
An Efficient Partition and Matching Algorithm for Query-Set-based

Broadcasting in Multiple Channel Mobile Environment

Jing-Feng Lin1, Guang-Ming Wu2, and Derchian Tsaih3

1 Department of Computer Science and Information Engineering, Nan-Hua University
2 Department of Information Management, Nan-Hua University

3 Department of Electronic Commerce Management, Nan-Hua University
32,Chung Keng Li, Dalin, Chiayi, Taiwan

jflin@mail.nhu.edu.tw, gmwu@mail.nhu.edu.tw, dctsaih@mail.nhu.edu.tw,
http://www.nhu.edu.tw

ABSTRACT: -Broadcast is an efficient and scalable method for resolving the bandwidth limitation in a wireless
environment. In many applications, mobile clients might need more than one data item. However, most
previous researches on query-set-based broadcasting are restricted to a single broadcast channel environment.
The results are limited applicability to the upcoming mobile environments. In this paper, we relax this
restriction and explore the problem of query-set-based broadcasting in multiple broadcast channels. In
multi-channel query-set-based broadcasting, we discover data collision (two data items in the same query set
are arranged on two channels at the same time slot) is an important factor to affect users’ access time. In this
paper, we introduce the new data collision problem motivated by multi-channel query-set-based broadcasting
environment. We then present a two-stage scheme of data partitioning and data matching to solve the new data
collision problem. Experiments are performed to justify the benefit of our approach.

Key-Words: - Access time, data broadcast, mobile environment, multi-channel, query-set-based broadcasting.

1. Introduction
Recent advances in computer hardware technology
have made possible the production of small computers,
like PDAs and notebooks, which can be carried around
by users. These small computers can be equipped with
wireless communication devices that enable users to
access global data services from any location. In a
wireless environment, there are two kinds of
communications between a server and the mobile
clients. One is broadcasting and the other is
request-and-reply. Due to restrictions on bandwidth

and energy, in wireless environment the
broadcasting method is preferred [11].

Two important factors must be considered in a
broadcast-based information system, access time [1,
3, 13, 16, 21, 24, 25] and tuning time [5, 7, 10, 17].
The access time is the time elapsed from the
moment a client device submits a query into the
broadcast channel to the moment the desired data
are acquired. This is the total time a client device
must spend and is often used to evaluate the
performance of the broadcast system. The tuning

WSEAS TRANSACTIONS on COMMUNICATIONS Jing-Feng Lin, Guang-Ming Wu, Derchian Tsaih

ISSN: 1109-2742 172 Issue 1, Volume 8, January 2009

time is the time spent by the client listening to the
broadcast channel. When the clients are listening to the
data in the broadcast channel, the clients are in the
active mode. Therefore, the tuning time is often used
to evaluate the power consumption of the clients. The
aim of our paper is to reduce the access time through
intelligent organization of the broadcast data.

Many approaches have been proposed to reduce the
access time [1, 2, 4, 8, 9, 14, 18, 20]. In these papers, a
single broadcast channel is used to broadcast data
items in different frequencies according to their
relative access rates. Note that, there exist situations
where multiple low-bandwidth physical channels
cannot be combined into a single high-bandwidth
physical channel [19, 22]. In the multi-channel
environment, the system can schedule data items on
multiple channels [19, 22]. In addition, several
network standards, such as FDMA-based systems,
divide the network bandwidth into several physical
channels where individual mobile clients listen to one
channel at a time.

Furthermore, most of the previous approaches
assume that each mobile client needs only one data
item. They do not consider the relationship between
data objects when a query contains more than one data
item. However, in many situations, a mobile client
might need more than one item of data. [3, 8, 15, 23]
proposed scheduling methods for single channel
query-set-based data broadcasting. These works
studied on broadcasting dependent data are restricted
to a single broadcast channel environment. The results
are limited applicability to the upcoming mobile
environment. To view of this, in this paper, we explore
the query-set-based broadcast problem in multiple
broadcast channels. In multi-channel mobile
environment, the data items must be scheduled in the
channels. Data collision occurred when two data items
are transmitted to a mobile client on two different
channels at the same time slot. Since the mobile client

can only listen to a channel at the same time to
access one of the data items, data collision forces
the mobile client to wait for another until next
broadcast cycle. This leads to an increase of the
client’s access time and the length of the access
time are certain to exceed one broadcast cycle
length. To reduce the number of data collisions, an
intelligent idea is partitioning the data items which
are in same query set into the same channel.
Therefore, this is an important work to develop a
good partition method to reduce the dependent data
items (data items in the same query set) into
different channels.

In this article, we introduce a new data collision
problem motivated by multi-channel mobile
environment. For the data collision problem, we
investigate an efficient partitioning method. Our
partitioning algorithm can partition all data items
into K channels and reduce the data collision
probability. Following the partitioning, we propose
a matching based method to decide which data
items (partitioned in different channels) will be
broadcasted in the same time slot and minimize the
number of data collisions. In the matching
algorithm, we first transfer the matching problem
into a maximum flow problem. Next, we applied
the maximum bipartite matching technique which
derived from the Ford-Fulkerson method [6] to
reduce the number of data collisions. Experimental
results show that our algorithm can reduce the
number of data collisions required for queries
efficiently.

The remainder of this paper is organized as
follows. Section 2 formulates the data collision
problem in broadcast environment. Section 3
proposes our two-stage algorithm. Section 4 reports
the experimental results. Finally, conclusions are
given in Section 5.

WSEAS TRANSACTIONS on COMMUNICATIONS Jing-Feng Lin, Guang-Ming Wu, Derchian Tsaih

ISSN: 1109-2742 173 Issue 1, Volume 8, January 2009

2. Problem Formulation
Figure 1 shows an example system architecture of a
data broadcast system which broadcasts data items
periodically according to a broadcast scheduling. We
assume that there are K channels in a broadcast area,

each denoted Ci, 1 ≤ i ≤ K. A database is made up of N
unit-sized items, denoted dj, 1 ≤ j ≤ N. Each item is
broadcasted on one of the channels, so Ci broadcasts Ni

data items 1 ≤ i ≤ K, . Let L be the length

of the broadcast program. L is equal to

∑
=

=
K

i
i NN

1

⎥⎥
⎤

⎢⎢
⎡

K
N

. We

assume that N = K×L without loss of generality. Each
channel broadcasts its data items periodically
according to a broadcast scheduling. Please see figure
1. A broadcast scheduling is an arrangement of all data
items D on K broadcast channels and every data item
appears in exactly one position on one of the channels.

Let Q = {q1, q2, …, qM} be a set of M query patterns
whose data set and frequency (or weight) are denoted

by QDS(qi), and freq (qi), 1 ≤ i ≤ M. Let D = {d1,
d2, …, dN}, denote the union of the data items of Q,

that is, D = . U
Mi

iqQDS
≤≤1

)(

Fig. 1: An architecture of a multi-channel wireless
broadcasting system.

Example 1: As shown in figure 2, consider a
database D containing eight data items, D = {d1, d2, …,
d8}. Assume that there are two channels on server.
Data items d1, d2, d5, and d8 are partitioned into

channel 1 and d3, d4, d6, and d7 are partitioned into
channel 2. The broadcast ordering of channel 1 is
<d1, d5, d8, d2> and channel 2 is <d4, d7, d6, d3>.
There are four queries in Q, Q = {q1, q2, q3, q4}.
Suppose QDS(q1)={d1, d4}, QDS(q2)={d2, d6},
QDS(q3)={d5, d8}, and QDS(q4)={d3, d7}. D =

. U
41

)(
≤≤i

iqQDS
current broadcast cycle next broadcast cycle

Fig. 2: An example of a broadcast program. There
are two channels and eight data items.

Given two data items di and dj, if {di, dj} ⊂
QDS(qk) and di and dj are scheduled in the same
time slot of two different channels. We call that a
data collision (DC) occurred in QDS(qk), denoted

by di ≅ dj. As shown in example 1, {d1, d4}⊂
QDS(q1), and d1 and d4 are scheduled in the same
time slot of channel 1 and channel 2, respectively.

Therefore, d1 ≅ d4, and there is a DC in QDS(q1).
Since a mobile client can only listen to one channel
at the same time, one of the data items, d1 or d4, can
be accessed in current broadcast cycle and the other
one must be waited until next broadcast cycle. It is
thus evident that a DC will lead to an increase of a
client’s access time.

Theorem 1: Given a broadcast scheduling and
two queries qi and qj, if query qi has a DS in its
QDS and query qj’s QDS is not occurred any DS,
then the qi’s access time is longer than the qj’s
access time.

Proof: Figure 3 shows a broadcast scheduling. If

QDS(qi)={di1, di2, di3, di4, di5}, and di2 ≅ di5. The
shaded box represents a complete cycle time. (The
length of the shaded box is equal to L.) The left

d1 d5 d8 d2 d1 d5 d8 d2

d4 d7 d6 d3 d4 d7 d6 d3

channel 1

channel 2

push channel 1

Scheduler

Database

Q
ueries

Mobile client

data …

Server

push channel K

uplink channel

WSEAS TRANSACTIONS on COMMUNICATIONS Jing-Feng Lin, Guang-Ming Wu, Derchian Tsaih

ISSN: 1109-2742 174 Issue 1, Volume 8, January 2009

border of the box represents the start time of a client
that submits the query qi to access data items.
However we slide the box to anywhere (a client start
turning on a channel anywhere), the box will cover all
data items one time exactly. The data items which do
not induce a DC can be accessed during the box

(time=L), i.e. di1, di3, and di4 can be accessed. But di2 ≅
di5, therefore, the client will select one of channels to
receipt di2 or di5 at the time. The other data item will
receipt until next broadcast cycle. Therefore, the qi’s
access time is longer than L. Oppositely, given a query
qj, if all data items in qj are not inducing any a DS. The
box will cover all qj’s data items during one length of a
cycle time and receipts them. Therefore, the access
time of qj is less than L. So the qi’s access time is
longer than the qj’s access time.

Fig. 3: An example of data broadcast scheduling. It
shows the negative influence on access time of a query
by a DC.

By the theorem 1, hence, this is an important issue
to reduce the number of DCs in a multi-channel data
broadcast program.

Data Broadcast Collision Problem (DBCP): Given
a set of query patterns Q = {q1, q2, …, qM} with their

frequencies (weights), the data broadcast collision
problem is to find an optimal broadcast schedule
which minimizes total data collisions of the query
patterns.

3. Our Approach
In this section, we present an algorithm for DBCP. Our
scheduling algorithm consists of two stages: the

partitioning followed by the matching.

3.1 Partitioning Algorithm for the DBCP
To obtain an efficient initiation, we use a partition
algorithm that partitions all data items into K
channels. The objective is to reduce the data
collision probability. The main idea is described as
follows: if two data items di and dj belong to the
same QDS, we will partition di and dj into the same
broadcast channel as far as possible. Then the two
data items will not induce a DC. Otherwise, if di
and dj are partitioned into different channels,
maybe di and dj will be scheduled in the same time
slot and inducing a DC. We called this is a tended
data collision (TDC). When two data items occur to
a TDC, they will possible be a DC in a data
broadcast scheduling. In other words, if two data
items belong to the same QDS and they are not a
TDC, then they do not lend to a DC.

Given a set of weighted queries Q = {q1, q2, …,
qM} whose union of QDSs is D = {d1, d2, …, dN}, it
can be modeled by a graph G = (V, E), called query
graph, where V represents the data items and the
edge set E represents which two data items belong

to the same query. E = {ei,j | di ∈ QDS(qk) and dj ∈
QDS(qk), where qk ∈ Q }. Let wi,j denote the weight

of edge ei,j. wi,j = ∑ , if {d)(kqfreq i,

dj}⊂QDS(qk). For example, given a database D
containing six data items d1, d2, …, d6, if there are
three queries q1, q2, and q3. Assume that QDS(q1) =
{d1, d2, d5}, QDS(q2) = {d1, d5, d6}, QDS(q3) = {d2,
d3, d4, d5}, and ferq(q1) = ferq(q2) = ferq(q3) = 1.
We can represent it by the graph G = (V, E) as
shown in the figure 4. V = {v1, v2, …,v6} and E =
{e1,2, e1,5, e1,6, e2,3, e2,4, e2,5, e3,4, e3,5, e4,5, e5,6}.

Because of {d1, d5} ⊂ QDS(q1) and {d1, d5} ⊂
QDS(q2), w1,5 = ferq(q1) + ferq(q2) = 2. Similarly,

next broadcast cycle

channel 1 data stream

channel 2 data stream

current broadcast cycle

di2di1

di4 di5

di3 di2di1

di4 di5

di3… … …

…

…

…

… … …

…

…

…

start of query qi completion of query qi

WSEAS TRANSACTIONS on COMMUNICATIONS Jing-Feng Lin, Guang-Ming Wu, Derchian Tsaih

ISSN: 1109-2742 175 Issue 1, Volume 8, January 2009

w2,5 = ferq(q2) + ferq(q3) = 2 because of {d1, d5} ⊂
QDS(q2) and {d1, d5} ⊂ QDS(q3). The weights of the
other edges are equal to 1.

Fig. 4: Graph modeling for weighted query set.

Let |V| denote the number of vertices in V. The
partitioning problem is dividing V into K sets (K
channels) V1, V2, …, VK, where

Vi ∩ Vj = ∅, i ≠ j
| Vi | = | Vj |, 1≤i, j≤K

U
K

i i VV
1=

=

Partition is also referred to as a cut. The cost of
partition is called the cut-size, which is the total weight
of edges crossing the cut. A cut-size represents the
number of TDCs among queries. Let Ci,j be the
cut-size between partitions Vi and Vj. The objective of

the partitioning problem minimizes , where

i≠j.

∑∑
= =

K

i

K

j
jiC

1 1
,

Multiway partitioning can be normally reduced to a
series of two-way or bipartitioning problem. Each
component is hierarchically bipartitioned until the
desired number of components is achieved. In this
paper, we will restrict ourselves to bipartitioning. We
call the partitioning process is bisectioning and the
partitions are bisections.

Based on KL algorithm [12], we propose a

bipartition algorithm in the following. In this
bipartitioning algorithm, we start by initially
partitioning the graph G = (V, E) into two subsets
of equal sizes. Vertex pairs are exchanged across
the bisection if exchange improves the cutsize. The
above procedure is carried out iteratively until no
further improvement can be achieved.

Consider the query graph given in figure 4. The
initial partitions are V1 = {v1, v2, v3} and V2 = {v4, v5,
v6}. (It is shown in figure 5(a).) Notice that the
initial cutsize is 8. The next step of the algorithm is
to choose a pair of vertices whose exchange results
in the largest decrease of the cutsize or results in
the smallest increase, if no decrease is possible.
The cost reduction for moving vertex vi, denoted by
Di. Di is defined as

Di = Ei - Ii,
where Ei is the total cost of edges of vertex vi that

cross the bisection boundary (if vi∈V1, Ei = ∑
∈ 2

,
V

ixw
vx

)

and Ii is the total cost of edges of vertex vi that do

not cross the boundary (if vi∈V1, Ii =). If v∑
∈ 1

,
Vv

ix
x

w i

and vj are exchanged, the decrease of cost is
Gvi,vj=Di+Dj-2wi,j. In the example given in figure

5(a), for vertex v1, E1 = w1,5 + w1,6 = 2+1 = 3, I1=
w1,2=1, D1=3-1=2. Similarly, for vertex v4,
E4=1+1=2, I4=1, D4=2-1=1. In this example, this is
a suitable vertex pair, (v1, v4), which decreases the
cutsize by 3 (Gv1,v4 = D1+D4-2w1,4 =2+1-0=3). A

tentative exchange of this pair made. Figure 5(b)
shows the result of the tentative exchange. Let gi
denote the decrease of ith tentative exchange.
Therefore, g1 is equal to 3. These two vertices are
then locked. (The locked vertices represented by
shaded nodes.) This lock on the vertices prohibits
them from taking part in any further tentative

exchanges. If vi∈V1 and vj∈V2 are interchanged,
then the new D-values, D’, are given by

v1

v6

v3

v4

v5

v2

1

1

1

1

2
2

1

1

1

1

WSEAS TRANSACTIONS on COMMUNICATIONS Jing-Feng Lin, Guang-Ming Wu, Derchian Tsaih

ISSN: 1109-2742 176 Issue 1, Volume 8, January 2009

Dx’ = Dx +2wx,i – 2wx,j, ∀vx∈V1-{vi}
Dy’ = Dy +2wy,j – 2wx,i, ∀vy∈V2-{vj}
The above procedure is applied to the new partitions,

which gives a second vertex pair of (v2, v6). This
procedure is continued until all vertices are then
locked. Figure 5(c) and 5(d) shows the results of the
second and third tentative exchanges, respectively.
During this process, a log of all tentative exchanges
and the resulting cutsizes is stored. Table 1 shows the
log of vertex exchanges for the given example. Let psk
denote the partial sum of cutsize decrease over the

exchanges of first k vertex pairs, psk =∑ . Note

that the ps-values are given in the column 4 of the
table, e.g., ps

=

k

i ig
1

1 =3, ps2 =2 and ps3 =0. The value of k for
which psk gives the maximum value of all partial sum
is determined from the table. In this example, k=1 and
ps1 =3 is the maximum partial sum. The first k pairs of
vertices are actually exchanged. In this example, the
first vertex pair (v1, v4) is actually exchanged, resulting
in the bisection shown in figure 6. This completes an
iteration and a new iteration starts. However, if no
decrease of cutsize is possible during an iteration, the
algorithm stops. Table 2 shows the log of the second
iteration. The maximum partial sum is equal to 0.
Therefore, no vertex is exchanged and the bisection in
figure 6 is the final bisection. The algorithm is
summarized in figure 7.

i Vertex Pair gi psi Cutsize
0 - - - 8
1 (v1, v4) 3 3 5
2 (v2, v6) -1 2 6
3 (v3, v5) -2 0 8

Table 1: The log of the vertex exchanges. (Iteration 1.)

 i Vertex Pair gi psi Cutsize
0 - - - 5
1 (v2, v6) -1 -1 6
2 (v1, v4) -1 -2 7
3 (v3, v5) 2 0 5

Table 2: The log of the vertex exchanges. (Iteration 2.)

Fig. 5: (a) The initial bisection. (b) The result of the
first tentative exchange which exchange vertices v1
and v4. (c) The result of the second tentative
exchange. (d) The result of the third tentative

v4

v6v3

v1

v5v2

1
1

1

1

2

2

1

1

1

1

cutsize=5

(b)

v4

v2
v3

v1

v5v6

1
1

2

2

1
1

1

1

1

cutsize=6

(c)

1

1

v4

v4

v2
v5

v1

v3
v6

1
1

1

2

1
1

2

1

1

cutsize=8

(d)

v1

v6v3

v5v2

1 1 1

1

2
2

1

cutsize=8

1

1
1

(a)

WSEAS TRANSACTIONS on COMMUNICATIONS Jing-Feng Lin, Guang-Ming Wu, Derchian Tsaih

ISSN: 1109-2742 177 Issue 1, Volume 8, January 2009

exchange.

Fig. 6: The final partitions of figure 5.

Algorithm Partitioning (G)

ition V1 and V2 with small

partition V into V1 and V2 such that

2 r

mpute Dj, ∀vj∈V;

ir of unlocked vertices vxi∈V1

6 d mark vxi and vyi as

7 r all unlock

8 Find psk = is maximized;

 psk > 0
vx2, …, vxk, from V1 to V2,

11 Unlo

 algorithm for DBCP.

.2 Matching Algorithm for the DBCP
based

i 1 j 2

R2: s,i

j,t

All
sure

Input: G(V,E), |V|=2n
Output: Balanced bi-part
number of TDCs

1 Random bi

|V1|=|V2|, V1∩ V2=∅,and V1∪ V2=V;
epeat

3 Co
4 For i = 1 to n
5 Find a pa

and vyi ∈V2 whose exchange with
largest Gxi, yi;

Exchange an

locked, store the gain gi;

 Compute the new Dj, fo

vj∈V;

k, such that ∑
=

k

i
ig

1

9 if then
10 Move vx1,

and vy1, vy2, …, vyk, from V2 to V1;

ck v, ∀v∈V;
12 Until psk ≤ 0.

Fig. 7: The partition

v4

v6
v3

v1

v5v2

1
1

1

1

2

2

1

1

1

1

cutsize=5

Partition V1

3
Following the partitioning, a matching
method is applied to decide which two data items
(partitioned in different channels) will be
broadcasted in the same time slot. The matching
algorithm has to minimize the number of data
collisions. As the example shown in figure 2, it has
given us a picture of how the mismatching of data
items d1 and d4 on the broadcast sequences could
increase the access time of the client. In this
subsection, we applied the maximum bipartite
matching technique to reduce the number of DCs.

The maximum bipartite matching technique [6]
is a well known method that derived from the
Ford-Fulkerson method to find the maximum flow
in a flow network. In order to transform the DBCP
to the maximum bipartite matching problem, we
consider the output of the partition algorithm as a
bipartite network. Given a graph G = (V, E) that is
output from the partition algorithm, where V= V1∪
V2 and V1∩ V2=∅. We construct the corresponding
flow network G’ = (V’, E’) for the bipartite graph
G as follows. We let the source s and sink t be new
vertices not in V, and we let V’= V∪{s, t}. The
directed edges of G’ are generated by the following
rules:

R1: If there are two vertices v∈V , v ∈V

Partition V2

and ei,j ∉ E, then we add an edge ei,j
into E’ with unit capacity.
∀ vi∈V1, we add an edge e into E’
with unit capacity.

R3: ∀ vj∈V2, we add an edge e into E’
with unit capacity.

 edges have only one capacity. This made
 that one unit capacity were shipped from a

vertex vi∈V1 to a vertex vj∈V2 at most. In other
words, a vertex vi∈V1 is matched to a vertex vj∈V2
at most. Similarly, a vertex vj∈V2 is matched to a
vertex vi∈V1 at most. Rule R1 creates en edge
between two vertices vi and vj if they do not induce
a TDC, and gives unit capacity to the edge.
Therefore, in the flow-based algorithm, vi and vj
can be matched together and have no DC occurring.
That is to say, if vi and vj inducing to a TDC, rule
R1 avoids the two vertices matching together and
inducing a DC. As shown in figure 8(a), this is the
output of figure 5, vertices are partitioned into two
sets V1 = {v2, v3, v4} and V2 = {v1, v5, v6}. There are
five TDCs between V1 and V2. Figure 8(b) shows

WSEAS TRANSACTIONS on COMMUNICATIONS Jing-Feng Lin, Guang-Ming Wu, Derchian Tsaih

ISSN: 1109-2742 178 Issue 1, Volume 8, January 2009

the flow network which is corresponding to the
bipartite graph of figure 8(a).

(a) Bipartite grapFig. 8 V, E), where V is

n the flow
netw

s, like v3 and v5, we
prop

), and

h G = (
partitioned into two sets V1 and V2. (b) The
corresponding flow network G’ = (V’, E’).

Apply the Ford-Fulkerson method [6] o
ork G’ to find a maximum flow. We can find a

maximum bipartite matching of the graph. As shown
in Figure 9, the corresponding flow network G’ with a
maximum flow is shown. Shaded edges have a flow
of 1 unit capacity, and all other edges carry no flow.
The shaded edges from V1 to V2 correspond to those in
a maximum matching of the data items. The vertices
v1 and v4 are matched together and they will be
scheduled in the same time slot of different channels.
Similarly, vertices v2 and v6 are scheduled in the same
time slot. The other vertices v3 and v5 are unmatched.
Let α denote the set of all matched vertex pairs. In this
case, α = {(v1, v4), (v2, v6)}.

For unmatched vertice
ose a greedy scheme to minimize the number of

DCs in the following. If there are two unmatched
vertices vi∈V1 and vj ∈V2, that is, there doesn’t exist
an edge connected vi and vj in the flow network G’. In
other words, there exists an edge connected vi and vj in
the graph G. If they are matched together, it will

induce wi,j DCs. Let 1V ′′ (2V ′′) denote the
unmatched vertices in V1 (V2 E ′′ denote the
edges in the query graph G which ar etween 1Ve b ′′
and 2V ′′ . In our method, first, we sort the edge s in
E ′′ their weights. Next, we select an edge by

 ordering recursively. We select the first edge e
by

the i,j
with the smallest weight, and match vertices vi, and
vj together, and add (vi, vj) into α. Then, we remove
all edges connected with vi or vj from E ′′ . The
scheme is done to the set E ′′ empti . The
matching algorithm is summarized in figure 10.

e

Fig. a

lgorithm Matching (G)

, V was partitioned into

 V

ite matching α of V1 and V2 with

 R2, and R3 to construct the

2 orithm on G’ to

3

i∈V1, vj ∈V2, and (vi, vj)∉ α)

5 ei,j into

d

9: The corresponding flow network G’ with

maximum flow. v4 will be matched to v1, and v2
will be matched to v6.

A
Input: G(V,E), |V|=2n

two sets 1 and V2 such that |V1|=| V2|, V1∩ V2=∅,
and V1∪ V2=V
Output: Bipart
less number of DCs

1 Using rules R1,
flow network G’ by graph G

Run the Ford-Fulkerson alg
find maximum bipartite matching α

For i = 1 to |E|

4 if (ei,j∈E, v
then

 Add E ′′ ;
6 Sorting th edges of e E ′′ y their weights; b
7 While (E ′′ ≠∅)
8 Sel t the fiec rst edge ei,j of E ′′ ;
9 α = α ∪ {(v

 connected with vi,or
i, vj)};

10 Remove the edges

v4

v6
v3

v1

v5v2s t

(a)

v4

v6
v3

v1

v5v2

1

1

1

2

V1 V2

(b)

v4

v6v3

v1

v5v2s t

WSEAS TRANSACTIONS on COMMUNICATIONS Jing-Feng Lin, Guang-Ming Wu, Derchian Tsaih

ISSN: 1109-2742 179 Issue 1, Volume 8, January 2009

vj from E ′′ ;
rn α 11 Retu

ig. 10: The matching algorithm for DBCP.

. Experimental Results
ented in the JAVA

umber of
da

F

4
Our algorithms have been implem
language on a PC with a Pentium IV 3.2 G
microprocessor and 512 MB RAM. We generate query
sets to evaluate the performance of the approach over a
range of data characteristics. The parameters used in
the generation of query sets include N, M, S, and F.
Parameter N is defined as the number of data items
that are delivered on broadcasting channel. Every data
item on the broadcast channels is accessed by one or
more queries. Parameter M is defined as the total
number of query patterns that access parts of the
broadcast data set. Selectivity S is the maximum
degree of a query’s QDS size over the size of
broadcast data set in terms of percentage. For example
3% selectivity means a query accesses at most 3% of
the N data items. We consider three different kinds of
distribution of query’s occurrence frequency: uniform
distribution, normal distribution, and exponential
distribution. We assume the size of each data item to
be equal and set all data items’ size as one unit length.
The number of broadcast channels set to 2.

In the first experiment, we change the n
ta items N with 200 queries and 5% selectivity. The

three kinds of distribution of query’s occurrence
frequency (uniform distribution, normal distribution,
and exponential distribution) are considered. The
results are shown in Figure 11. We measure the
performance improvement i.e., DC (Data Collision)
reduction of the proposed method against sequential
(with respect to data ID) schedules on which no effort
of data placement is put. Figure 11 shows the

percentages of improvement s of ours over
sequential. The improvement for the sequential is
calculated by

%100×
−

sequential
Ourssequential

.

As show in this result, the performance of the
proposed approach has little dependency on the
number of data items. The performance
improvement increases to more than 30%--40%.
The results show the effectiveness of our approach.

0

5

10

15

20

25

30

35

40

45

50

100 150 200 250 300

of Data Items (N)

of
 D
at
a
C
ol
li
si
on
s
Im
pr
ov
em
en
t
(%
)

Uniform
Distribution

Normal
Distribution

Exponential
Distribution

Fig. 11: The improvement with change in the
number of data items N. Three kind of distribution
of query’s occurrence frequency, uniform
distribution, normal distribution, and exponential
distribution, are considered.

In the second experiment, we change the number
of query patterns M with 300 data items and 5%
selectivity. The results are shown in the figure 12.
As shown in this result, the performance
improvement decreases with large number of
queries.

WSEAS TRANSACTIONS on COMMUNICATIONS Jing-Feng Lin, Guang-Ming Wu, Derchian Tsaih

ISSN: 1109-2742 180 Issue 1, Volume 8, January 2009

20

25

30

35

40

45

50

100 150 200 250 300

of Data Items (M)

of
 D
at
a
C
ol
li
si
on
s
Im
pr
ov
em
en
t
(%
)

Uniform
Distribution

Normal
Distribution

Exponential
Distribution

Fig. 12: The improvement ratio with various numbers
of query patterns M. Three kind of distribution of
query’s occurrence frequency, uniform distribution,
normal distribution, and exponential distribution, are
considered.

In the third experiment, we change selectivity
values S with 100 query patterns and 300 data items.
The results are shown in the figure 13. As shown in
these results, our proposed method on the average
reduces the number of DCs occurred by 40.74%,
44.88%, and 46.00%) regarding the uniform
distribution, normal distribution, and exponential
distribution, respectively.

30

35

40

45

50

55

2 3 4 5 6

Selectivity (S)

of
 D
at
a
C
ol
li
si
on
s

Im
pr
ov
em
en
t
(%
)

Uniform
Distribution

Normal
Distribution

Exponential
Distribution

Fig. 13: The improvement ratio with various
selectivity S. Three kind of distribution of query’s
occurrence frequency, uniform distribution, normal
distribution, and exponential distribution, are
considered.

In above experiments we can observe that the cases

of exponential distribution of freq(qi) provide better

performance than the others. The results show that
more highly skewed query distributions achieve
better performance with our method.

5. Conclusions
In this paper, we have formulated a new data
broadcast collision problem in multi-channel
mobile environment, and we have presented a
two-stage algorithm for the problem. The
partitioning algorithm decides which data items can
be scheduled into the same channel and reduces the
data collision probability. Following the partition
method, we proposed a flow based matching
method to decide which two data items in different
channels will be broadcasted in the same time slot.
The matching algorithm can minimize the number
of data collisions. From our simulation results, we
have shown that our approach is efficiently.

References:
[1] S. Acharya, R. Alonso, M. Franklin, and S.

Zdonik, ``Broadcast Disk: Data Management
for Asymmetric Communication
Environments,'' ACM SIGMOD Conference,
pp. 199--210, 1995.

[2] S. Acharya, M. Franklin, and S. Zdonik,
``Disseminating Updates on Broadcast Disks,''
Very Large Data Bases Conference, pp.
354--365, 1996.

[3] Y.I. Chang and W.H. Hsieh, ``An Efficient
Scheduling Method for Query-Set-based
Broadcasting in Mobile Environment,'' IEEE

International Conference on Distributed
Computing Systems Workshops, pp. 478--483,
2004.

[4] Y.I. Chang and C.N. Yang, ``A Complementary
Approach to Data Broadcasting in Mobile
Information Systems,'' Data and Knowledge
Engineering, Vol. 40, pp. 181--194, 2002.

WSEAS TRANSACTIONS on COMMUNICATIONS Jing-Feng Lin, Guang-Ming Wu, Derchian Tsaih

ISSN: 1109-2742 181 Issue 1, Volume 8, January 2009

[5] Ming-Syan Chen, Kun-Lung Wu, and Philip S.
Yu,” Optimizing Index Allocation for Sequential
Data Broadcasting in Wireless Mobile
Computing”, IEEE Transactions on Knowledge
and Data Engineering, vol. 15, no. 1, 2003.

[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,
Introduction to Algorithms, Second Edition, the
MIT Press, 2001, pp. 651--669.

[7] Yon Dohn Chung and Myoung Ho Kim, “An Index
Replication Scheme for Wireless Data
Broadcasting,” Journal of Systems and Software,
vol. 51, no. 3, 2000.

[8] Y.D. Chung and M.H. Kim, ``Effective Data
Placement for Wireless Broadcast,'' Distributed
and Parallel Databases, no. 9, pp. 133--150,
2001.

[9] S. Hameed and N. Vaidya, ”Efficient Algorithm
for Scheduling Data Broadcast,” Wireless
Networks, Vol. 5, No. 3, pp. 183--193, 1999.

[10] T. Imielinski, S. Viswanathan and B. R, Badrinath,
“Energy Efficient Indexing on Air,” SiGMOD
ACM, 1994.

[11] T. Imielinski, S. Viswanathan, and B.R. Badrinath,
``Data on air: Organization and access,'' IEEE

Transactions on Knowledge and Data
Engineering, vol. 9, no. 3, pp. 353--372, 1997.

[12] W. Kernighan, and S. Lin, ``An Efficient
Heuristic Procedure for Partitioning Graph,'' Bell
System Technical Journal, vol. 49, pp. 291--307,
1970.

[13] Kam-Yiu Lam, Edward Chan, and Joe
Chun-Hung Yuen, “Approaches for Broadcasting
Temporal Data in Mobile Computing Systems,”
The Journal of Systems and Software 51, 2000.

[14] V.C.S. Lee, K. W. Lam, S. Wu and E. Chan,
``Broadcasting Consistent Data in Mobile
Computing Environments,'' Proc. Of the 7th IEEE
Symp. On Real-Time Technology and Application,
pp. 123--124, 2001.

[15] G. Lee and S.C. Lo, ``Broadcast Data
Allocation for Efficient Access of Multiple
Data Items in Mobile Environments,''

ACM/Baltzer Mobile Networks and
Applications, vol. 8, pp. 365--375, 2003.

[16] Guanling Lee, Shou-Chih Lo, and Arbee L.P.
Chen, “Data Allocation on Wireless Broadcast
Channels for Efficient Query Processing,”
IEEE Transactions on Computers, vol. 51, no.
10, 2002.

[17] Shou-Chih Lo and Arbee L.P. Chen, “Optimal
Index and Data Allocation in Multiple
Broadcast Channels,” Data Engineering, 2000.

[18] W. C. Peng and M. S. Chen, ``Dynamic
Generation of data Broadcasting Programs for
a Broadcast Disk Array in a Mobile
Computing Environment,'' Proc. of the 9th

International Conference on Information
Knowledge Management, pp. 38--45, 2000.

[19] K. Prabhakara, K.A. Hua, and J.H. Oh,
``Multi-Level Multi-Channel Air Cache
Designs for Broadcasting in a Mobile
Environment,'' Proc. of the 16th International
Conference Data Engineering, pp. 167--186,
Feb.-Mar., 2000.

[20] C. Su, L. Tassiulas, and V.J. Tsotras,
``Broadcast Scheduling for Information
Distribution,'' Wireless Networks, vol. 5, no. 2,
pp. 137--147, 1998.

[21] Kian-Lee Tan and Jeffrey Xu Yu, “Generating
Broadcast Programs That Support Range
Queries,” IEEE Transactions on Knowledge
and Data Engineering, 1998.

[22] D.A. Tran, K.A. Hua, and K. Prabhakaran,
“On the Efficient Use of Multiple Physical
Channel Air Cache,” Proc. IEEE Wireless
Communication and Network Conference, pp
17--21, 2002.

[23] Guang-Ming Wu, “An Efficient Data

WSEAS TRANSACTIONS on COMMUNICATIONS Jing-Feng Lin, Guang-Ming Wu, Derchian Tsaih

ISSN: 1109-2742 182 Issue 1, Volume 8, January 2009

Placement for Query-Set-Based Broadcasting in
Mobile Environment,” Computer
Communications, 2007.

[24] Nitin H. Vaidya and Sohail Hameed, “Scheduling
Data Broadcasting in Asymmetric
Communication Environments,” Kluwer
Academic Publishers, vol. 5, 1999.

[25] Wai Gen Yee, Student Member, IEEE, Shamkant
B. Navathe, Edward Omiecinski, and Christopher
Jermaine, “Efficient Data Allocation over
Multiple Channels at Broadcast Servers,” IEEE
Transactions on Computers, vol. 51, 2002.

WSEAS TRANSACTIONS on COMMUNICATIONS Jing-Feng Lin, Guang-Ming Wu, Derchian Tsaih

ISSN: 1109-2742 183 Issue 1, Volume 8, January 2009

