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ABSTRACT: -Broadcast is an efficient and scalable method for resolving the bandwidth limitation in a wireless 
environment. In many applications, mobile clients might need more than one data item. However, most 
previous researches on query-set-based broadcasting are restricted to a single broadcast channel environment. 
The results are limited applicability to the upcoming mobile environments. In this paper, we relax this 
restriction and explore the problem of query-set-based broadcasting in multiple broadcast channels. In 
multi-channel query-set-based broadcasting, we discover data collision (two data items in the same query set 
are arranged on two channels at the same time slot) is an important factor to affect users’ access time. In this 
paper, we introduce the new data collision problem motivated by multi-channel query-set-based broadcasting 
environment. We then present a two-stage scheme of data partitioning and data matching to solve the new data 
collision problem. Experiments are performed to justify the benefit of our approach. 
 
 
Key-Words: - Access time, data broadcast, mobile environment, multi-channel, query-set-based broadcasting. 

 

1. Introduction 
Recent advances in computer hardware technology 
have made possible the production of small computers, 
like PDAs and notebooks, which can be carried around 
by users. These small computers can be equipped with 
wireless communication devices that enable users to 
access global data services from any location. In a 
wireless environment, there are two kinds of 
communications between a server and the mobile 
clients. One is broadcasting and the other is 
request-and-reply. Due to restrictions on bandwidth 

and energy, in wireless environment the 
broadcasting method is preferred [11]. 

Two important factors must be considered in a 
broadcast-based information system, access time [1, 
3, 13, 16, 21, 24, 25] and tuning time [5, 7, 10, 17]. 
The access time is the time elapsed from the 
moment a client device submits a query into the 
broadcast channel to the moment the desired data 
are acquired. This is the total time a client device 
must spend and is often used to evaluate the 
performance of the broadcast system. The tuning 
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time is the time spent by the client listening to the 
broadcast channel. When the clients are listening to the 
data in the broadcast channel, the clients are in the 
active mode. Therefore, the tuning time is often used 
to evaluate the power consumption of the clients. The 
aim of our paper is to reduce the access time through 
intelligent organization of the broadcast data. 

Many approaches have been proposed to reduce the 
access time [1, 2, 4, 8, 9, 14, 18, 20]. In these papers, a 
single broadcast channel is used to broadcast data 
items in different frequencies according to their 
relative access rates. Note that, there exist situations 
where multiple low-bandwidth physical channels 
cannot be combined into a single high-bandwidth 
physical channel [19, 22]. In the multi-channel 
environment, the system can schedule data items on 
multiple channels [19, 22]. In addition, several 
network standards, such as FDMA-based systems, 
divide the network bandwidth into several physical 
channels where individual mobile clients listen to one 
channel at a time. 

Furthermore, most of the previous approaches 
assume that each mobile client needs only one data 
item. They do not consider the relationship between 
data objects when a query contains more than one data 
item. However, in many situations, a mobile client 
might need more than one item of data. [3, 8, 15, 23] 
proposed scheduling methods for single channel 
query-set-based data broadcasting. These works 
studied on broadcasting dependent data are restricted 
to a single broadcast channel environment. The results 
are limited applicability to the upcoming mobile 
environment. To view of this, in this paper, we explore 
the query-set-based broadcast problem in multiple 
broadcast channels. In multi-channel mobile 
environment, the data items must be scheduled in the 
channels. Data collision occurred when two data items 
are transmitted to a mobile client on two different 
channels at the same time slot. Since the mobile client 

can only listen to a channel at the same time to 
access one of the data items, data collision forces 
the mobile client to wait for another until next 
broadcast cycle. This leads to an increase of the 
client’s access time and the length of the access 
time are certain to exceed one broadcast cycle 
length. To reduce the number of data collisions, an 
intelligent idea is partitioning the data items which 
are in same query set into the same channel. 
Therefore, this is an important work to develop a 
good partition method to reduce the dependent data 
items (data items in the same query set) into 
different channels. 

In this article, we introduce a new data collision 
problem motivated by multi-channel mobile 
environment. For the data collision problem, we 
investigate an efficient partitioning method. Our 
partitioning algorithm can partition all data items 
into K channels and reduce the data collision 
probability. Following the partitioning, we propose 
a matching based method to decide which data 
items (partitioned in different channels) will be 
broadcasted in the same time slot and minimize the 
number of data collisions. In the matching 
algorithm, we first transfer the matching problem 
into a maximum flow problem. Next, we applied 
the maximum bipartite matching technique which 
derived from the Ford-Fulkerson method [6] to 
reduce the number of data collisions. Experimental 
results show that our algorithm can reduce the 
number of data collisions required for queries 
efficiently. 

The remainder of this paper is organized as 
follows. Section 2 formulates the data collision 
problem in broadcast environment. Section 3 
proposes our two-stage algorithm. Section 4 reports 
the experimental results. Finally, conclusions are 
given in Section 5. 
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2. Problem Formulation 
Figure 1 shows an example system architecture of a 
data broadcast system which broadcasts data items 
periodically according to a broadcast scheduling. We 
assume that there are K channels in a broadcast area, 

each denoted Ci, 1 ≤ i ≤ K. A database is made up of N 
unit-sized items, denoted dj, 1 ≤ j ≤ N. Each item is 
broadcasted on one of the channels, so Ci broadcasts Ni 

data items 1 ≤ i ≤ K, . Let L be the length 

of the broadcast program. L is equal to 

∑
=

=
K

i
i NN

1

⎥⎥
⎤

⎢⎢
⎡

K
N

. We 

assume that N = K×L without loss of generality. Each 
channel broadcasts its data items periodically 
according to a broadcast scheduling. Please see figure 
1. A broadcast scheduling is an arrangement of all data 
items D on K broadcast channels and every data item 
appears in exactly one position on one of the channels. 

Let Q = {q1, q2, …, qM} be a set of M query patterns 
whose data set and frequency (or weight) are denoted 

by QDS(qi), and freq (qi), 1 ≤ i ≤ M. Let D = {d1, 
d2, …, dN}, denote the union of the data items of Q, 

that is, D = . U
Mi

iqQDS
≤≤1

)(

 

Fig. 1: An architecture of a multi-channel wireless 
broadcasting system. 

Example 1: As shown in figure 2, consider a 
database D containing eight data items, D = {d1, d2, …, 
d8}. Assume that there are two channels on server. 
Data items d1, d2, d5, and d8 are partitioned into 

channel 1 and d3, d4, d6, and d7 are partitioned into 
channel 2. The broadcast ordering of channel 1 is 
<d1, d5, d8, d2> and channel 2 is <d4, d7, d6, d3>.  
There are four queries in Q, Q = {q1, q2, q3, q4}. 
Suppose QDS(q1)={d1, d4}, QDS(q2)={d2, d6}, 
QDS(q3)={d5, d8}, and QDS(q4)={d3, d7}. D = 

.  U
41

)(
≤≤i

iqQDS
current broadcast cycle next broadcast cycle 

 
Fig. 2: An example of a broadcast program. There 
are two channels and eight data items. 

 

Given two data items di and dj, if {di, dj} ⊂ 
QDS(qk) and di and dj are scheduled in the same 
time slot of two different channels. We call that a 
data collision (DC) occurred in QDS(qk), denoted 

by di ≅ dj. As shown in example 1, {d1, d4}⊂ 
QDS(q1), and d1 and d4 are scheduled in the same 
time slot of channel 1 and channel 2, respectively. 

Therefore, d1 ≅ d4, and there is a DC in QDS(q1). 
Since a mobile client can only listen to one channel 
at the same time, one of the data items, d1 or d4, can 
be accessed in current broadcast cycle and the other 
one must be waited until next broadcast cycle. It is 
thus evident that a DC will lead to an increase of a 
client’s access time. 

Theorem 1: Given a broadcast scheduling and 
two queries qi and qj, if query qi has a DS in its 
QDS and query qj’s QDS is not occurred any DS, 
then the qi’s access time is longer than the qj’s 
access time. 

Proof: Figure 3 shows a broadcast scheduling. If 

QDS(qi)={di1, di2, di3, di4, di5}, and di2 ≅ di5. The 
shaded box represents a complete cycle time. (The 
length of the shaded box is equal to L.) The left 

d1   d5   d8   d2 d1   d5   d8  d2

d4   d7   d6   d3 d4   d7   d6   d3

channel 1 

channel 2 

push channel 1

Scheduler 

Database 

Q
ueries

Mobile client 

data …

Server 

push channel K

uplink channel 
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border of the box represents the start time of a client 
that submits the query qi to access data items. 
However we slide the box to anywhere (a client start 
turning on a channel anywhere), the box will cover all 
data items one time exactly. The data items which do 
not induce a DC can be accessed during the box 

(time=L), i.e. di1, di3, and di4 can be accessed. But di2 ≅ 
di5, therefore, the client will select one of channels to 
receipt di2 or di5 at the time. The other data item will 
receipt until next broadcast cycle. Therefore, the qi’s 
access time is longer than L. Oppositely, given a query 
qj, if all data items in qj are not inducing any a DS. The 
box will cover all qj’s data items during one length of a 
cycle time and receipts them. Therefore, the access 
time of qj is less than L. So the qi’s access time is 
longer than the qj’s access time. 

Fig. 3: An example of data broadcast scheduling. It 
shows the negative influence on access time of a query 
by a DC. 

By the theorem 1, hence, this is an important issue 
to reduce the number of DCs in a multi-channel data 
broadcast program. 

Data Broadcast Collision Problem (DBCP): Given 
a set of query patterns Q = {q1, q2, …, qM} with their 

frequencies (weights), the data broadcast collision 
problem is to find an optimal broadcast schedule 
which minimizes total data collisions of the query 
patterns. 

 
 

3. Our Approach 
In this section, we present an algorithm for DBCP. Our 
scheduling algorithm consists of two stages: the 

partitioning followed by the matching. 
 
 

3.1 Partitioning Algorithm for the DBCP 
To obtain an efficient initiation, we use a partition 
algorithm that partitions all data items into K 
channels. The objective is to reduce the data 
collision probability. The main idea is described as 
follows: if two data items di and dj belong to the 
same QDS, we will partition di and dj into the same 
broadcast channel as far as possible. Then the two 
data items will not induce a DC. Otherwise, if di 
and dj are partitioned into different channels, 
maybe di and dj will be scheduled in the same time 
slot and inducing a DC. We called this is a tended 
data collision (TDC). When two data items occur to 
a TDC, they will possible be a DC in a data 
broadcast scheduling. In other words, if two data 
items belong to the same QDS and they are not a 
TDC, then they do not lend to a DC. 

Given a set of weighted queries Q = {q1, q2, …, 
qM} whose union of QDSs is D = {d1, d2, …, dN}, it 
can be modeled by a graph G = (V, E), called query 
graph, where V represents the data items and the 
edge set E represents which two data items belong 

to the same query. E = {ei,j | di ∈ QDS(qk) and dj ∈ 
QDS(qk), where qk ∈ Q }. Let wi,j denote the weight 

of edge ei,j. wi,j = ∑ , if {d)( kqfreq i, 

dj}⊂QDS(qk). For example, given a database D 
containing six data items d1, d2, …, d6, if there are 
three queries q1, q2, and q3. Assume that QDS(q1) = 
{d1, d2, d5}, QDS(q2) = {d1, d5, d6}, QDS(q3) = {d2, 
d3, d4, d5}, and ferq(q1) = ferq(q2) = ferq(q3) = 1. 
We can represent it by the graph G = (V, E) as 
shown in the figure 4. V = {v1, v2, …,v6} and E = 
{e1,2, e1,5, e1,6, e2,3, e2,4, e2,5, e3,4, e3,5, e4,5, e5,6}. 

Because of {d1, d5} ⊂ QDS(q1) and {d1, d5} ⊂ 
QDS(q2), w1,5 = ferq(q1) + ferq(q2) = 2. Similarly, 

next broadcast cycle 

channel 1 data stream 

channel 2 data stream 

current broadcast cycle 

di2di1

di4 di5

di3 di2di1

di4 di5

di3… … …

… 

… 

…

… … …

… 

…

…

start of query qi completion of query qi
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w2,5 = ferq(q2) + ferq(q3) = 2 because of {d1, d5} ⊂  
QDS(q2) and {d1, d5} ⊂ QDS(q3). The weights of the 
other edges are equal to 1. 

 
Fig. 4: Graph modeling for weighted query set. 

Let |V| denote the number of vertices in V. The 
partitioning problem is dividing V into K sets (K 
channels) V1, V2, …, VK, where  

Vi ∩ Vj = ∅, i ≠ j 
| Vi | = | Vj |, 1≤i, j≤K 

U
K

i i VV
1=

=  

Partition is also referred to as a cut. The cost of 
partition is called the cut-size, which is the total weight 
of edges crossing the cut. A cut-size represents the 
number of TDCs among queries. Let Ci,j be the 
cut-size between partitions Vi and Vj. The objective of 

the partitioning problem minimizes , where 

i≠j.  

∑∑
= =

K

i

K

j
jiC

1 1
,

Multiway partitioning can be normally reduced to a 
series of two-way or bipartitioning problem. Each 
component is hierarchically bipartitioned until the 
desired number of components is achieved. In this 
paper, we will restrict ourselves to bipartitioning. We 
call the partitioning process is bisectioning and the 
partitions are bisections. 

Based on KL algorithm [12], we propose a 

bipartition algorithm in the following. In this 
bipartitioning algorithm, we start by initially 
partitioning the graph G = (V, E) into two subsets 
of equal sizes. Vertex pairs are exchanged across 
the bisection if exchange improves the cutsize. The 
above procedure is carried out iteratively until no 
further improvement can be achieved. 

Consider the query graph given in figure 4. The 
initial partitions are V1 = {v1, v2, v3} and V2 = {v4, v5, 
v6}. (It is shown in figure 5(a).) Notice that the 
initial cutsize is 8. The next step of the algorithm is 
to choose a pair of vertices whose exchange results 
in the largest decrease of the cutsize or results in 
the smallest increase, if no decrease is possible. 
The cost reduction for moving vertex vi, denoted by 
Di. Di is defined as 

Di = Ei - Ii, 
where Ei is the total cost of edges of vertex vi that 

cross the bisection boundary (if vi∈V1, Ei = ∑
∈ 2

,
V

ixw
vx

) 

and Ii is the total cost of edges of vertex vi that do 

not cross the boundary (if vi∈V1, Ii = ). If v∑
∈ 1

,
Vv

ix
x

w i 

and vj are exchanged, the decrease of cost is 
Gvi,vj=Di+Dj-2wi,j. In the example given in figure 

5(a), for vertex v1, E1 = w1,5 + w1,6 = 2+1 = 3, I1= 
w1,2=1, D1=3-1=2. Similarly, for vertex v4, 
E4=1+1=2, I4=1, D4=2-1=1. In this example, this is 
a suitable vertex pair, (v1, v4), which decreases the 
cutsize by 3 (Gv1,v4 = D1+D4-2w1,4 =2+1-0=3). A 

tentative exchange of this pair made. Figure 5(b) 
shows the result of the tentative exchange. Let gi 
denote the decrease of ith tentative exchange. 
Therefore, g1 is equal to 3. These two vertices are 
then locked. (The locked vertices represented by 
shaded nodes.) This lock on the vertices prohibits 
them from taking part in any further tentative 

exchanges. If vi∈V1 and vj∈V2 are interchanged, 
then the new D-values, D’, are given by 

v1

v6

v3

v4

v5

v2

1 

1 

1 

1 

2 
2 

1 

1 

1 

1 
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Dx’ = Dx +2wx,i – 2wx,j, ∀vx∈V1-{vi} 
Dy’ = Dy +2wy,j – 2wx,i, ∀vy∈V2-{vj} 
The above procedure is applied to the new partitions, 

which gives a second vertex pair of (v2, v6). This 
procedure is continued until all vertices are then 
locked. Figure 5(c) and 5(d) shows the results of the 
second and third tentative exchanges, respectively. 
During this process, a log of all tentative exchanges 
and the resulting cutsizes is stored. Table 1 shows the 
log of vertex exchanges for the given example. Let psk 
denote the partial sum of cutsize decrease over the 

exchanges of first k vertex pairs, psk =∑ . Note 

that the ps-values are given in the column 4 of the 
table, e.g., ps

=

k

i ig
1

1 =3, ps2 =2 and ps3 =0. The value of k for 
which psk gives the maximum value of all partial sum 
is determined from the table. In this example, k=1 and 
ps1 =3 is the maximum partial sum. The first k pairs of 
vertices are actually exchanged. In this example, the 
first vertex pair (v1, v4) is actually exchanged, resulting 
in the bisection shown in figure 6. This completes an 
iteration and a new iteration starts. However, if no 
decrease of cutsize is possible during an iteration, the 
algorithm stops. Table 2 shows the log of the second 
iteration. The maximum partial sum is equal to 0. 
Therefore, no vertex is exchanged and the bisection in 
figure 6 is the final bisection. The algorithm is 
summarized in figure 7. 

i Vertex Pair gi psi Cutsize 
0 - - - 8 
1 (v1, v4) 3 3 5 
2 (v2, v6) -1 2 6 
3 (v3, v5) -2 0 8 

Table 1: The log of the vertex exchanges. (Iteration 1.) 
 

 i Vertex Pair gi psi Cutsize
0 - - - 5 
1 (v2, v6) -1 -1 6 
2 (v1, v4) -1 -2 7 
3 (v3, v5) 2 0 5 

Table 2: The log of the vertex exchanges. (Iteration 2.) 

 
Fig. 5: (a) The initial bisection. (b) The result of the 
first tentative exchange which exchange vertices v1 
and v4. (c) The result of the second tentative 
exchange. (d) The result of the third tentative 
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exchange. 

 

Fig. 6: The final partitions of figure 5. 

 
Algorithm Partitioning (G) 

ition V1 and V2 with small 

partition V into V1 and V2 such that 

2  r

mpute Dj, ∀vj∈V; 

ir of unlocked vertices vxi∈V1 

6  d mark vxi and vyi as 

7 r all unlock 

8  Find psk = is maximized; 

 psk > 0  
vx2, …, vxk, from V1 to V2, 

11  Unlo

 algorithm for DBCP. 

.2 Matching Algorithm for the DBCP 
based 

i 1 j 2

R2: s,i

j,t

All
sure

Input:  G(V,E), |V|=2n 
Output: Balanced bi-part
number of TDCs 

1 Random bi

|V1|=|V2|, V1∩ V2=∅,and V1∪ V2=V; 
epeat 

3  Co
4  For i = 1 to n 
5  Find a pa

and vyi ∈V2 whose exchange with 
largest Gxi, yi; 

Exchange an

locked, store the gain gi; 

 Compute the new Dj, fo

vj∈V; 

k, such that ∑
=

k

i
ig

1

9  if then
10  Move vx1, 

and vy1, vy2, …, vyk, from V2 to V1; 

ck v, ∀v∈V; 
12 Until psk ≤ 0. 

Fig. 7: The partition
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v6
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v5v2
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1 

1 

cutsize=5 

Partition V1

 

3
Following the partitioning, a matching 
method is applied to decide which two data items 
(partitioned in different channels) will be 
broadcasted in the same time slot. The matching 
algorithm has to minimize the number of data 
collisions. As the example shown in figure 2, it has 
given us a picture of how the mismatching of data 
items d1 and d4 on the broadcast sequences could 
increase the access time of the client. In this 
subsection, we applied the maximum bipartite 
matching technique to reduce the number of DCs. 

The maximum bipartite matching technique [6] 
is a well known method that derived from the 
Ford-Fulkerson method to find the maximum flow 
in a flow network. In order to transform the DBCP 
to the maximum bipartite matching problem, we 
consider the output of the partition algorithm as a 
bipartite network. Given a graph G = (V, E) that is 
output from the partition algorithm, where V= V1∪ 
V2 and V1∩ V2=∅. We construct the corresponding 
flow network G’ = (V’, E’) for the bipartite graph 
G as follows. We let the source s and sink t be new 
vertices not in V, and we let V’= V∪{s, t}. The 
directed edges of G’ are generated by the following 
rules: 

R1: If there are two vertices v∈V , v  ∈V  

Partition V2

and ei,j ∉ E, then we add an edge ei,j 
into E’ with unit capacity. 
∀ vi∈V1, we add an edge e  into E’ 
with unit capacity. 

R3: ∀ vj∈V2, we add an edge e  into E’ 
with unit capacity. 

 edges have only one capacity. This made 
 that one unit capacity were shipped from a 

vertex vi∈V1 to a vertex vj∈V2 at most. In other 
words, a vertex vi∈V1 is matched to a vertex vj∈V2 
at most. Similarly, a vertex vj∈V2 is matched to a 
vertex vi∈V1 at most. Rule R1 creates en edge 
between two vertices vi and vj if they do not induce 
a TDC, and gives unit capacity to the edge. 
Therefore, in the flow-based algorithm, vi and vj 
can be matched together and have no DC occurring. 
That is to say, if vi and vj inducing to a TDC, rule 
R1 avoids the two vertices matching together and 
inducing a DC. As shown in figure 8(a), this is the 
output of figure 5, vertices are partitioned into two 
sets V1 = {v2, v3, v4} and V2 = {v1, v5, v6}. There are 
five TDCs between V1 and V2. Figure 8(b) shows 
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the flow network which is corresponding to the 
bipartite graph of figure 8(a). 

 

 
(a) Bipartite grapFig. 8 V, E), where V is 

n the flow 
netw

s, like v3 and v5, we 
prop

), and 

h G = (
partitioned into two sets V1 and V2. (b) The 
corresponding flow network G’ = (V’, E’). 

Apply the Ford-Fulkerson method [6] o
ork G’ to find a maximum flow. We can find a 

maximum bipartite matching of the graph. As shown 
in Figure 9, the corresponding flow network G’ with a 
maximum flow is shown. Shaded edges have a flow 
of 1 unit capacity, and all other edges carry no flow. 
The shaded edges from V1 to V2 correspond to those in 
a maximum matching of the data items. The vertices 
v1 and v4 are matched together and they will be 
scheduled in the same time slot of different channels. 
Similarly, vertices v2 and v6 are scheduled in the same 
time slot. The other vertices v3 and v5 are unmatched. 
Let α denote the set of all matched vertex pairs. In this 
case, α = {(v1, v4), (v2, v6)}. 

For unmatched vertice
ose a greedy scheme to minimize the number of 

DCs in the following. If there are two unmatched 
vertices vi∈V1 and vj ∈V2, that is, there doesn’t exist 
an edge connected vi and vj in the flow network G’. In 
other words, there exists an edge connected vi and vj in 
the graph G. If they are matched together, it will 

induce wi,j DCs. Let 1V ′′  ( 2V ′′ ) denote the 
unmatched vertices in V1 (V2 E ′′  denote the 
edges in the query graph G which ar etween 1Ve b ′′  
and 2V ′′ . In our method, first, we sort the edge  s in
E ′′  their weights. Next, we select an edge by 

 ordering recursively. We select the first edge e
by 

the i,j 
with the smallest weight, and match vertices vi, and 
vj together, and add (vi, vj) into α. Then, we remove 
all edges connected with vi or vj from E ′′ . The 
scheme is done to the set E ′′  empti . The 
matching algorithm is summarized in figure 10. 

e

Fig. a 

 
lgorithm Matching (G) 

, V was partitioned into 

 V

ite matching α of V1 and V2 with 

 R2, and R3 to construct the 

2 orithm on G’ to 

3 

i∈V1, vj ∈V2, and (vi, vj)∉ α) 

5  ei,j into 

d

 
9: The corresponding flow network G’ with 

maximum flow. v4 will be matched to v1, and v2 
will be matched to v6. 

A
Input: G(V,E), |V|=2n

two sets 1 and V2 such that |V1|=| V2|, V1∩ V2=∅, 
and V1∪ V2=V 
Output: Bipart
less number of DCs 

1 Using rules R1,
flow network G’ by graph G 

Run the Ford-Fulkerson alg
find maximum bipartite matching α 

For i = 1 to |E| 

4 if (ei,j∈E, v
then 

 Add E ′′ ; 
6 Sorting th  edges of e E ′′ y their weights;  b
7 While ( E ′′ ≠∅) 
8  Sel t the fiec rst edge ei,j of E ′′ ; 
9  α = α ∪ {(v 

  connected with vi,or 
i, vj)}; 

10 Remove the edges
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vj from E ′′ ; 
rn α 11 Retu

ig. 10: The matching algorithm for DBCP. 

. Experimental Results 
ented in the JAVA 

umber of 
da

 
F

 

4
Our algorithms have been implem
language on a PC with a Pentium IV 3.2 G 
microprocessor and 512 MB RAM. We generate query 
sets to evaluate the performance of the approach over a 
range of data characteristics. The parameters used in 
the generation of query sets include N, M, S, and F. 
Parameter N is defined as the number of data items 
that are delivered on broadcasting channel. Every data 
item on the broadcast channels is accessed by one or 
more queries. Parameter M is defined as the total 
number of query patterns that access parts of the 
broadcast data set. Selectivity S is the maximum 
degree of a query’s QDS size over the size of 
broadcast data set in terms of percentage. For example 
3% selectivity means a query accesses at most 3% of 
the N data items. We consider three different kinds of 
distribution of query’s occurrence frequency: uniform 
distribution, normal distribution, and exponential 
distribution. We assume the size of each data item to 
be equal and set all data items’ size as one unit length. 
The number of broadcast channels set to 2. 

In the first experiment, we change the n
ta items N with 200 queries and 5% selectivity. The 

three kinds of distribution of query’s occurrence 
frequency (uniform distribution, normal distribution, 
and exponential distribution) are considered. The 
results are shown in Figure 11. We measure the 
performance improvement i.e., DC (Data Collision) 
reduction of the proposed method against sequential 
(with respect to data ID) schedules on which no effort 
of data placement is put. Figure 11 shows the 

percentages of improvement s of ours over 
sequential. The improvement for the sequential is 
calculated by 

%100×
−

sequential
Ourssequential

. 

As show in this result, the performance of the 
proposed approach has little dependency on the 
number of data items. The performance 
improvement increases to more than 30%--40%. 
The results show the effectiveness of our approach.  
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Fig. 11: The improvement with change in the 
number of data items N. Three kind of distribution 
of query’s occurrence frequency, uniform 
distribution, normal distribution, and exponential 
distribution, are considered. 

In the second experiment, we change the number 
of query patterns M with 300 data items and 5% 
selectivity. The results are shown in the figure 12. 
As shown in this result, the performance 
improvement decreases with large number of 
queries. 
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Fig. 12: The improvement ratio with various numbers 
of query patterns M. Three kind of distribution of 
query’s occurrence frequency, uniform distribution, 
normal distribution, and exponential distribution, are 
considered. 

In the third experiment, we change selectivity 
values S with 100 query patterns and 300 data items. 
The results are shown in the figure 13. As shown in 
these results, our proposed method on the average 
reduces the number of DCs occurred by 40.74%, 
44.88%, and 46.00%) regarding the uniform 
distribution, normal distribution, and exponential 
distribution, respectively. 
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Fig. 13: The improvement ratio with various 
selectivity S. Three kind of distribution of query’s 
occurrence frequency, uniform distribution, normal 
distribution, and exponential distribution, are 
considered.  

In above experiments we can observe that the cases 

of exponential distribution of freq(qi) provide better 

performance than the others. The results show that 
more highly skewed query distributions achieve 
better performance with our method.  

5. Conclusions 
In this paper, we have formulated a new data 
broadcast collision problem in multi-channel 
mobile environment, and we have presented a 
two-stage algorithm for the problem. The 
partitioning algorithm decides which data items can 
be scheduled into the same channel and reduces the 
data collision probability. Following the partition 
method, we proposed a flow based matching 
method to decide which two data items in different 
channels will be broadcasted in the same time slot. 
The matching algorithm can minimize the number 
of data collisions. From our simulation results, we 
have shown that our approach is efficiently. 
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