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Abstract: - Laplace transforms was introduced long time ago, it had explained better afterward, and 

had many Engineering applications like (control, signals, circuits, etc.), unfortunately it still has a 

lot of ambiguity and is difficult to be understood by the beginners. In this paper the transformation 

laws are re-formulated in a brief and unforgettable form, and then a conclusion has been reached for 

the first time that the transformation laws are symmetric. 
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1  Introduction 

The Laplace transform is defined by: 

∫
∞ −==

0
)()( dtetfsFLap st , … t > 0 … Always 

positive 

The Laplace transform of f(t) is exist [1,2] , if 

: 

(a) f(t) is continuous or at least sectional 

continuous (piece wise continuous) in 

any interval 0 ≤ t ≤ N, that is N is 

Positive. 

(b) f(t) Must be at most of exponential 

order for > N. i.e. 
2

)( tetf = does not 

possess a Laplace transform. 

(c) The limit ( )[ ] 0=∞→ tfLimt
 for some 

constant such that 0 < n < 1. The 

inverse Laplace transform is denoted 

by ( ) ( )tfsFLap =−1  

Laplace Transform of Some Special 

Functions:  

Some functions are considered to be special 

because new formulas can be obtained 

through the use of few basic (or special) laws. 
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From the above transforms, it can be realized 

that: 

(a) Usually (s) is in the denominator when 

(t) is in numerator. 

(b) The order of (s) is higher than the 

order of (t) by one. 

(c) The Laplace transform of exponential 

function has reverse sign for the value 

of a. (see (4) above). 

 

 

 

2  Re-formulation of Laplace 

Transform properties 

2.1- Shifting (Translation) Properties (new 

Formulation) 

An exponential function either in t-domain or 

in s-domain transformed into shift in the other 

domain in, i.e. 

)()}({ asFtfeLap at ±↔± , Shift in s–domain. 
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)()}( )({ sFeatuatfLap as−↔−− , Shift in t–

domain. 

i.e. Exponential in a domain ↔ Shift in other 

domain. 

A shift in either t-domain or s-domain can be 

transformed into an exponential function in 

the other domain. It is obviously shown that 

the sign is changed when the shift exists in s-

domain, but isn't changed when the shift 

exists in t-domain. 

 

Example 1: Find )}.2cos({ teLap t−  
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teLap t , "notice the 

change in sign" 

It is clear that exponential function in time 

domain transformed into shift in S-domain. 

Example 2: Find }
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Example 3: Find )}4()4{( −− tutLap  
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2.2   Differentiation Properties (New 

Formulation)  

The multiplication by either t or s in domains 

causes a differentiation in the other domain 

i.e. 

)()1()}({  sF
ds

d
tftLap

n

n
nn −↔ , differentiation in 

s-domain 
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d
Lap

, differentiation in t-domain 

Notice that the differentiation in S-domain 

has alternative sign. 

        i.e. Differentiation in a domain ↔ 

Multiplication the other domain  
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notice no change in sign (differentiation is in 

t-domain) 

2.3  Integration Properties (New 

Formulation) 

The division by either t or s in its domain 

transformed into integration in the other 

domain (the integration must be exist ≠∞), 

i.e. (Consider zero initial condition) 
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∫
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)( , integration in s-domain
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t

tf
Limt

)(
0→

 is exists and also 

integration is exist  
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↔∫ , integration in t-
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notice: the limits ∫
t

0

in t-domain and ∫
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s

in s-

domain  

  i.e. Integration in a domain ↔  Division in 

the other domain 
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(Notice the elegant use of property 2.2 and 

2.3) 
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Example 2: Find 
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Example 3: Find { }∫
t
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3 Convolution Theorem 

Let f(t) and g(t) be a Laplace transformable, 

then the convolution integral is defined by: 

( ) ( )[ ] ( ) ( ) ( ) ( ) τττ dtgftgtfsGsFLap
t

−=∗=⋅ ∫−

0

1   

Where the symbol* represents the 

convolution of F(s). G(s) 

Let ( ) ( )tfsFLap =−1  and ( ) ( )tgsGLap =−1  

Then apply the convolution of theorem as: 
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Where the symbol * represents the 

convolution of F(s) . G(s) 

Let [Lap f1=F (s)] and [Lap f2(t) = F2(s)] 

Then the inverse convolution theorem is  
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transformation is bi-directional. 
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convolution theorem 
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Example 2: Find 
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Let   f(t)=sin 2.t , then ( )
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Notice the exponential, integration and 

multiplication in t-domain. 
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shift in –domain  

Example 4: Find ( )
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4 Conclusion  

A useful and simple representation of 

Laplace transform with the most 

importance properties has been discussed. 

It is the first time in the text to introduce 

that the Laplace transform properties are 

conjugate, and all the transformation laws 

can be summarized by six words instead 

of twelve very complicated laws as 

follows: 

Exponential ↔ Shift 

Multiplication ↔ Differentiation 

Division ↔ Integration 

Accordingly, combination of the 

properties is introduced as: 

Exponential + Multiplication + 

Integration ↔ Shift + Differentiation 

+ Division 

− The convolution integrals are also Bi-

directional. 

− During teaching, this new formulation 

proven double the efficiency of 

understanding and make very easy to 

remember the laws. 

− It summarizes most of the Laplace 

transform properties in only six words, 

even so they are easy to keep in mind and 

makes unforgettable basis of Laplace 

transforms. 

− It increases the capability of the student 

to understand the solved example and 

keep it perfectly in mind. 

− This formulation is ideal for engineers as 

they are interested only in understanding 

the overall structure of Laplace 

transform, but not interested in the pure 

mathematical meaning, than convolution 

theorem. 
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