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Abstract: - A new formula for computing ST reliability of wireless networks  from Source to Terminal t was 
presented. The formula is a combination of IE and SDP, and the Satyaranayanna’s formula is its special case. 
The new formula contains terms which correspond one by one to a class Special subnetworks , For a given 
networks, the terms of the new formula are fewer than those corresponding Satyaranayanna’s formula. An 
algorithm for computing ST reliability was presented, it computed ST reliability or produced a ST reliability 
expression by enumerating a class of Special networks of given networks. Because the structure of this class of 
new networks which need to be enumerated was relativity small, the new algorithm’s performance was better 
than Satyaranayanna’s algorithm .Finally an example illustrates our conclusion. 
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1 Introduction 
Along with wireless networks apply from extensive 
to extensive, Wireless networks have become 
importance. it not only inexpensive, but also suited 
to some Special occasion ,for example: Mobile 
networks, Ad hoc networks and Data collection 
system etc. The people attach importance to the 
reliability of wireless networks, the reliability of 
networks have been lucubrated, but the research on 
the reliability of wireless networks is less. 
AboEIFotoh and Colbourn refer to a probability 
graph model, prove the problem computing the 
reliability of wireless networks is a NP hard 
problem, give an approximate algorithm. Some 
Special wireless networks have been studied[16,17], 
Fanjia-Kong[18,19]give a Factoring algorithm of K-
terminal reliability of wireless networks . 

In this paper, we derive a new topological 
formula for the ST reliability of wireless network G. 
The formula is a combination of IE and SDP, and 
the SP formula is its special case. For given 

mutually disjoint paths, the formula can be divided 
into two parts: the first part is in SDP form and the 
second part is in IE form. The terms of the second 
part, not counting a factor, correspond one-to-one 
with certain acyclic subgraphs of G which contain 
none of the given mutually disjoint paths (i.e. sp-
acyclic subgraphs of G). In general, the number of 
sp-acyclic subgraphs of G is much less than that of 
p-acyclic subgraphs of G. An algorithm for 
computing the ST reliability of G is given in this 
paper. The reliability expressions obtained by this 
algorithm are shorter than those obtained by the SP 
algorithm. The algorithm follows the philosophy of 
the SP algorithm: a search tree controls the search 
for the sp-acyclic subgraphs. The formula can be 
applied to networks with directed as well as 
undirected links. 
 
 
2 Probabistic Graph Models for 
Wireless Networks 
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2 .1 Assumptions 
1. A wireless network model is a directed graph G = 
G( V E ) , where every site is represented by a node 
and an edge exists between two nodes if and only if 
the corresponding sites can directly communicate 
with each other. Nodes are either operating or failed. 
Every node has a stated probability of operating. 
Operation or failure of nodes are mutually 
statistically independent. 

2. The surrounding medium is perfect for radio 
transmission within the range under consideration. 
Therefore, the existence of the edge between two 
nodes depends only on the following: 

a. the distance between the corresponding sites, 
b. the orientation of their antennas, 
c. the power of their transmitter/receivers, and 
d. the absence of physical obstacles (eg, mou- 

ntains, high buildings). 
3. Sites are static during the communication 

period. Therefore, an edge between two nodes is 
either existent or nonexistent, and any existing edge 
is perfectly reliable. 

4. Any node that is failed (operable) remains 
failed(operable) throughout the entire 
communication period. Therefore, the model 
represents a relatively short time compared with the 
mean time between node failures. 

A wireless network model under these 
assumptions is an arbitrary graph. 

5. All sites are equipped with similar 
transmitters and receivers in terms of their antenna 
power and height, and all the antennas are 
directional. Hence each site can communicate to all 
the sites within a circle centered at that site having 
radius equal to the range of transmission. More 
formally, let   the distance between two sites i and j , 
and r = the range of the transmitter/receiver. Site i 
can communicate directly with site j if and only if.  
Under assumptions 6, a wireless network model is 
an directed graph   , where every site is represented 
by a node  , and an edge   if and only if  . This graph 
is a unit-disk graph (UDG); UDGs are the 
intersection graphs of unit-radius circles in the plane 
(taking the unit-distance as half of r).An example of 
wireless network and the corresponding UDG are 
shown in figure 1. The circles in figure 1-a outline 
the range of the transmitter/receiver of each station. 
The circles in figure 1-b are the unit-radius circles 
of the intersection graph representation. Figure 1-c 
is the UDG model.  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

(1-a) 
 
 
 
 
 
 
 
 
 
 
 

(1-b) 
 
 
 
 
 
 
 
 
 
 

(1-c) 

Fig. 1 a wireless network and its UDG model 
 
There is 2 Special nodes s&t in the nodes set of 

G(V,E), the reliability of G is the probability source 
s and terminal t can communicate each other.2.1.1 

 
 

3 Definition and Notation 
 
 
3.1 Definition 

P ij : A path from i to j.  
Sp ij : A path from i to j, and the set of nodes on 

the path hasn’t subset that can build up P ij , we 
name the simplest path Sp ij . 

Parallel path of edge (u,v): (u,v)is a edge of G, If 
there is a path of G from u to v, the path is a parallel 
path of edge (u,v). 
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p-graph: Every edge of the graph must be in a Pst 

of G. 
sp-graph : a subgraph is a P graph and every path 

from s to t in the subgraph is Sp path 
p-acyclic graph: a subgraph of G is a p-graph and 

acyclic. 
sp-acyclic graph: a subgraph of G is a sp-graph 

and acyclic. 
d-set: a set of specified mutually link-disjoint (or 

vertex disjoint) minpaths without cycles of a 
network with reliable vertices (or unreliable 
vertices). 

Sequence (in a graph): a non-empty finite 
sequence (v0, el, vl,. . . . vn-1, en, vn) of vertices (v0, 
vl . . . . . vn-1, vn) and links (el,. . . . . en,) of a graph 
such that ei is incident out of vi-1 into vi (i = 1 . . . . . 
n). 

Formation of a p-graph: a subset of paths from s 
to t whose union yields the p-graph 

Neutral sequence (in a p-acyclic graph): a 
sequence in which all internal vertices have in-
degree and out-degree exactly equal to one, and 
whose deletion from the graph results in a subgraph 
which is also p-acyclic. 

disjoined  product (sum of disjoined product): a 
form of system reliability analysis ,where both the 
logical polynomial for success and corresponding 
probability polynomial which calculates the 
reliability are term wise  1:1 identical with one (+). 

Assumption of s-independent (ASI): each node  
of a network is in either a good or failed state, and 
all states of vertices  of the network are mutually 
statistically in  dependent. 

 
 

3.2 Notion 
a, b, c….: a Boolean(0-1) variable. 
A, B, C….: a term of a Boolean polynomial or a 

Boolean polynomial. 
+ (addition): logical exclusive or arithmetic 

addition. 
. (multiplication): logical intersection or 

arithmetic multiplication). 
G (V, E): a wireless networks, V is the set of the 

nodes of G, E is the set of the edges of G. 
s, t : The source node of G and the terminal node 

if G. 

v i ( iv ) : The state of node is working(not 
working). 

Kp: The set of the nodes in path p.  

p i ( ip  ) : The working (failure) state probability 
of node i.  

R(G) : The ST reliability of wireless networks . 
 
 

4  Background and Literature Review 
Many methods have been developed for reliability 
analysis of networks [1]. These methods fall roughly 
into three broad classes: inclusion-exclusion (IE), 
sum of disjoint products (SDP) and pivotal 
decomposition(PD). 

 
 

4.1 Inclusion-exclusion 
If there are m minimal paths A1, A2 . . .  , Am in a 
network G, using IE, the direct expression of 

reliability of G has 2 1n −  terms. In most cases, 
some of these terms cancel each other. 
Satyanarayana and Prabhakar(SP)[2] proposed an 
algorithm for source-to-terminal(ST) reliability 
which generates only the non-cancelling terms. 
They demonstrated a fundamental fact for ST 
reliability: there is a one-to-one correspondence 
between the p-acyclic subgraphs of G and the non-
cancelling terms of the expression of ST reliability 
of G. They introduced the concept of neutral 
sequences in p-acyclic graphs. Deleting a neutral 
sequence from a p-acyclic graph yields a subgraph 
which again is p-acyclic. A tree search identifies the 
subgraphs of G and finds all the p-acyclic subgraphs 
of G without duplications. Research on network 
reliability by the IE method since the publication of 
Ref. [2] has continued in the topological and graph 
theory direction [3-5]. 

 
 

4.2 Sum of disjoint products  
The economies of SDP are due to a simple principle. 
If the terms of the logic function are disjoint, then 
the logic function and the probability formula are 
one-to-one identical with one another. The first 
algorithm of SDP was presented by Fratta and 
Montanari [6]. An algorithm of SDP by Aggarwal 
etal. [7] was published in 1975, followed by 
Abraham[8]. Locks [9] and Beichelt and Spross 
[10]improved Abraham's algorithm. Heidtmann [11], 
Veeraraghavan and Trivedi [12] and Wilson [13] 
found new algorithms which resulted in shorter 
computation time and fewer disjoint products. 

 
4.2.1 Classical Boolean Logic 
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Logical algebra emanate from Boole’s 1854 classic, 
The Law of Thought[15]. Boole created the notation 
and the algebraic structure of set manipulations, and 
introduced concepts such as inversion, also called 
complementation, and minimization, which are 
essential for SDP and other types of system 
reliability analysis. De Morgan proved the two well 
known inversion theorems, Wittgenstein [20] 
prepared a philosophic work showing the 
relationship between Boolean logic and analysis of 
proposition. 

 
4.2.2 Rule of Boolean Algebra  
Let the lower case a, b, c,… denote 0-1 variable, 
each variable representing a node of the  wireless 
network, and let the capital letters A, B, c,…be 
either terms or polynomial, with all 0-1 variables, 
For each variables a, the corresponding node a 
either succeed(a=1),or else fail(a=0). Similarly for a 
polynomial: A or A=1 is the positive or primary 
value, and A  OR A=0 is the negative or inverted 
value .In the discussion below ,all algebraic 
operation operations are logical rather than 
arithmetic; for convenience ,the usual addition and 
multiplication symbols are used for Boolean 
operations instead symbology for unions and 
intersections. 

 
4.2.3 Boolean operations for variable, terms, or 
polynomial 

Idempotency: ,a a a a aa+ = =  

Negation: aa = Φ  
Inversion (De.Morgans’s law): 
a b ab

ab a b

+ =

= +  
Disjoint sets: a b a ab+ = +  
By induction, it can be shown that these rules 

extend to networks with indefinite number of 
variable; for example: 

a b c abc

a b c a ab abc

+ + =

+ + = + +  
The rules also hold if the lower-case letters, 

representing variable, are replaced by terms or 
polynomial ; for example : 

A B C ABC

A AB ABC

+ + =

= + +  
 

4.2.3 Composite Boolean operations with 
variable and terms 

Multiplication of a polynomial by a sum of variables: 
( )( )A B C a b c Aa Ab Ac

Ba Bb Bc Ca Cb Cc
+ + + + = + +

+ + + + + +  
Minimized multiplication of a term by a variable 

when the variable in the term: 
( )Aa a Aa=  
Absorption: 
ab a a
aB a a

+ =
+ =  

Minimized multiplication of a term by a sum of 
variables when one of the variables is in the term: 

( )Aa a b c Aa+ + =  
Minimized recursive inversion (example) 

Let ;A abc B acd= =  
( )

( )

AB abcacd a b c acd

b c acd bcacd

A BB

= = + +

= + =

= −  
 
 

5 The New Topological Formula of 
Reliability of Wireless Networks  
We consider a wireless networks G(V,E) , V 
=(1,2,3,...n) ,E=(e1,e2…..em) , n =|V|， m=| E| , pi is 
the probability of the node i working,1- p i is the 
probability of the node i failure. 

The definition of the reliability of wireless 
networks [1]: 

R(G)＝the probability that have a Pst in G that 
every nodes in the Pst is working 

Pr( )
iallPinG

Pi= 
 

According to the Boolean algebra axiom Pr(x+xy) 
=Pr(x) , if Pst isn’t the simple path Spst , then K pa 

(the nodes set of Pst ) have a subset KSp, that can 
make up a Spst ,  

, Pr( ) Pr( )Sp PK K Sp P P⊂ + = , hence: 
Theorem1. The reliability of wireless Networks 

1
( ) Pr( ),1

m

i
i

R G Sp i m
=

= ≤ ≤∑
                           (1) 

m is the number of Spst of G 
Example 1, Consider the directed graph G0 of 

Fig. 1. For simplicity, we assume that all edges of 
G0 are perfectly operational. The working 
probability of vi is pi (i= 1 , 2 , . . . , 5 ) and working 
events are s-independent. There are two Spst path in 
the example , we have the ST reliability expression 
of G: 
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2 3 2 2 3( ) Pr( )R G v v p q p= + = +  
 
 
 
 
 
 
 
 
 
 
Fig.2 a graph of example 1(v1,v5  is source and 

terminal node) 
 
Theorem 2. If Sp is a st simple path, then it is 

one by only confirmed by its nodes set KSp 
Prove : The length of Sp is | KSp | -1=k, suppose 

Sp= sw1 w2 …wk-1w k t , because there isn’t parallel 
edge in wireless  networks, if Sp isn’t exclusive, 
suppose the other Sp2= swi1 wi2… wik t, there is at 
least one the node that its locality in  Sp2 move 
along relative to in Sp , suppose it is wi ,the father of 
w i is wj ， j <i-1, wi is neighbor to wj in graph G, 
then sw1 w2 …wj wi wi+1 …wk tis a path Spst . Its 
length is less than k-1, it’s conflicting to Sp is a 
simple path, so Sp is a st simple path, it is one by 
only confirmed by its nodes set K Sp . 

Lemma 1.[2] G is a digraph then the reliability of 

G , 
( ) Pr( )i iR G d G=∑

                                       (2) 
,all the p-acyclic graph of  G ,  

1( 1) i in e
id + += −  , 

ni is the number of the node of Gi, ei is the 
number of the edge of Gi .  

 
Theorem 3. G is a digraph then the reliability of 

G 
( ) Pr( )i iR G d G=∑

                                             (3) 
Gi is the sp-acyclic graph  of  G ,  

1( 1) i in e
id + += − , 

ni is the number of the node of Gi, ei is the 
number of the edge of Gi .  

Prove: If Gi is a p-acyclic graph of G, let the set 
of all p path of G made by no Sp path of Gi 
is{p1 ,p2,…...pl},the edge set A={e1,e2,……em} is the 
set of edges on the path pk 1 k l≤ ≤ , and 

( ), ( )iA E G A E G⊆ ∩ =∅ , 

{ } { }
21 1 2, ,..... , ,..... ,1

ki i i me e e e e e k m⊆ ≤ ≤
 

Then 

Gi + { }21, ,.....
ki i ie e e

is p-acyclic graph. 

Otherwise if Gi + { }21, ,.....
ki i ie e e

 is p-cyclic graph. 
then there is a circle C in the graph  Gi + 

{ }21, ,.....
ki i ie e e

,if jie
=(u,v) is in the circle C, 

replaced by the parallel path Puv in the Gi , 
therefore there is a circle in the subgraph Gi,  it’s 
conflicting to Gi is a p-acyclic graph, 

so { }21, ,.....
ki i i iG e e e+

 is p-acyclic graph. 
According to Lemma 1 we know the domination of 

{ }21, ,.....
ki i i iG e e e+

 d*=(-1)n*+e*+1, n*=ni,e*=ei+k, 
then d*=(-1)ni+ei+k+1=di(-1)k, the number of  p-acyclic 

graph like { }21, ,.....
ki i i iG e e e+

 is  1k
nC k m≤ ≤，  ,as 

0
( 1) 0

m
k k
n

k
C

=

− =∑
,so ( ) Pr( )i iR G d G=∑ , Gi is the 

sp-acyclic graph. 
We assume that the d-set D={Sp1, Sp2,..., Sp 

s }where s m≤ . Then, based on SDP [14], 
according to formula (1) we have 

1 2

1 1 1 2

1 1 2 1 2 1

1 2 1 2

( ) Pr( ... )

 Pr( ) + Pr( ( ... )

Pr( ) Pr( ( )) ....Pr( ..... )

Pr( ..... ( ... ))

m

m

s s

s m

R G Sp Sp Sp

Sp Sp Sp Sp Sp

Sp Sp Sp Sp Sp Sp Sp

Sp Sp Sp Sp Sp Sp
−

= + + +

= + + +

= + +

+ + + + (4) 
Let  

1 1 2 1
1

(G) = Pr( ... )
s

i i
i

R Sp Sp Sp Sp−
=
∑

 
(5a) 

If the ASI hold , then  

1 1 2 1
1

(G) = Pr( ) Pr( )...Pr( ) Pr( ))
s

i i
i

R Sp Sp Sp Sp−
=
∑

(5b) 
And  

2 1 2 1 2( ) Pr( ..... ( ... ))s mR G Sp Sp Sp Sp Sp Sp= + + + (6) 
Then  

1 2( ) ( ) ( )R G R G R G= +  
(7) 

Using equation (3) and (6), we have 

e2 e7 

e6 e5 
e3 

e4 

e1 

V5 

V2 

v1 

V3 

V4 
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2 1 2 1 2

1 2

1 2

( ) Pr( ..... ( ... ))

Pr( ..... )

Pr( ) Pr( ..... | )

s m

i s i
i

i i s i
i

R G Sp Sp Sp Sp Sp Sp

d Sp Sp Sp G

d G Sp Sp Sp G

= + + +

=

=

∑

∑
(8) 

If Gi contains , ( )jSp j s≤ , Gi  is sp-acyclic graph 
of G, then  

1 2Pr( ) Pr( ..... | ) 0i s iG Sp Sp Sp G =  
From equation (8),we deduce that 

2 1 2

1 2

1 2

( ) Pr( ) Pr( ..... | )

Pr( ) Pr( ..... )

Pr( ) Pr( ..... )

i i s i
i

i i i i s i
i

i i i i i s
i

R G d G Sp Sp Sp G

d G Sp G Sp G Sp G

d G B B B

=

= − − −

=

∑

∑

∑
 

(9a) 
And  if ASI holds  then  

2 1 2( ) Pr( ) Pr( ) Pr( ).....Pr( ))i i i i i s
i

R G d G B B B=∑
 

Where Gi is the ith sp-acyclic graph of G, di is 
the domination of Gi, and the sum is over all the sp-
acyclic graph of G. 

Combining the equation (5),(7) and (9),we have 
the following theorem. 

Theorem 4. Let G be a probabilistic directed 
graph and d-set of G 

D = {Sp1,Sp2 … Sps} 
where s m≤ , then the ST reliability of G 
 

1 2

1 2 1
1

1 2

1 2 1
1

1 2

(G)= (G)+ (G)

= Pr( ... )

Pr( ) Pr( ..... )

Pr( ... )

Pr( ) Pr( ..... )

s

i i
i

i i i i s i
i

s

i i
i

i i i i i s
i

R R R

Sp Sp Sp Sp

d G Sp G Sp G Sp G

Sp Sp Sp Sp

d G B B B

−
=

−
=

+

− − −

=

+

∑

∑

∑

∑
(10a) 

And if  ASI  holds, then 

1 2

1 2 1
1

1 2

1 2 1
1

1 2

(G)= (G)+ (G)

= Pr( ... )

Pr( ) Pr( ) Pr( ).....Pr( ))

Pr( ) Pr( )...Pr( ) Pr( ))

Pr( ) Pr( ) Pr( ).....Pr( ))

s

i i
i

i i i i s i
i

s

i i
i

i i i i i s
i

R R R

Sp Sp Sp Sp

d G Sp G Sp G Sp G

Sp Sp Sp Sp

d G B B B

−
=

−
=

+

− − −

=

+

∑

∑

∑

∑
(10b) 

The second sum is taken over the sp-acyclic 
graph of G  for a given d-set D. The first part of 
formula is in SDP form ,and the second part is in IE 
form. If the d-set D of G is empty, then the equation 
(10) become the equation (3), Obviously, it is very 

simple to compute 1(G)R . For computing 2 (G)R , 
we shall develop an algorithm to generate all sp-
acyclic subgraphs of G. Now we illustrate formula 
(10) by using Example 1of Ref. [2]. 

Example 1 [2]. There exist mutually disjoint 
paths  

1 1 2 5Sp v v v=  and 1 1 3 5Sp v v v= . Let D = { 1Sp , 

2Sp  }. Figure 2 gives the rooted directed tree 
generated by the SP algorithm for G. The subgraphs 
encircled with dashed lines do not appear in the 
rooted directed tree generated by the algorithm of 
this paper. From eqn (10b) we have the ST 
reliability expression of G: 

2 2 3( )R G p p p= +  
This result is same as that by formula (2) 
 
 

6 A Rapid algorithm of Reliability of 
Wireless Networks 
Now we present an algorithm for generating all sp-
acyclic subgraphs of G0. The algorithm generates a 
rooted directed tree T which identifies the subgraphs 
of G0 and determines how the subgraphs contribute 
to the reliability formula. Nodes of T represent non-
empty subgraphs of G0, the root node being G0. A 
weight is associated with each edge from node i to 
node j of T. The weight is the set of links deleted 
from Gi to obtain Gj. In T, node i is the father of  j 
and j is the child of i if there exists an edge directed 
from i to j. Node i is an ancestor to j if there exists a 
directed path from i to j in T. Two or more nodes 
with the same father are brothers. A node i is the 
younger (elder) brother of node j if the algorithm 
generates the children of i later (earlier) than that of 
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j. We shall use the above definitions in the same 
sense. 

The algorithm of this paper consists of the 
following five stages: 

1. Successively decycle (in all possible ways) Go 
to obtain its acyclic subgraphs of G (by the 
following Rule 1). 

2. Obtain maximal p-acyclic subgraphs of these 
acyclic subgraphs (by the following Rule 2). 

4. Obtain maximal ap-acyclic subgraphs of these 
p-acyclic subgraphs by deleting neutral 
sequences(by the following Rule 3). 

5. Obtain all sp-acyclic subgraphs of these 
maximal sp-acyclic subgraphs by deleting neutral 
sequences(by the following Rules 4 or 5). 

Starting from the root node G0, the algorithm 
grows a rooted directed tree by progressively 
generating children on all possible nodes of the tree. 
The following five processing rules are applied for 
generating the children of node k of the tree, 
depending on the nature of Gk. Each rule must   
ncorporate the weight restriction.Let X be the 
weight of the edge directed into any elder brother of 
k or elder brother of an ancester of k. 

Rule 1. G k is cyclic. Consider a cycle C in G k. 
The cycle C contains links e1, e2 . . . . . ea, then Gkj = 
Gk - ej (j = 1, 2 . . . . . a) is a child of Gk, provided ej 
∩X = ∅ . 

Rule 2. Gk is acyclic, but not p-acyclic. Suppose 
Y is the minimal set of links in Gk whose deletion 
generates a non-empty p-acyclic subgraph and Y 
∩X = ∅ , then Gj = Gk - Y is the only child of Gk. 

Rule 3. Gk is p-acylic, but not sp-acylic. Obtain 
all the neutral sequences xj (j = 1, 2 . . . . , b) of Gk 
contained in the path. If xj∩X = ∅ , then Gkj = Gk - 
xj is a child o f Gk. 

Rule 4. Gk is ap-acyclic, but its father is not. 
Obtain all neutral sequences xj (j = 1, 2 . . . . , c) of 
Gk, then Gkj = Gk - xj  is a child of Gk provided 
xj ∩X = ∅ . 

Rule 5. G k is sp-acyclic and its father is sp-
acyclic. Consider the weight Y of the link incident 
into ayounger brother of k. Suppose that a neutral 
sequence xj (j = 1, 2 . . . . . d) of Gk contains Y. If 
xj ∩X = ∅ ,then Gkj = Gk - xj  is a child of Gk. Rules 
1, 2, 4 and 5 of this paper are the same as Rules 1, 2, 
3 and 4 of Ref. [2], respectively. A corollary to Rule 
of of this paper is that if Gkj is p-acyclic but not sp-
acyclic, continue applying Rule 3. 

Rules 1, 2, 4 and 5 of this paper are the same as 
Rules 1, 2, 3 and 4 of Ref. [2], respectively. A 

corollary to Rule of of this paper is that if Gkj is p-
acyclic but not sp-acyclic, consider another path of 
d-set D and continue applying Rule 3. 

Algorithm 
Search out all the Sp path and a d-set D of G0 

where D = { 1 2, ,.... sSp Sp Sp  }. 

1. Initialise 1 20, 0f f← ← . Set 0k ←  
 (i.e. considerGk = G0). 
2. If Gk is not cyclic go to step 4. 
3. Generate children of k using Rule 1. 

(a) k has children: increment 1 1 1f f← + . Set 
k ←  (first child of k). Go to step 2. 
(b) k has no children: go to step 5. 
4. (a) Gk is p-acylic: go to step 6. 
(b) Gk is not p-acylic: generate the only child of k 
using Rule 2. 

(i) Gk has child: increment f 1 1 1f f← + . Set 
k ←  (child of k). Go to step 6. 

(ii) Gk has no child: continue. 
5. Delete node k from the tree. 
(a) k has younger brother;, set k ←  (younger 

brother of  k). Go to step 2. 
(b) k has no younger brother but has elder 

brother: set k ←  (father of k). 

Decrement 1 1 1f f← − . Goto step 13. 
(c) k has no younger brother and no elder 

brother:set k ←  (father of  k). Decrement 

1 1 1f f← − . Go to step 5. 
6. Gk does not contain any path of D: go to step 9. 

7. Gk contains a path rSp of D. 
(a) bk = nk -1: go to step 8. 
(b) bk > nk-1: generate children of k using Rule 3. 
(i) k has children: k ←  (first child of k). 

Increment 2 2 1f f= + . Go to step 6. 
(ii) k has no children: continue. 
8. Delete node k from the tree. 
(a) k has younger brother: set k ←  (younger 

brother of k). 

(i) 2 1f ≥ : go to step 6. 

(ii) 2 0f = : go to step 2. 
(b) k has no younger brother but has elder 

brother. Set k ←  (father of k). 

(i) 2 1f ≥ : 2 2 1f f= −  Go to step 12. 
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(ii) 2 0f = : 1 1 1f f← − . Go to step 13. 
(c) k has no younger brother and elder brother. 

Set k ←  (father of k). 

(i) 2 1f ≥ : 2 2 1f f= − . Go to step 8. 

(ii) 2 0f = : 1 1 1f f← − . Go to step 13. 

9. Initialize 3 0f ← . Set SIGN kσ← . Generate 
(1 )k r r kB Sp G r s= − ≤ ≤  and gk. The sign of gk is 

SIGN. 

(a) 1k kb n= − : go to step 11. 

(b) 1k kb n> − : generate children of k using  
Rule 4. 
(i) k has children: set SIGN SIGN←− . 

(Suppose kl, k2 . . . . . kq are children of k. Generate 
(1 ,1 )

j jk r r kB Sp G j q r s= − ≤ ≤ ≤ ≤
, then 

gkl,gk2,...,gkq constitute terms of 2 ( )R G , whose sign 

is given by SIGN.) Set 3 3 1f f← − , k ← (first 

child of k), m kb b←  and m kn n← Continue. 
(ii) k has no children: go to step 11. 

10.  (a) 3 2m mf b n= − + . Decrement 

3 3 1f f← − . k ←  (father of k) and SIGN ←  -
SIGN. Go to step 11. 

(b) 3 2m mf b n< − + . Generate children of k 
using Rule 5. 

(i) k has children: set SIGN ← -SIGN. 
(Suppose kl, k2 . . . . . kq are children of k. 

Generate (1 ,1 )
j jk r r kB Sp G j q r s= − ≤ ≤ ≤ ≤ , then 

gkl,gk2,...,gkq constitute terms of 2 ( )R G  with sign 

given by SIGN.) Increment 3 3 1f f← − . Set k ←  
(first child of k). Go to step 10. 

(ii) k has no children: go to step 11. 11.(a) 3 0f ≠   
(i) k has younger brother. Set k ←  

(youngerbrother of k). Go to step 10 
(ii) k has no younger brother. Set k ←  (fatherof 

k), SIGN ←  -SIGN. Decrement 3 3 1f f← − . Go 
to step 11. 

12. (a) 2 0f ≠  
(i) k has younger brother. Set k ←  (younger 

brother of k). Go to step 6. 

(ii) k has no younger brother. Set k ←  (father of 

k). Decrement 2 2 1f f= − . Go to step12.(b) 2 0f = . 
Continue. 

13. (a) 1 0f ≠  
(i) k has younger brother. Set k ←  (younger 

brother of k). Go to step 2. 
(ii) k has no younger brother. Set k ←  (father of 

k) Decrement 1 1 1f f← − . Go to step13.(b) 1 0f = . 
STOP. 

Theorem 5. The algorithm generates all sp-
acyclic 

subgraphs of G0 without duplications. 
Prove: Satyanarayana and Praghakar [2]proved 

that the SP algorithm generates all p-
acyclicsubgraphs of G0 without duplications. Now 
we prove that the algorithm of this paper generates 
all sp-acyclicsubgraphs of G0 without duplications. 
The basic differencebetween these two algorithms is 
the use of Rule 3 of this paper.When the algorithm 
of this paper enters step 7 if p-acyclic subgraph Gk 
of G0 is a trivial sp-acyclic subgraph (i.e. path of  D), 
then G k is deleted. Otherwise, using Rule 3, 
maximal sp-acyclic subgraphs of Gk are obtained by 
deletingd-neutral sequences in the paths Sp1, 
Sp2 . . . . , Sps of d-set D progressively. step 7 of the 
algorithm of this paper generates all maximal sp-
acyclic subgraphs without duplications; and using 
Rules 4 and 5, steps 9 and 10 generated all sp-
acyclic subgraphs of G0. QED. 

 
 

7 Example 
We also use Example 1 to illustrate the algorithm. 
Figure 2 also shows the rooted directed tree 
generated by our algorithm. Consider the graph G0. 
D={v2},corresponding node 0 of the rooted directed 
tree T, contains a cycle C = {e3, e 4, e5}. By 
applying Rule 1, the children G1, G2 and G3 (corre- 
sponding to nodes 1, 2 and 3, respectively) of Go 
are obtained by deleting e3, e4 and e5 of cycle C. Gl 
is a p-acyclic. Using Rule 3, v,G4 (i.e. node 4) is 
obtained by deleting neutral e4e5, G4 contains two 
Sp path Sp1 = e1e6 and Sp2 = e2e7. Using Rule 4, G5  
and G6 ( is obtained by deleting neutral sequence 
e1e6 and e2e7 . is trivial sp-acyclic subgraph, go back 
to node 2 and then node 1 that it isn’t a p-graph use 
Rule 2 deleting e5 , G7 being obtained is a p-acyclic, 
but isn’t sp- acyclic, have parall path e1ande1e3,by 
applying Rule 3, e3 X∩ ≠∅ ,then G7 haven’t child .  
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go back to node 3, e5 X∩ ≠∅ then  Node 3 hasn’t 

child and stop. Thus we have 2 2 3( )R G p p p= +  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Rooted directed tree for Go of Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 4 a graph of example 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Rooted directed tree for Go of Fig. 4. 
 
Consider the example in Fig.3 of the paper[6] 

which contains a cycle C = {e4, e5, }. Figure 4  

shows the rooted directed tree generated by the 
algorithm for the graph Go of  Fig. 3 of  this  paper. 
The graph Go has 27 p-acyclic subgraphs and R(G0) 
has 27 terms by the algorithm. Table 1 shows sp-
acyclic subgraphs in the rooted directed tree 
generated by the algorithm of this paper and the 
terms of R(G0), respectively. The graph Go has only 
7 sp-acyclic subgraphs. The reliability R(Go) has 
only 7 terms. then we have 

1 2 2 3 2 3 4 5 2 5 3 4( ) ( ) ( ) ( ) ( )R G R G R G p p p p p p p p p p= + = + +  
 
Table 1. Subgraphs of Go of Fig.4 and their 

weights, sign 
  Sp-acycle   Subgraphs      weight         nodes       sign    Bi1 Bi2 

subgrph                 
1            G4                         e1e2e4e6e7e9e10       v2v3v4v5           + 

2              G8                          e1e2e4e7e9e10             v2v3v4v5           - 
3              G5                e2e6e7e9e10                 v2v3v4v5            - 
4              G10                        e1e2e4e6e9                    v2v3v4v5          - 
5              G9                          e1e4e9                              v2v3                 + 
6              G6                          e2e7e10                            v4v5                   + 
7               G7                           e2e6e9                              v3v4                   +             v2    v5 

 
 
8   Conclusion 
The number of the ap-acyclic subgraphs is less than 
the number of the p-acyclic subgraphs ,R (G) can 
easy computed. The workload apply 
Satyaranayanna ’s algorithm is very big, so the 
expression of R(G) is very long. Compare our 
algorithm the workload is less, and the expression is 
shorter. This shows the advantage of our algorithm. 
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