband conditions, the returns are the 
superposition of echo of multi-scatters of the target. 
Additionally there is different Doppler frequency on 
each frequency carrier. Traditional FFT can not be 
applied to the stepped-frequency pulse train. Denote 
the target length is LΔ  which has W  scatters each 
with rΔ  away. The signal could be written as: 
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                                                                       (23) 
Through coherent integration, we obtain coarse 

estimation of target radial velocity  v
∧

. According to 
Cramer-Rao lower limit bound for target radial 
velocity of conventional pulse train and 

experimental data, we found this v
∧

 satisfy the 
compensation requirement of Eq. (22) even when 
SNR= -10dB on return signal. So by multiplication 
the phase term: 
                                 

1

11
'

0

2exp( 2 )
i

i

qN
r

i m q

mTj i f v
c

θ π
−

−− ∧

= =

= − Δ∑ ∑                   (24) 

We can compensate the Doppler effect caused by 
quadratic phase term.  

Now the pulse train could be considered as a 
train of same Doppler frequency. But between 
frequency carrier, iθ  will introduce an increment 
2 fR

c
Δ . The signal could be written as: 
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                                                                      (25) 

where fv
∧

ΔΔ  is quadratic phase term compensation 
error introduced by Eq. (24). 

On each frequency carrier, if the pulses are 
multiplied by the conjugate of the first pulse of their 
frequency carrier, we can nullify the increment 
introduced by fΔ and affect of multi-scatters. But 
the coefficient of rT  delay between each frequency 
carrier becomes discontinuous. So we have to 
multiply the pulses on each frequency carrier except 
the first pulse by the last pulse of the pre-step 
frequency carrier serially to keep its continuity. 
After above processing, the amplitude of each pulse 
is also changed. Amplitude consistency is necessary 
before next processing. So the pulse train become: 

1
0

0

22''( ) exp[ 2 ( )]π

∧
− −

Δ

=

Δ Δ
= +∑

l N
r fr

m
m

mT i f vmT f vy t A j
c c

                  

(26) 

The variance of vestigial phase 
2 r fmT i f v

c

∧

ΔΔ Δ
 is 

from 0 to 0.024. So the pulse train could be 
considered as a long coherent conventional pulses 
train with the same frequency carrier and Doppler 
frequency. It will provide enhanced Doppler 
resolution. Applying FFT again to these pulses, we 

can obtain final estimation of 
∧

v .  
 
 
7.2 Error Analyses 
Velocity estimation by applying FFT to all pulses 
will result an error 1Δv . Because of a long coherent 
time, 1Δv  is relatively small. Quadratic phase term 
compensation will introduce a vestigial phase 

2
∧

ΔΔ Δr fmT i f v
c

 which will cause a maxim frequency 

shift
2( )

∧

Δ− Δ Δr fl N T N f v
c

. The maximum error it 

causes is: 
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(26) 

Because 0f  on denominator is much larger than 
element, 2Δv  will be very small. So the total 
maximum target radial velocity estimation error is 

1 2Δ = Δ + Δv v v . 
 
 
7.3 Cramer-Rao Lower Limit Bound 
As returned signal is corrupted with white noise, we 
have limitation on the parameter estimation 
precision. The Cramer-Rao lower bound σ v for 
velocity estimation of non-linear stepped-
frequency pulse train is: 

1/ 22

2 216v
lc

SNR Te
σ

π
⎡ ⎤

≥ ⎢ ⎥
⎣ ⎦

                                     (27) 
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Monte Carlo simulations were performed to 
verify the performance of Doppler matched filtering 
algorithm. Fig.8 displays the velocity Cramer-Rao 
bound as a function of SNR. The dashed line 
corresponds to the velocity standard deviation 
obtained via simulation of Doppler matched filtering 
algorithm. The solid line represents the Cramer-Rao 
bound. The number of Monte Carlo simulation was 
1000. The x-coordinate represents the SNR before 
sub-pulse compression on return increasing in step 
of 5dB. After sub-pulse compression, the SNR 
improves pD BT= times, which was used in 
Cramer-Rao bound expression in Eq. (27). The 
experimental result from Doppler matched filtering 
algorithm closely matches velocity Cramer-Rao 
bound particularly for high SNR. Employ chirp sub-
pulses with large time bandwidth product will 
obtain higher SNR after pulse compression and 
improve the accuracy of target velocity estimation. 
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Fig.8 Simulation for velocity standard deviation 
and Cramer-Rao bound as a function of SNR 

Fig.9 displays the effect of Δf to the accuracy of 
velocity estimation. The dashed line corresponds to 
the velocity standard deviation obtained via 
simulation of Doppler matched filtering algorithm 
for SNR=10dB. The solid line represents Cramer-
Rao bound as a function of Δf . 

1 2 3 4 5

x 10
7

0

0.05

0.1

0.15

0.2

Frequency step size (Hz)

V
el

oc
ity

 S
ta

nd
ar

d 
D

ev
ia

tio
n 

(m
/s

)

 

 
Simulation Value
Cramer-Rao Value

 
Fig.9 Simulation for velocity standard deviation and 
Cramer-Rao bound as a function of Δf  for 
SNR=10dB 

From Fig.9 we find that increase the frequency 
step size appropriately will also improve the 
accuracy of velocity estimation to a certain extent. 
Fig.10 shows the signal processing diagram of non-
linear stepped-frequency pulse train. 

Non-linear stepped-
frequency pulse train

return signal

Coherent mixing and sub-
pulse compression

MTI and coherent
integration

Quadratic phase term
coarse compensation

Perform velocity
compensation to pulse

train

Perform IDFT and
display high resolution

Target velocity final
estimation by proposed

method

 

Fig.10 Flow chart of non-linear stepped-
frequency chirp pulse train signal processing 

7.4 Limitations 
(1) FFT has its velocity measurement bound. It is 

still can be resolved by reducing rT  or using 
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diversity rT  on different frequency carrier to widen 
its measurement bound. 

(2) Coherent integration could also resolve the 
targets of different radial velocity, so we can 
distinguish these targets. But there are few pulses on 
some frequency carriers which limits its resolution 
ability. More pulses are needed on these frequency 
carriers to improve its Doppler resolution ability.  

(3) Compare to traditional stepped-frequency 
pulse train, this class of non-linear stepped-
frequency transmits a great number of sub-pulses. It 
will need more time to obtain target one-
dimensional range profile. 

 
 

8 Conclusions 
In this paper, we investigate a class of non-linear 
stepped-frequency chirp pulse train. By controlling 
the repetition number of each step frequency, we 
accomplish clutter cancellation and spectral 
weighting on transmitter and reach practically any 
desired sidelobes level. We discuss in detail in its 
grating lobes and relationship between parameters 
and present an improved approach to find 
parameters in a relatively wide range to form such 
pulse train with large pT fΔ , pT B , small overlap ratio 

/B fΔ  and small grating lobes. We provide several 
examples to prove its effectiveness. We also 
proposed a method to estimate target radial velocity 
in one burst. Closed-form expression of Cramer- 
Rao lower bound for velocity estimation is 
presented to demonstrate the performance of 
proposed method. The bound calculated from 
simulation was agreement with Cramer-Rao lower 
bound particularly in high SNR. Due to its 
efficiency and accuracy, it is found suitable to real-
time processing. Additionally, this method is also 
applicable to similar train which has multiple sub-
pulses on each frequency carrier. 
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