
Efficient Key Management Scheme for Hierarchical Access Control

 in Mobile Agents

Hsing-Bai Chen
a
, Chun-Wei Liao

b
, and Chang-Kuo Yeh

c*

a
Department of Information Engineering and Computer Science, Feng Chia University

No. 100 Wenhwa Rd., Seatwen, Taichung, Taiwan 407, R.O.C.
b
Department of Information Management, Hsiuping Institute of Technology

No.11, Gongye Rd., Dali City, Taichung County, Taiwan 41280, R.O.C.
c*
Department of Information Management, National Tai-Chung Institute of Technology

129 Sanmin Rd., Sec. 3, Taichung, Taiwan 404, R.O.C.
c*
E-mail: yehlin@ntit.edu.tw

Abstract: - Mobile agents have great potential for increasing the realized benefit for a variety of e-commerce

applications. However, enabling the mobile agent to safely travel over the open and uncontrollable Internet is

necessary to protect the contents of a mobile agent. Recently, many agent structures that manage the keys

needed to provide the access control mechanism for mobile agents have been developed. Nevertheless, these

structures require either large amount of mobile codes or heavy computation loads. In this paper, a lightweight

key management method for hierarchical access control in mobile agent environments is proposed. This

method not only provides access control for mobile agents but also reduces the agent size as well as cuts down

the computations cost.

Key-Words: - Access control, Information security, Key management, Mobile agent

1 Introduction
The evolution of computer systems have gradually

changed from centralized monolithic computing

devices into client-server environments. Even

though the large scale proliferation of networking

bandwidth is presented, complex forms of

distributed computing may cause network jams and

limitations. Traffic jams on the Internet have lead to

serious performance failures for applications that

required tight interactions between web software

systems around the world [10]. The evolutionary

path of allowing complete mobility of cooperating

applications among supporting hosts to form a

large-scale and loosely-coupled distributed system

is a promising solution for overcoming this problem.

The catalysts for this evolutionary path are mobile

agents.

A mobile agent is a software program, often

exhibiting learning capabilities, sent by agent’s

owner to visit a series of hosts or act on the behalf

of other software programs. It acts on the owner’s

authority to work on these hosts autonomously

toward a goal, to meet and to interact with other

agents over the Internet via some communication

paths. After that, the mobile agent returns the results

to the agent owner. The scholars [11,15] summarize

the capabilities of mobile agents as follow: Mobile

agents should (1) be able to perform one or more

goals automatically; (2) be capable of cloning itself

and propagate accordingly; (3) collaborate and

communicate with other software agents adequately;

(4) be robust and competent; and (5) have some

evolution states to record the computation status.

Based on these capabilities, many researchers newly

focused on mobile agent technologies and used

them for modifying human business activities. For

instance, in the e-commerce, mobile agents can be

used for increasing the realized benefit for both

bidders and sellers participating in on-line auctions.

Agents can be generated by bidders to find

designated items, to set up auctions, and to cast

appropriate bids [7,8].

Because the environment where mobile agents

work is open, when a mobile agent is executed, it

comes into contact with a variety of hosts; some of

which may be trustworthy, but others may be

potentially malicious. Furthermore, the openness of

the Internet environment is also a major concern

about security because the information carried by

the mobile agent is likely to be exposed. Therefore,

security mechanism that manages the keys, needed

to provide access control to the content of a mobile

agent, is necessary to be deployed [4,6,9].

WSEAS TRANSACTIONS on COMMUNICATIONS Hsing-Bai Chena, Chun-Wei Liaob, Chang-Kuo Yehc

ISSN: 1109-2742 1106 Issue 10, Volume 8, October 2009

In 1998, Volker and Mehrdad [17] presented a

tree-based key management structure to secure

mobile agent against unauthorized accesses.

Nevertheless, this scheme requires a large agent size

and a heavy computation load due to its repetitious

storing of cryptographic keys and its numerous

costly public-key computations used to encrypt

these keys [2,12]. The result of this excessive

mobile code size is that it squeezes the bandwidth

out of network communications and prevents useful

activity from taking place, not to mention the heavy

computational burdens it has on the mobile hosts. In

2004, Lin et al. [12] proposed a hierarchical key

management scheme to eliminate the need of

repeatedly storing cryptographic keys on a mobile

agent. The difficulty of factoring problem [14] is

employed to protect the key against any

unauthorized use. However, the complicated

computation puts burdens on both the agent owner

and the visited host [2]. Recently, Chen et al. [2]

showed an efficient key management mechanism in

a hierarchy that employs lightweight operations

including hash function and exclusive-or instead of

time-consuming computations. Nevertheless, agent

size is not tiny when relationships in the hierarchy

are complicated and needed to be publicized, which

will be illustrated in Section 2. Accordingly, the

performance and mobile code size of all Volker and

Mehrdad’s [17], Lin et al.’s [12], and Chen et al.’s

[2] schemes are still not considerably satisfactory.

Because security, storage and computational

efficiency are all necessary precondition for

developing a mobile agent, in this paper, a scheme

is proposed taking all three aspects into account.

Besides security, the proposed scheme can balance

storage and computational efficiency to be a

candidate for efficiently managing keys and

controlling access in a hierarchy of mobile agents.

2 Related Works
Mobile agents roam among visited hosts and

interact with other agents over an insecure Internet.

The content of mobile agents may be modified and

exposed. From the security perspective, the integrity

and the confidentiality of mobile agents must be

provided. In this section, a brief overview of recent

schemes proposed by Volker-Mehrdad [17], Lin et

al. [12], and Chen et al. [2] and their drawbacks are

illustrated, respectively.

2.1 Volker and Mehrdad’s scheme

2.1.1 Review of Volker and Mehrdad’s scheme

Volker and Mehrdad [17] designed a tree-based

mobile agent structure to support authentication,

access control, and key management. Their structure

is divided into two branches. One of which is the

static branch that contains all of the unchangeable

data; data that remains the same during the lifetime

of the agent such as class codes, security policies,

etc. The other branch, the mutable branch, contains

data that can vary during the lifetime of the agent;

these data include the state of the agent and the

collected data.

To guarantee the integrity of this content against

any alteration and forgery, well-known signature

techniques are applied for sealing the contents

modified by the last visited host [3]. In order to keep

the confidential contents in both the static and

mutable branches secret, Volker and Mehrdad also

proposed an access control and key management

strategy. In this strategy, folders are created for each

visited host within the static/sctx/acl folder and the

mutable/sctx/acl folder, containing the

corresponding decryption keys authorized to access

the confidential static and mutable files,

respectively. Assume that public key infrastructure

is implemented. The contents of the folder are

encrypted with the corresponding host’s public key

to protect against disclosure. Only the specific host

that possesses the corresponding and unique private

key can obtain the content of its folder.

To give a clearer description, a simple example

which only shows the access control and key

management strategy for static branch of mobile

agents is illustrated in Fig. 1. Initially, assume that

the existence of four files in the “classes” folder:

agent.zip, retrieval.zip, rule.zip, and bid.zip is

generated by the agent owner in accordance with

his/her wish to participate in online auctions. The

retrieval.zip is responsible for retrieving auction

data from the HTML Web pages, parsing them to

extract specific data, and validating the data to

ensure the information retrieved is actually the data

of interest. The rule.zip is the strategy of the agent

owner’s auctioning. The bid.zip describes the

bidding for specific items. Except for agent.zip, all

other files are kept confidential and need to be

encrypted with the decryption keys K4, K5, and K6,

respectively. Note that the keys K4, K5, and K6 are

generated by the agent owner to be shared with the

corresponding auction sites. Furthermore, the

folders S1, S2, and S3 are set up in behalf of the hosts

eBay.com, Amazon.com, and Rakuten.com,

respectively. The host eBay.com holds K4, K5, and

K6 that signify the host’s ability to access the

WSEAS TRANSACTIONS on COMMUNICATIONS Hsing-Bai Chena, Chun-Wei Liaob, Chang-Kuo Yehc

ISSN: 1109-2742 1107 Issue 10, Volume 8, October 2009

specific files retrieval.zip, rule.zip, and bid.zip. The

host Amazon.com has keys K4 and K5, which in turn,

allows it to decrypt the files retrieval.zip and

rule.zip. Similarly, Rakuten.com holds K5 and K6,

and thus it can access the files rule.zip and bid.zip.

With this access control and key management

strategy, the agent owner separately encrypts K4, K5,

and K6 stored in the folder static/sctx/acl/S1 with the

public key of the host eBay.com to grantee these

decryption keys against unauthorized obtainment.

Using this way, only the host eBay.com that

possesses the corresponding private key can

individually retrieve K4, K5, and K6. Similarly, K4

and K5 stored in the folders static/sctx/acl/S2 and K5

and K6 kept in the static/sctx/acl/S3 are encrypted

with the public keys of Amazon.com and

Rakuten.com, respectively. Only the authorized

hosts Amazon.com and Rakuten.com can retrieve

the decryption keys (K4, K5) and (K5, K6),

respectively.

2.1.2 The performance analysis

Volker and Mehrdad’s scheme provides the

necessary security services for mobile agent

systems. However, the drawbacks which make their

scheme quite inefficient are illustrated as follows:

(1) Large agent size. The same decryption key is

encrypted and stored in different folders with

repetition. According to the above example, K4

is duplicated in S1 and S2; K5 is duplicated in S1,

S2, and S3; K6 is duplicated in S2 and S3. This

redundancy increases the size of the mobile

agent.

(2) More public-key computation. Repeated

decryption keys imply that the agent owner

must use more public-key computation to

encrypt these decryption keys. According to the

above example, the mobile agent has to

separately encrypt K4 stored in the folders S1

and S2 two times; K5 stored in the folders S1, S2,

and S3 three times; K6 stored in the folders S2

and S3 two times. From the perspective of

computational cost required in the host,

eBay.com has to decrypt three times to gain K4,

K5, and K6; Amazon.com need two decryptions

of public-key cryptosystems to gain K4 and K5;

Rakuten.com requires two decryptions of

public-key cryptosystems to gain K5 and K6. As

the computational cost of public-key

cryptosystems is relatively costly [14], Volker

and Mehrdad’s scheme requires more

computational resources to repeatedly

en/decrypt the decryption keys.

Fig. 1. An example of Volker and Mehrdad’s strategy

K4 K5 K6 K4 K5 K5 K6

S1 S2 S3

acl

sctx classes

static
eBay.com
Amazon.co
Rakuten.com

encrypted for server:

rule.zip

bid.zip

retrieval.zip

agent.zip

Encrypted with K4

Encrypted with K5

Encrypted with K6

WSEAS TRANSACTIONS on COMMUNICATIONS Hsing-Bai Chena, Chun-Wei Liaob, Chang-Kuo Yehc

ISSN: 1109-2742 1108 Issue 10, Volume 8, October 2009

2.2 Lin et al.’s scheme

2.2.1 Review of Lin et al.’s scheme

Lin et al. proposed a scheme following the concept

of hierarchy structure [1]. Fig. 2 illustrates Lin et

al.’s scheme with the same example as shown in

Volker and Mehrdad’s. In the hierarchy, the

decryption keys housed in leaf nodes can be derived

the superkey located within its parent’s node.

Initially, assume that the agent owner chooses

two large primes, p and q, and publishes n=p×q.
Then, the agent owner chooses a secure K and

assigns the public primes e1, e2, and e3 to the

confidential files retrieval.zip, rule.zip, and bid.zip,

where e1, e2, and e3 are relatively prime to (p−1)
(q−1) and numbers in the range of [2, n−1]. To
generate cryptographic keys, the agent owner

computes decryption keys nKDK id

i mod= , 1≤ i

≤3, for these three auction sites eBay.com,

Amozon.com, and Rakuten.com. In Fig. 2, the agent

owner respectively calculates the superkeys

nKSK
ddd
mod321

1

××= , nKSK
dd
mod21

2

×= , and

nKSK
dd
mod32

3

×= , where)(mod1 nde ii φ≡× for all

internal nodes N1, N2, and N3. To achieve the

confidentiality, the superkeys SK1, SK2, and SK3 are

encrypted with public keys corresponding to

eBay.com, Amazon.com, and Rakuten.com,

respectively. In addition, the signature technique is

employed to keep the integrity of the mobile agent.

From the key derivation perspective, the host

eBay.com obtains SK1 with its own private key and

then can use it to derive nSKDK
ee
mod32

11

×
= ,

nSKDK
ee
mod31

12

×
= , and nSKDK

ee
mod32

13

×
= ,

respectively. Similarly, the host Amazon.com holds

SK2, which can be used to derive nSKDK
e
mod2

21 =

and nSKDK
e
mod1

22 = . The host Rakuten.com

gains SK3 and then derives nSKDK
e
mod3

32 = and

nSKDK
e
mod2

33 = .

2.2.2 The performance analysis

Clearly, the number of public-key computation in

the Lin et al.’s scheme is fewer than Volker and

Mehrdad’s scheme. However, exponential

operations are required both during key generation

and derivation [2]. These exponential operations are

generally too costly and may also become a

performance bottleneck for the agent owners and the

visited hosts when serving several of these agents at

the same time.

Fig. 2. An example of Lin et al.’s scheme in a hierarchy

e1, DK1 e2, DK2 e3, DK3

SK1

acl

sctx classes

static eBay.com
Amazon.com
Rakuten.com

encrypted for server:

rule.zip

bid.zip

retrieval.zip

agent.zip

Encrypted with DK1

Encrypted with DK2

Encrypted with DK3

N1

SK2 N3 N2

N6 N5 N4

SK3

hierarchical

 structure

WSEAS TRANSACTIONS on COMMUNICATIONS Hsing-Bai Chena, Chun-Wei Liaob, Chang-Kuo Yehc

ISSN: 1109-2742 1109 Issue 10, Volume 8, October 2009

2.3 Chen et al.’s scheme

2.3.1 Review of Chen et al.’s scheme

Chen et al.’s scheme also follows the concept of

hierarchy structure [1]. Fig. 3 illustrates an example

the same as both Volker and Mehrdad’s and Lin et

al.’s schemes.
Firstly, the agent owner computes the following

relationships between each pair of parent and

descendant nodes:

R12 = h(K1 || N1 || N2) ⊕ K2,

R13 = h(K1 || N1 || N3) ⊕ K3,

R24 = h(K2 || N2 || N4) ⊕ K4,

R25 = h(K2 || N2 || N5) ⊕ K5,

R35 = h(K3 || N3 || N5) ⊕ K5, and

R36 = h(K3 || N3 || N6) ⊕ K6,

where K1, K2, K3, K4, K5, and K6 are the

cryptographic key of nodes N2, N3, N4, N5, and N6,

respectively, h(.) is a collision-free one-way hash

function [13], and “||” denotes string concatenation.

After that, the agent owner makes R12, R13, R24, R25,

R35, and R36 public. For the confidentiality, K1, K2,

and K3 are encrypted with the public keys of

eBay.com, Amazon.com, and Rakuten.com,

respectively. For the integrity, the agent is sealed

with the agent owner’s private key.

To derive the decryption key, the host

Amazon.com uses K2 to derive K4 = h(K2 || N2 || N4)

⊕ R24 and K5 = h(K2 || N2 || N5) ⊕ R25. Similarly, the

host Rakuten.com and eBay.com can use K3 and K1

to recover (K5, K6) and (K4, K5, K6) with the related

relationships, respectively.

2.2.2 The performance analysis

In Chen et al.’s scheme, it is clear to see that only

lightweight operations consisting of one-way hash

functions and bit-wise XOR operators are employed

instead of complicated exponential computations.

Furthermore, the number of public-key

computations is fewer than Volker and Mehrdad’s

scheme. Hence, it is more efficient than Volker and

Mehrdad’s and Lin et al.’s schemes.

However, publicizing the relationship between

each pair of parent and descendant nodes is required

for recovery of descendant’s key. It implies that the

agent size is huge when each descendant has

numbers of parents in the worst case. Therefore,

compared with Volker and Mehrdad’s and Lin et

al.’s schemes, the agent size in Chen et al.’s is not

economic.

Fig. 3. An example of Chen et al.’s scheme in a hierarchy

K4 K5 K6

K1

acl

sctx classes

static eBay.com
Amazon.com
Rakuten.com

encrypted for server:

rule.zip

bid.zip

retrieval.zip

agent.zip

Encrypted with K4

Encrypted with K5

Encrypted with K6

N1

K2 N3 N2

N6 N5 N4

K3

hierarchical

 structure

R12

R24
R35

R36 R25

R13

WSEAS TRANSACTIONS on COMMUNICATIONS Hsing-Bai Chena, Chun-Wei Liaob, Chang-Kuo Yehc

ISSN: 1109-2742 1110 Issue 10, Volume 8, October 2009

3 Proposed Scheme
To take security, storage, and computational

efficiency into account, we propose a secure and

efficient key management for hierarchical access

control scheme in mobile agents. Our scheme adopts

the concept of the hierarchy structure [1] and the

partially ordered hierarchical structure shown in Fig.

4. The root node in the hierarchy, named as N1,

represents the agent owner who possesses the

superkey, K1, used to derive all the cryptographic

keys. The internal nodes represent the host who

holds the corresponding keys used to derive the

cryptographic keys that are located in its descendent

nodes. The leaf nodes represent the decryption keys

used to en/decrypt the confidential files within the

mobile agent. When a key can be used to derive a

valid decryption, this has an existence of

relationship between each pair of these two nodes.

This relationship is useful for key derivation in our

scheme.

To demonstrate our scheme, firstly, key

generation and derivation of the proposed

hierarchical key management are present. Next, the

e-auction scenario is adopted to clearly illustrate the

proposed key management and access control as the

same example as shown in Volker and Mehrdad’s

scheme [17], Lin et al.’s [12], and Chen et al.’s [2].

3.1 Key generation
The agent owner carries out the following steps to

generate the cryptographic keys.

Step 1) Depending on the access policy that decides

which file of the mobile agent the visited hosts

can access, construct the hierarchy, Fig. 4 for

example. The construction method uses a top-

down approach wherein each node Ni, 1 ≤ i ≤ n,
corresponds to one of the host in the hierarchy. If

the key stored in Ni can derive one stored in Nj

and i < j ≤ n, this indicates that Nj is a descendent

node of Ni and a relationship between Ni and Nj

exists.

Step 2) Choose 256-bit Ki for each node or leaf as its

assigned key, 1 ≤ i ≤ n, respectively.
Step 3) Compute all the related parameter Rij of Ni

and Nj in the hierarchy according to the following

rules:

If the number of Nj’s parent node Ni < 1, then

Rij does not exist.

If the number of Nj’s parent node Ni ≥ 2, then

∏
∈

→ +−==
ψi

jiijij pKNKhxxRR mod))||(()(, (1)

where R→j(x) is a polynomial in finite field Fp[x]

and ψ denotes the group of Nj’s parents.

Else, Rij = h(Ki || Ni || Nj) ⊕ Kj, (2)

where “⊕” is a bit-wise exclusive-or operation.

Step 4) Store the all node identities and relationships

into a public space of the mobile agent.

Finally, in order to guarantee the integrity of

confidential files, well-known signature techniques

[14] are applied.

3.2 Key derivation
If a host corresponds to a node Ni then that host can

derive the entire cryptographic keys of its

descendent nodes; i.e., all Nj such that i < j ≤ n. The
host Ni will be able to decrypt the authorized files

when it derives the decryption keys of the leaf nodes

Nj with its assigned key Ki.

With Rij constructed in Eq. (1) or Eq. (2), the

host Ni derives the cryptographic key of its

descendent node Nj according to the following rules:

If the number of Nj’s parent node ≥ 2, then

))||((iijj NKhxRK == →
. (3)

If the number of Nj’s parent node = 1, then

ijjiij RNNKhK ⊕=)||||(. (4)

Fig. 4. The hierarchical key management structure

Nodes

Leafs

K1

K5 K6 K4

N2 K2 K3

N1

N3

N4 N5 N6

WSEAS TRANSACTIONS on COMMUNICATIONS Hsing-Bai Chena, Chun-Wei Liaob, Chang-Kuo Yehc

ISSN: 1109-2742 1111 Issue 10, Volume 8, October 2009

3.3 A simple example of the proposed

scheme for mobile agents
To give a clearer description, only the key

management of hierarchical access control strategy

for static branch of mobile agents is shown as Fig. 5.

Following our scheme will generate cryptographic

key for each visited host. This key is only shared

between the agent owner and the specific visited

host. This implies that this key can guarantee the

confidentiality of not only static branch but also

mutable branch.

Fig. 5 illustrates a hierarchical structure of access

control and key management. Consider the example

in Fig. 5. The host eBay.com has the right to access

the confidential files retrieval.zip, rule.zip, and

bid.zip. The host Amazon.com is authorized to

access the confidential files: retrieval.zip and

rule.zip. The host Rakuten.com can access the

confidential files: rule.zip and bid.zip. To prepare

for this scenario, the agent owner chooses K1, K2,

K3, K4, K5, and K6, respectively. Afterwards, the

agent owner uses them to compute the relationship

following Eqs. (1) and (2) as

R12 = h(K1 || N1 || N2) ⊕ K2,

R13 = h(K1 || N1 || N3) ⊕ K3,

R24 = h(K2 || N2 || N4) ⊕ K4,

R25= R35=

5 2 2 3 3 5() ((||))((||)) mod ,R x x h K N x h K N K p→ = − − +

 R36 = h(K3 || N3 || N6) ⊕ K6,

where K2, K3, K4, K5, and K6 are the cryptographic

key of nodes N2, N3, N4, N5, and N6, respectively.

Because R25 and R35 are the same (equal to R→5(x)),

the relationship is only presented as R→5(x). After

that, the agent owner makes the five relationships

including R12, R13, R24, R→5(x), and R36 public. In

addition, K1, K2, and K3 are encrypted with the

public keys of eBay.com, Amazon.com, and

Ratuten.com, respectively.

The host Amazon.com can obtain K2 with its

own private key. To derive the decryption key,

according to Eqs. (4) and (3), Amazon.com uses K2

to derive K4 = h(K2 || N2 || N4) ⊕ R24 and

.

mod))||()||((0

mod))||()||())(||()||((

))||((

5

53322

533222222

225

K

pKNKhNKh

pKNKhNKhNKhNKh

NKhxR

=

+−=

+−−=

=→

The host Rakuten.com uses its own private key

to obtain K3 and then utilizes it derive K5 = R→5(x =

h(K3 || N3)) and K6 = h(K3 || N3 || N6) ⊕ R36. The host

eBay.com uses K1 to derive K2 = h(K1 || N1 || N2) ⊕

R12 and K3 = h(K1 || N1 || N3) ⊕ R13. After that,

eBay.com can use the derived K2 and K3 to compute

K4, K5, and K6 in the same Amazon.com and

Rakuten.com.

In such a way, the key management mechanism

can make eBay.com, Amazon.com, and

Rakuten.com access the authorized files to achieve

the access control.

Fig. 5. An example of the proposed scheme

K4 K5 K6

K1

acl

sctx classes

static eBay.com
Amazon.com
Rakuten.com

encrypted for server:

rule.zip

bid.zip

retrieval.zip

agent.zip

Encrypted with K4

Encrypted with K5

Encrypted with K6

N1

K2 N3 N2

N6 N5 N4

K3

hierarchical

 structure

R12

R24

R36 R→5

R13

WSEAS TRANSACTIONS on COMMUNICATIONS Hsing-Bai Chena, Chun-Wei Liaob, Chang-Kuo Yehc

ISSN: 1109-2742 1112 Issue 10, Volume 8, October 2009

4 Security and Performance Analysis
This section examines the security and the

performance included storage and computational

efficiency of the proposed scheme.

4.1 Security analysis
From the perspective of security, confidentialities of

both the assigned keys and the protected files are

necessary to assure that only the authorized host can

recover the assigned key to obtain the specific filed.

Furthermore, the integrity of the mobile agent is

required for guarantee of the expected purpose.

Proposition 1. Confidentiality of assigned keys:

Except the specific host, no one can eavesdrop in

the key assigned to the host by the agent owner.

Proof.
In the proposed scheme, the assigned key used to

allow the specific host to derive all authorized

decryption keys is encrypted with this host’s public

key. In a public key cryptosystem [14], it is

infeasible to obtain the message encrypted with a

public key without the corresponding private key.

Hence, no one can obtain the assigned key except

the specific host. The confidentiality of assigned key

is done.

Proposition 2. Confidentiality of mobile agents:

Except the specific host, no one can derive the

decryption key to obtain the corresponding content

within the mobile agent.

Proof.
When an adversary obtains the public relationship

Rij, he/she wants to obtain the confidential file of the

mobile agent, it must gain knowledge of the

corresponding decryption key. This means that the

adversary has to derive decryption key from Eq. (1)

or Eq. (2). To do that, the adversary has to prepare

the corresponding key assigned to a specific host.

Based on Proposition 1, the adversary cannot

perform Eq. (3) or Eq. (4) to derive a valid

decryption key. Even though the adversary tries to

guess the assigned key, it is still not feasible to

compute the same hashed value due to random

oracle of one-way hash functions [16]. This implies

that it is difficult to guess a valid assigned key.

Therefore, the adversary has no idea to obtain

decryption key to attain unauthorized access to the

confidential file of the mobile agent.

Proposition 3. Integrity of the mobile agent: Any

alteration on the mobile agent will be detected by

any verifier.

Proof.

In the proposed scheme, the mobile agent is sealed

with a digital signature by the agent owner. Due to

the capability of digital signature techniques [14,16],

any alteration on the signature will cause the

signature verification with the agent owner’s public

key to get a failure. Hence, any verifier can check

whether the integrity of the mobile agent is satisfied.

Accordingly, our hierarchical key management

mechanism is secure enough to achieve the access

control facility required by the mobile agents.

4.2 Performance analysis
In this subsection, the performance including the

storage space required and the computational load

demanded is evaluated. Assume that an agent will

visit v hosts and carry u confidential files, let Fi be

the number of files which the visited host i can

access, where 1 ≤ i ≤ v. In addition, assume that ω is
the total number of nodes involved in the hierarchy

and γ→j is the total relationship number of the

descendent node j, 1 ≤ j < ω. In other words, γ→j is

the number of the descendent node j’s parents. Let α
is the number of the descendent node which has

more than one parent, 0 ≤ α < ω.

Proposition 4. Reasonable agent size: The agent

size does not follow the number of descendant

node’s parents in a hierarchical access control.

Proof.
It is obvious to see that the number of relationship

depends on the number of the descendent node.

Compared with Chen et al’s scheme [2], the size of

a mobile agent does not depend on the number of

the descendent node’s parents in our scheme. From

the Fig. 3 and Fig. 5, the number of relationships

required to be publicized are respectively 6 and 5 in

Chen et al’s scheme and our scheme. Hence, the

size of a mobile agent can be reduced.

In the comparisons among the related works and

our scheme, Volker and Mehrdad’s scheme [17]

requires to store ∑
≤≤ vi

iF
1

 decryption keys. In the Lin et

al.’s, Chen et al’s, and ours schemes, only v keys

need to be stored. It implies that the size of a mobile

agent in Volker and Mehrdad’s scheme is the largest.

The comparison is illustrated in Table 1.

In addition, in our scheme, the relationship

between a specific descendent node and its only one

parent is generated through a one-way hash

function. The hash function, such as SHA-1 and

SHA-256 [13], can take an arbitrary-length input

and return an output of fixed length, such as 256-bit

WSEAS TRANSACTIONS on COMMUNICATIONS Hsing-Bai Chena, Chun-Wei Liaob, Chang-Kuo Yehc

ISSN: 1109-2742 1113 Issue 10, Volume 8, October 2009

in SHA-256. Furthermore, the length of relationship

indicated to a specific descendent node is 512-bit, in

which p is 512-bit string. As the assumption, in the

schemes Lin et al. [12] and Volker and Mehrdad

[17], the length of every cryptographic key is 512-

bit. At least 512v bits and 512∑
≤≤ vi

iF
1

 bits are required

in Lin et al.’s scheme and in Volker and Mehrdad’s,

respectively. Compared with them, our scheme and

Chen et al.’s scheme [2] only require 256v bits to

store the keys, which indicate a smaller size of the

stored cryptographic keys in the our scheme and

Chen et al.’s scheme.

Compared with our scheme and Chen et al.’s

scheme, the length of relationship stored in the

mobile agent is the same such as 256-bit if the

descendent node has only one parent. When the

number of a descendant’s parent node is n, 2 ≤ n,
the size of a mobile agent will increase 512 bits and

256*n bits in our scheme and Chen et al.’s,

respectively. Except the case that the number of a

descendant’s parent node is 1 or 2, it is clear to

know that the size of mobile agent is smaller in our

scheme. That is, the size stored in the mobile agent

is (256(ω−1+α)) ≤ 256∑ → jγ in the Chen et al.’s

scheme in Table 1.

However, the total space for storing publicized

relationships in our scheme and Chen et al.’s

scheme may exceed that of Lin et al.’s when

disorderliness appears in the hierarchy. For

cryptographic key Kj of the node Nj whose degree is

equal to one, we recommend adopting this equation

Kj = h(SKi || Ni || Nj) to eliminate the relationship.

Careful formulation of the access policy can

eliminate the agent size effectively.

Proposition 5. Tiny computation load: For speed up

of the visited host’s dealing with the mobile agent,

any time-consuming computations must be avoided.

Proof.
Since each host’s folder static/sctx/acl must be kept

secret, it has to be encrypted using RSA with the

corresponding public key [14,16]. Assume that each

en/decryption procedure requires one exponential

operation in a cryptosystem. Let Texp be the

computation cost of an exponential operation and

Thash be the computation cost of a hash function.

Volker and Mehrdad’s scheme requires (2 ∑
≤≤ vi

iF
1

)

Texp to en/decrypt the keys. But, our scheme, Lin et

al.’s scheme, and Chen et al.’s scheme require only

(2v)Texp to en/decrypt the keys. Hence, the

performance of our scheme, Lin et al.’s scheme, and

Chen et al.’s for en/decrypting the keys is higher

than Volker and Mehrdad’s.

From the key generation and key derivation, it is

clear to see that only light-weight one-way hashing

and XOR operations are required. The logical XOR

operations only require an extremely lightweight

computation cost, and thus can be safely omitted

without upsetting the overall performance

evaluation. Furthermore, when the number of a

descendant’s parent node is n, 2 ≤ n, a modular
polynomial is demanded in our scheme. From the

perspective of key generation/derivation, our

scheme requires (ω−1−γ→j+∑ → jγ)Thash to construct

the relationship between all keys and (ω−1)Thash to

derive all the used cryptographic keys. However,

Lin et al.’s scheme requires one exponential

operation to generate/derive the keys from its

superkey thus it needs (∑
≤≤ vi

iF
1

)Texp to generate or

derive all the used keys.

Table 1. Performance comparisons among our scheme and related works

 Our scheme Chen et al.’s [2] Lin et al.’s [12]
Volker and

Mehrdad’s [17]

Size for storing keys 256v 256v 512v
512∑

≤≤ vi

iF
1

Size of publicized

relationship
256(ω−1+α) 256∑ → jγ 512(u+1) 0

Computation cost for

en/decrypting keys
(2v) Texp (2v) Texp (2v) Texp

(2∑
≤≤ vi

iF
1

) Texp

Computation cost for

generating/deriving all keys
(2ω−2−γ→j+∑ → jγ) Thash (2∑ → jγ) Thash

(2∑
≤≤ vi

iF
1

) Texp 0

WSEAS TRANSACTIONS on COMMUNICATIONS Hsing-Bai Chena, Chun-Wei Liaob, Chang-Kuo Yehc

ISSN: 1109-2742 1114 Issue 10, Volume 8, October 2009

To measure the performance, we cite Crypt++

5.2.1 Benchmarks [5] for cryptographic algorithms

which are coded in C++, compiled with Microsoft

Visual C++ .NET 2003, ran on a Pentium 4 2.1 GHz

processor under Windows XP SP 1. According to

[5], the speed benchmark of hash function SHA-256

is about 44 MB/s. This implies that 1-byte

computation of SHA-256 spends 22.7 ns. Processing

256-bit output of SHA-256 only requires 5.8 µs. On
other hand, the time spent on computing a 1024-bit

exponential computation, such as RSA 1024, is 0.18

ms for encryption and 4.77 ms for decryption.

Accordingly, the computation cost of SHA-256 is

31 times less than RSA 1024 encryption and 822

times less than RSA 1024 decryption, respectively.

In other words, a total of 172×103 SHA-256
operations can be performed within one second and

likewise 5.56×103 and 210 operations can be
performed for RSA 1024 encryption and decryption,

respectively. The Lin et al.’s scheme is RSA-based.

Obviously, our scheme and Chen et al.’s scheme are

more efficient.

In sum, our scheme generally has a smaller agent

size and higher computation performance. Even

though the computation performance may not good

enough than Chen et al.’s scheme, our scheme has

more economical agent size. Hence, our scheme can

be treated as the balance to both the mobile agent

size and the computation performance. We believe

that the proposed scheme will be more acceptable

than other related works and encouraging for a

practical implementation in the real environment.

5 Conclusions
In this paper, we have designed an efficient key

management scheme to provide hierarchical access

control mechanism for the agent system. Besides

security, the proposed scheme uses only lightweight

hash functions and exclusive-or operations and

polynomials instead of time-consuming modular

exponential computations to generate/derive keys.

Moreover, the agent size is effectively reduced

regardless of the number of descendent node’s

parents. Among the related works, the proposed

scheme can balance storage and computational

efficiency and is a candidate for efficiently

managing keys and controlling access in a hierarchy

of mobile agents. Hence, the computational

bottleneck of visited hosts and the traffic jam will

disappear in the proposed scheme, which is

encouraging for a practical implementation in the

real environment.

References:

[1] Akl SG, Taylor PD, Cryptographic Solution to

A Problem of Access Control in A Hierarchy,

ACM Transactions on Computer Systems, Vol.

1, No. 3, 1983, pp. 239−248.
[2] Chen HB, Lee WB, Liao CW, Huang CH,

Efficient Hierarchical Access Control and Key

Management for Mobile Agents, Proceedings of

the First International Workshop on Privacy

and Security in Agent-based Collaborative

Environments, Hakodate, Japan, 2006, pp.

120−127.
[3] Chess D, Grosof B, Harrison C, Levine D,

Parris C, Tsudik G, Itinerant Agents for Mobile

Computing, IEEE Personal Communications,

Vol. 2, No. 5, 1995, pp. 34−49.
[4] Claessens J, Preneel B, Vandewalle J, (How)

can Mobile Agents Do Secure Electronic

Transactions on Untrusted Hosts? A Survey of

the Security Issues and the Current Solutions,

ACM Transactions on Internet Technology, Vol.

3, No. 1, 2003, pp. 28−48.
[5] Dai W, Crypto++TM library 5.2.1, 2008,

http://www.cryptopp.com.

[6] Greenberg MS, Byington JC, Harper DG,

Mobile Agents and Security, IEEE

Communications Magazine, Vol. 36, No. 7,

1998, pp. 76−85.
[7] Gregg DG, Walczak S, Auction Advisor: An

Agent-Based Online Auction Decision Support

System, Decision Support Systems, Vol. 41, No.

2, 2006, pp. 449−471.
[8] Jailani N, Yatim NFM, Yahya Y, Patel A,

Othman M, Secure and Auditable Agent-Based

E-Marketplace Framework for Mobile Users,

Computer Standards & Interfaces, Vol. 30, No.

4, 2008, pp. 237−252.
[9] Jansen W, Karygiannis T, NIST Special

Publication 800-19–Mobile Agent Security,

Technical Report, National Institute of

Standards and Technology, 1999.

[10] Karmouch A, Mobile Software Agents for

Telecommunications, IEEE Communications

Magazine, Vol. 36, No. 7, 1998, pp. 24−25.
[11] Lange DB, Oshima M, Programming and

Deploying Java Mobile Agents with Aglets.

Addison-Wesley Press, Massachusetts, USA,

1998.

[12] Lin IC, Ou HH, Hwang MS, Efficient Access

Control and Key Management Schemes for

Mobile Agents, Computer Standards &

Interfaces, Vol. 26, No. 5, 2004, pp. 423−433.

WSEAS TRANSACTIONS on COMMUNICATIONS Hsing-Bai Chena, Chun-Wei Liaob, Chang-Kuo Yehc

ISSN: 1109-2742 1115 Issue 10, Volume 8, October 2009

[13] NIST, FIPS PUBS 180-2, Secure Hash

Standard, 2002,

http://csrc.nist.gov/publications/fips/fips180-

2/fips180-2.pdf.

[14] Schneier B, Applied Cryptography. 2nd edition.

Wiley, New York, 1996.

[15] Shih TK, Mobile Agent Evolution Computing,

Information Sciences, Vol. 137, No. 1−4, 2001,

pp. 53−73.
[16] Stallings W, Cryptography and Network

Security: Principles and Practices, 3rd Edition,

Pearson Education, Inc., New Jersey, 2003.

[17] Volker R, Mehrdad JS, Access Control and

Key Management for Mobile Agents,

Computers & Graphics, Vol. 22, No. 4, 1998,

pp. 457−467.

WSEAS TRANSACTIONS on COMMUNICATIONS Hsing-Bai Chena, Chun-Wei Liaob, Chang-Kuo Yehc

ISSN: 1109-2742 1116 Issue 10, Volume 8, October 2009

