
QoS Management in Experimental Environment

Drago Žagar, Goran Martinović and Slavko Rupčić

Faculty of Electrical Engineering
University of Osijek

Kneza Trpimira 2B, Osijek
Croatia

drago.zagar@etfos.hr, goran.martinovic@etfos.hr, slavko.rupcic@etfos.hr

Abstract -- New applications usually combine interactivity and multimedia resulting in a huge diversity of possible
services. The negotiated quality of service should be result of application/user requirements and network possibilities.
The most important topic in QoS provision is how to efficiently manage network resources. This paper describes an
experimental implementation of the QoS network management for serving the users by some defined QoS
characteristics. The applications developed for negotiation and maintenance of the desired quality of service between
the server and clients are analyzed. The main classes of developed applications as well as the connections between
applications´ objects are described. Finally, some results describing functionality of QoS management in experimental
environment are shown.

Key-Words: - Quality of Service; �egotiation; �etwork resources; IP �etworks; QoS Management; QoS Parameters

1 Introduction
By combining an interactivity and multimedia we could
obtain a huge diversity of possible services, from
extended functionality of current applications to new
virtual reality applications. The recent researches in
digital coding and signal compression, broadband
communications and digital signal processing translate
the interactive multimedia services from vision to
reality, and therefore claim new demands on the network
infrastructure [6][8][9].
The specification of QoS parameters` values determines
the type of service. We could distinguish at least three
different types of services: guaranteed, predictive and
best-effort [4].
The guaranteed services enable QoS guarantees because
of their specific (limited) QoS parameter values, either in
deterministic or in statistic representation. Deterministic
limitations could be given by some single value (e.g.
mean value, negotiated value, start value, target
value…), a pair of values (e.g. minimum and mean
value, the lowest and target quality…) and the interval of
values (e.g. a lower border is the minimum and a higher
border is the maximum value). The guaranteed services
could also deal with statistical QoS parameter borders, as
e.g. statistical border of the error level.
The predictive (historical) services are based on the prior
network behavior, and therefore the QoS parameters will
be estimated by previous service values.
The best-effort service is based on a partial or none
guarantees. The QoS parameter values are generally not
necessary but could be defined by some deterministic or

statistic border values. Most of the currently used
network protocols offers best-effort services [11][13].
In order to regularly operate, the services for
multimedia-networked applications use resources.
Resources of special interest are resources that could be
shared between the applications, the system and the
network, as e.g. CPU cycles or network bandwidth. It is
important to emphasize that all resources that could be
shared by many processes in every layer of the
Multimedia Communication System (MCS) could be a
part of three main system resources: bandwidth of the
communication channel, buffer space and CPU power
[10][12].
QoS parameters specify the amount of resources
dedicated to services, whereas queueing disciplines
manage the shared resources of MCS (e.g. QoS latency
parameter defines service transmission between the
source and the destination by respecting the packet
distribution (bandwidth assignation), queueing (buffers
assignation) and scheduling (CPU cycles
assignation))[2][3][7].
The defined relation between QoS and the resources is
built in resource management in terms of different
mappings between QoS parameters and their related
resources. The description of possible realization of
resource management and resource sharing shows the
relation between the QoS and the resources. Here we
should emphasize that the resource management and
resource sharing are based on the interaction between
clients and their resource managers. The client requires
resource assignation by specifying QoS (this implicitly
includes mapping between QoS specifications and the
requested resource). The resource manager verifies the

WSEAS TRANSACTIONS on COMMUNICATIONS Drago Zagar, Goran Martinovic, Slavko Rupcic

ISSN: 1109-2742 1012 Issue 9, Volume 8, September 2009

use of resources and decides to accept or not the request
for resource reservation. All active reservations states are
saved, and sharing of every single resource is therefore
guaranteed [4][13][14].
This paper describes an experimental implementation of
the QoS network manager for serving the user with some
guaranteed services on demand. Characteristics of the
used media will be analyzed, and developed applications
for negotiation and ensuring the desired quality of
service between the server and clients will be described.
The main classes of developed applications as well as
the connections between applications´ objects will be
described.

2 QOS �EGOTIATIO�
If we presume that the user has defined requests for
multimedia application, these requests should be
distributed to all resource manager entities involved in
system. The QoS parameter distribution requires two
services: negotiation about QoS parameters and QoS
parameter adaptation (if different system components
have different QoS specifications).
If we want to characterize the real negotiation, we should
define the negotiation sides, and how they do
negotiation. Every QoS negotiation has two sides. We
will analyze the peer-to-peer negotiation, which could be
negotiation between the application and the system, or
negotiation between the user and the application.
 The aim of the negotiation process is to determinate
common QoS parameter values between the service user
and the service provider. Furthermore, we assume the
QoS negotiation where the QoS parameter values are
determined by deterministic borders (minimum and
mean value). We could distinguish several types of
negotiation between the service user (caller, callee) and
the service provider [3]:

• Bilateral Peer-to-Peer negotiation

This type of negotiation is carried between two service
users (peers), and the service provider is disabled to
modify the QoS value proposed by the user.

• Bilateral Layer-to-Layer negotiation

This type of negotiation is performed exclusively
between the service user and the service provider and
covers two possibilities:
1. Between the local service user and the service

provider;
2. Between the main computer-sender and the

network, e.g. when the sender wants to transmit the
multimedia flows.
• Unilateral negotiation

By this negotiation, the service provider as well as the
called user is not allowed to change the QoS proposed
by the caller. This type of negotiation is reduced to “take
it or leave it”. Furthermore, this negotiation also enables

that receiver could accept the proposed QoS although it
cannot accept all QoS parameters and so it can
participate in communication only with lower QoS.

• Hybrid negotiation

The broadcast/multicast communication implies that
every receiving host could have different possibilities
than the sending host (conference session). Therefore,
the QoS parameter values could be negotiated between
the sender host and the network, by using bilateral layer-
to-layer negotiation and simple negotiation between the
network and the receiving host.

• Triangular negotiation for information

exchange

By this type of negotiation the user caller introduces the
initial request by mean values of the QoS parameters.
These values could be changed by the service
provider/callee across the data path by
indication/reaction before setting the final value in
confirm message. At the end of the negotiation process
both sides have the same value of QoS parameters.

• Triangular negotiation for bounded target

This type of negotiation is very similar to the former,
with distinction that the QoS parameter values are set by
two values: the desired QoS value (mean value) and the
lowest acceptable value (minimum value). The target is
negotiated about the desired QoS value, i.e. the service
provider is not allowed to change the lowest acceptable
QoS value (if this value cannot be assured, the
connection will be rejected), but it could change the
desired QoS value. The callee will decide about the final
QoS value, and that value will be reported to the caller.

• Triangular negotiation for agreed value

In this case QoS parameters are specified through the
minimum requested value and the border value. The aim
of this type of negotiation is to agree the QoS value,
which is the lowest required value of the QoS parameter.
The service provider could change the lowest required
QoS value toward the border value. The final decision is
on the callee and informs the caller by
answer/acknowledgement.
Only few protocols for call establishment have built in
negotiation mechanisms. ST-II (Internet Stream
Protocol, Version 2) enables an end-to-end guaranteed
service through the Internet. It uses triangular
negotiation for bounded values for parameters
concerning a throughput. The parameters concerning
latency are not negotiated.
The other protocols, as e.g. RCAP (Real-time Channel
Administration Protocol), RSVP and some others use
triangular negotiation for different values of QoS
parameters. QoS broker is an end-to-end protocol that
establishes the connection using bilateral negotiation in
the application layer between service users, unilateral
negotiation with the operating system and triangular
negotiation in the transport subsystem layer.

WSEAS TRANSACTIONS on COMMUNICATIONS Drago Zagar, Goran Martinovic, Slavko Rupcic

ISSN: 1109-2742 1013 Issue 9, Volume 8, September 2009

3 A� EXPERIME�ATAL QOS

�ETWORK
As an experimental QoS network for serving the users
by services on demand we have used the three computers
connected in the Intranet network (Figure 1.). To enable
the effects of different classes of services by different
load in the network we have used Bandwidth Controller
Version 0.15 beta. Two computers were installed as
clients and the third one was installed as server. All
computers were driven by the Microsoft Windows OS.

Fig. 1. Experimental QoS network

The traffic on a single computer has been monitored by
Network Traffic Analyzer, by which we have monitored
the bandwidth, packet size distribution and used
protocols. To analyze the packets we have used Ethereal
– Network Protocol Analyzer ver. 0.10 and MaaTec
Network Analyzer ver. 1.4. On the server we have
created a Microsoft® Access database used for user
authorization, definition of predefined QoS values and
some other data about users. The database includes two
tables: services and users. Table services consist of type,
label and service priority, while table users consist of
users’ data (user name, label of activity, the best allowed
QoS and the maximum allowed bandwidth dedicated to
the user). During the traffic monitoring all clients were
connected to the server, and reproduced the streaming
video data using Windows Media Player ver. 8.0. The
used video stream had the following characteristics:

Video Stream: MPEG
File Size: 681,537,790 Bytes
Duration: 73:59.953
Buffer Time: 1.5 seconds
Max Bit Rate: 1596.4 Kbps
Avg Bit Rate: 1228.0 Kbps

Stream: 0
MIME type: video/vnd.rn-mp1s
Max Stream Bit Rate: 1450.8 Kbps
Avg Stream Bit Rate: 1116.0 Kbps

Stream: 1
MIME type: audio/vnd.rn-mp1s
Max Stream Bit Rate: 145.6 Kbps
Avg Stream Bit Rate: 112.0 Kbps

The Quality of Service between clients and the server
has defined by QoSServer and QoSClient applications.
The applications QoSServer and QoSClient have been
developed for Microsoft Windows OS. For
communications between QoSServer and QoSClient we
have used the control messages (Chapter V.). For the
control of parameters set on the server we have used
Traffic Control. To set up the negotiated QoS we have
used Traffic Control Interface (TCI). To initiate the TCI
we had to call the TcRegisterClient function that
connects our application to TCI. Afterwards we had to
set the filter for the flow. In applications that use
Resource ReserVation Protocol, RSVP signalization
calls the basic control in local TC (Traffic Control)
components by using TCI [5].
The key element of TC is setting the parameters for flow
specification (flowspec) and after that TC treats all
packets from one group as one single flow. TC uses the
information from flowspec to create the flow with
defined QoS parameters, and than creates filters for
directing the selected packet into that flow (known as
filterspec) (Figure 2.).
TC API is a programming interface to flow control
components that regulate network traffic on the server. It
enables aggregation of traffic from many sources (on the
same server) in one TC flow (e.g. all traffic for
destination address 1.2.3.0 could be placed in the same
flow, regardless of the sending and receiving ports.

Fig. 2. Components of Traffic Control

 Intranet

Client 1 Client 2

Server

The application enabling QoS

Traffic control

(Traffic.dll)

Packet clasifier

QoS packet
scheduler

TCP/IP
layer

Network
interface

WSEAS TRANSACTIONS on COMMUNICATIONS Drago Zagar, Goran Martinovic, Slavko Rupcic

ISSN: 1109-2742 1014 Issue 9, Volume 8, September 2009

4 QoSSERVER

QoS Server application negotiates with users about the
desired QoS and sets the negotiated quality of service
between the server and the user. This application checks
the data about the user in the database and compares the
requested QoS with maximum allowed QoS for the
specified user. After that QoSServer negotiates with the
user and sets negotiated QoS between the client and the
server (Fig. 3.).[1]

4.1 Description of classes and methods

CDBConn Class

This class is used for connection to and communication
with the database.
CDBConn() and CDBConn(CString sDS#, CString

sUID, CString sPWD) – are class constructors by which
the application connects to database. The second

constructor for parameters takes the name of the ODBC
connection for database (which is defined in
QoSServer.ini file), as well as the username and the
password.
CDBUserListDlg Class

This class is used for adding and deleting users in
database and the overview of users in database.
CQoSServerDlg Class

The class CQoSServerDlg is used to connect the server
and the client, to manage the messages coming from the
client, to check the authorization of the client and to
negotiate between clients and the server.
Ctcmon Class

This class is used to set the negotiated QoS between the
server and the client.
mysocket Class

This class uses Windows socket API for connecting the
server and clients.

Fig. 3. Relations between objects in QoSServer

Fig. 4. Relations between objects in QoSClient

CTcmon

CClientMsg

CODBCColumnInfo

CDBConn

CTCPMessage
Data

Base

CQoSServerDlg

CDBUserListDlg CTCPMessageHandler

mysocket

CListCtrlEx

CListCtrl

Receiving data from QoSClient
and Sending data to QoSClient

CUsersList

Inheritance
Communication between objects

Receiving data from QoSServer
and Sending data to QoSServer

CQoSClientDlg

CClientMsg CTCPMessageHandler CSendFlowDlg

mysocket

CRecvFlowDlg

CAdvancedParamsDlg

CTCPMessage

Inheritance
Communication between objects

Receiving data from QoSServer
and Sending data to QoSServer

CQoSClientDlg

CClientMsg CTCPMessageHandler CSendFlowDlg

mysocket

CRecvFlowDlg

CAdvancedParamsDlg

CTCPMessage

WSEAS TRANSACTIONS on COMMUNICATIONS Drago Zagar, Goran Martinovic, Slavko Rupcic

ISSN: 1109-2742 1015 Issue 9, Volume 8, September 2009

5 QoSCLIE�T

The QoSClient application enables the user to define the
required QoS and the type of negotiation with the server.
This application supports the following negotiations:
unilateral, bilateral layer-to-layer, triangular for
information exchange and triangular for bounded values.
The required QoS could be defined for incoming and
outcoming flow.
Because of that QoSClient application sends a request
for QoS to the server that after the negotiation sets the
negotiated flow, the incoming flow (Receiving

Flowspec) in QoSClient application actually represents
the outcoming flow on the server, and the outcoming
flow (Sending Flowspec) in QoSClient application
represents the incoming flow on the server. Besides the
basic QoS parameters there could also be defined the
additional parameters for every single flow (Figure 4.,
Figure 5.).
The basic QoS parameters that could be defined are:
Token Rate specifies the data rate by which the data
could be transmitted per flow. If the server cannot
support the required rate, the application will wait or
discard the flow. It is therefore very important that the
application rationally assesses its traffic needs (e.g. in
video applications Token Rate is usually set at the mean
data rate). If the Token Rate is set at -1, there will be no
effect on the data rate.

Fig. 5. The basic QoSClient interface

Token Bucket Size specifies the maximum credit size
the flow could use. In video applications the Token

Bucket Size will probably be the maximum mean frame
size. In applications with a constant data rate Token

Bucket Size should enable only small changes.
Peak Bandwidth specifies the upper border of allowed
temporarily based transmission per flow.

Fig. 6. Specification of additional parameters

Latency specifies the maximum acceptable delay
between the sender and receivers.
Delay Variation specifies the difference between
maximum and minimum packet delay. The applications
could use this parameter to determine the receiving
buffer size.
Service Type precises the service level negotiated for
the flow. It could be one of the following service types:
Figure 6. Specification of additional parameters
BESTEFFORT – The defined parameters are used as
QoS constraints. The flow control tries to obtain the
requested QoS level but does not guarantee anything.
CO�TROLLEDLOAD – It ensures the end-to-end
QoS that tightly approximates the quality given by the
best effort service in low load in the network. The
applications that use the CONTROLLEDLOAD service
could presume that the network will deliver a very high
percentage of sent packets, and that latency by a very
high percentage of packets will not exceed the minimum
latency of any successfully delivered packet.
GUARA�TEED – Guarantees that the packet will be
received within some guaranteed delivery time and that
it will not be discarded because of queuing. This service
is dedicated to applications that need hard guarantees.
�ETWORK_CO�TROL – This type of service is used
only for control packets’ transmission (as RSVP
signaling messages). This type of service is of highest
priority.
QUALITATIVE – This service is used when the
application requires a service that is better than
BESTEFFORT, but cannot quantify its requirements.
Max Sdu Size Defines the maximum allowed or used
packet size in the traffic of a specific flow.

WSEAS TRANSACTIONS on COMMUNICATIONS Drago Zagar, Goran Martinovic, Slavko Rupcic

ISSN: 1109-2742 1016 Issue 9, Volume 8, September 2009

Minimum Policed Size Defines the minimum packet
size for which the minimum required QoS will be
enabled.
The additional parameter (Figure 6.) that could be
defined for the required QoS are:
Overide DSCP (DCLASS) The object of traffic control
QOS_DS_CLASS enables the standard values of DSCP
(DiffServ Code Point) for IP packets associated to a
specific flow. A DSCP value is assigned according to the
service type. The range of allowed values is from 0x00
to 0x3F.
Overide default shaper mode QoS object,
QOS_SHAPING_RATE, defines the shaping
characteristics that will be used to the specific flow.
SHAPE - TokenRate must be determined. The packets
that are not acknowledged will be saved in the shaper till
acknowledgement.
DISCARD - TokenRate must be determinate. The
packets that are not acknowledged will be discarded.
BORROW – the flow receives the resources remained
after all packets of higher priority have been served. If
the TokenRate is defined, the packets could be
unacknowledged and their priority will be degraded
below best-effort.
BORROW_PLUS – is very similar to BORROW mode,
but no packets will be labeled as unacknowledged.
Overide Layer2 (TCLASS) The traffic control object,
QOS_TRAFFIC_CLASS, is used for changing the
standard priority values assigned to packets in the
specific flow. The priority is normally assigned
according to the service type.
To enable the packets to determine their priority in layer
2 headers (as e.g. 802.1p header) it is necessary to enable
the change of priority. The priority values could be
between 0 and 7.
Shape Traffic to a lower rate than the token rate QOS
object, QOS_SD_MODE, defines characteristics of the
traffic control–packet shaper. By using this object the
TokenRate could be limited to a lower value than
defined in basic QoS parameters.

5.1 Description of classes and methods

CadvancedParmsDlg Class
CAdvancedParmsDlg class is used for definition of
additional QoS parameters.
CqoSClientDlg Class

CQoSClientDlg uses for connection and communication
between the server and the client, management of
messages coming from the server, collection and sending
of the required QoS parameters to the server, definition
of the negotiation mode and negotiation with the server
about the required QoS.
CrecvFlowDlg Class

CRecvFlowDlg is used for QoS parameters definition for
the incoming flow.
CsendFlowDlg Class

CSendFlowDlg is used for QoS parameters definition for
the outcoming flow.
Ctriang#egotDlg Class

CTriang�egotDlg is used for definition of the lowest
acceptable value of the QoS parameter for triangular
negotiation for the bounded target.
Mysocket Class

Mysocket uses Windows Sockets API for connecting the
server to the clients.

5.2 Messages for communication between QoSServer

and QoSClient

For creation and operation of messages (Figure 7., Table
1.) used for QoSServer and QoSClient communication
we use the following classes: CClientMessages,
CTCPMessage, CTCPMessageHandle.
Message flag – specifies the start of the message
TXID – if the message has many fragments, TXID
determines to which message the specific fragment
belongs. All fragments of a single message have the
sameTXID.

Fig. 7. General message format

Part indication – denotes to which application a
respective message belongs.
Reserved – this parameter is currently not in use.
Message type – denotes the message.
Optional parameter code – denotes message parameters.
Optional parameter length – the length of message
parameters.
Optional parameter data – the parameters’ message
data.
End of optional parameters – the end of the message.

Message flag 0xbf

Message flag 0xbf

Message flag 0xbf

Message flag 0xbf

TXID lower byte BYTE value

TXID higher byte BYTE value

Part indication 0x01 = Client part

Reserved 0x00 (for future use)

Message type Message type code

Optional parameter code

Optional parameter code
(or end of optional parameters Optional parameter length Optional parameter length

Optional parameter data Described at 3

End of optional parameters 0x00

WSEAS TRANSACTIONS on COMMUNICATIONS Drago Zagar, Goran Martinovic, Slavko Rupcic

ISSN: 1109-2742 1017 Issue 9, Volume 8, September 2009

MESSAGE MESSAGE PARAMETERS

LOGIN 0x01 USERNAME
LOGIN_RESP 0x04 RESULT

COMPUTERIP
SERVICETYPE_SEND
TOKENRATE_SEND
MINTOKENRATE_SEND
TOKENBUCKETSIZE_SEND
PEAKBANDWIDTH_SEND
LATENCY_SEND
DELAYVARIATION_SEND
MINPOLICEDSIZE_SEND
MAXSDUSIZE_SEND
SERVICETYPE_RECV
TOKENRATE_RECV
MINTOKENRATE_RECV
TOKENBUCKETSIZE_RECV
PEAKBANDWIDTH_RECV
LATENCY_RECV
DELAYVARIATION_RECV
MINPOLICEDSIZE_RECV
MAXSDUSIZE_RECV
DCLASS
MODE
SHAPINGRATE
TCLASS
MODFLOW
NEGOTATION
MINSERVTYPE_RECV

QOSREQ 0x02

MINSERVTYPE_SEND
COMPUTERIP
RESULT
REMAINBANDW

QOSREQ_RESP 0x03

MINSERVTYPE

Table 1. Codes of messages

5.3 Parameters’ codes (Table 2.)

CTCPMessage Class
CTCPMessage is used for message creation.
CTCPMessageHandler Class
CTCPMessageHandler is used for saving messages
coming to the buffer and for catching one by one
message from the buffer.
CClientMessages Class
CClientMessages is used for composing messages for
client/server communication and for extraction of
parameters from the message.

6 EXPERIME�TAL RESULTS

6.1 The server
During traffic monitoring two client applications have
been connected on the server. Both clients played the
video stream from the server. One of the applications
had set Guaranteed class of service (Client 1), and the
second had set Best Effort class of service (Client 2).

PARAMETER TYPE

GLOBAL

PARAM.

TYPE

PARAM.

TYPE

CODE

LE�GTH

EOP BYTE 0x00 1

USERNAME ASCII 0x01 -

SERVICETYPE_SEND DWORD 0x02 4

SERVICETYPE_RECV DWORD 0x03 4

TOKENRATE_SEND DWORD 0x04 4

TOKENRATE_RECV DWORD 0x05 4

TOKENBUCKETSIZE_SEND DWORD 0x06 4

TOKENBUCKETSIZE_RECV DWORD 0x07 4

PEAKBANDWIDTH_SEND DWORD 0x08 4

PEAKBANDWIDTH_RECV DWORD 0x09 4

MINPOLICEDSIZE_SEND DWORD 0x0a 4

MINPOLICEDSIZE_RECV DWORD 0x0b 4

MAXSDUSIZE_SEND DWORD 0x0c 4

MAXSDUSIZE_RECV DWORD 0x0d 4

RESULT BYTE 0x0e 1

REMAINBANDW DWORD 0x0f 4

COMPUTERIP ASCII 0x10 -

LATENCY_SEND DWORD 0x11 4

LATENCY_RECV DWORD 0x12 4

DELAYVARIATION_SEND DWORD 0x13 4

DELAYVARIATION_RECV DWORD 0x14 4

DCLASS DWORD 0x15 4

MODE DWORD 0x16 4

SHAPINGRATE DWORD 0x17 4

TCLASS DWORD 0x18 4

MODFLOW BYTE 0x19 1

NEGOTATION BYTE 0x1a 1

MINTOKENRATE_RECV DWORD 0x1b 4

MINTOKENRATE_SEND DWORD 0x1c 4

MINSERVTYPE_RECV DWORD 0x1d 4

MINSERVTYPE_SEND DWORD 0x1e 4

MINSERVTYPE DWORD 0x1f 4

Table 2. The Types of parameters

If the quality of service is not defined, all users use the
necessary bandwidth (if available) for the best possible
data transmission. The server behaves as if all connected
flows had defined Best-effort service. Figure 8. and
Figure 9. show that the engaged resources (bandwidth)
on the server are larger than when the QoS parameters
for the clients are set. This difference is a consequence
of Client 1 having bandwidth set on 80.000 Bytes/sec,
using Guaranteed service, while Client 2 has bandwidth
set on 160.000 Bytes/sec, using Best-effort service.
Figure 9 shows that the engaged bandwidth is about
240.000 Bytes/sec, and in some moments it suddenly
raises or falls.

WSEAS TRANSACTIONS on COMMUNICATIONS Drago Zagar, Goran Martinovic, Slavko Rupcic

ISSN: 1109-2742 1018 Issue 9, Volume 8, September 2009

Fig. 8. Bandwidth on the server –QoS not set up

Fig. 9. Bandwidth on the server –QoS set up

Fig. 10. Packets’ size distribution – QoS not set up

Fig. 11. Packets’ size distribution – QoS set up

These changes are a consequence of different types of
services defined on clients. E.g. the client with the Best-
effort service in some moments uses a larger amount of
bandwidth if necessary and if available on the server.
By comparing Figures 10. and 11. we can conclude that
the number of larger packets (> 1024 bytes) is
significantly decreased, and the number of smaller
packets is increased when the QoS is set.

6.2 QoS parameters for Client 1
Fig.9. shows QoS parameters defined for Client 1. If the
QoS is not defined Client 1 partially uses the bandwidth
greater than 350.000 Bytes/sec. Figure 9. shows that by
the defined quality of service the used bandwidth never
exceeds 80.000 Bytes/sec, which is the defined
bandwidth value for Client 1 (Guaranteed class).

Fig 12. Flow parameters for Client 1

Fig.13. Bandwidth on Client 1 – QoS not set up

6.3 QoS parameters for Client 2
For Client 2 the defined type of service was Best-effort,
which uses defined parameters as directions for quality
of service but does not guarantee anything. When the
QoS is not defined, the data are transferred through the

Bandwidth (Bytes/sec)

0

50000

100000

150000

200000

250000

300000

350000

9:
38
:2
9

9:
39
:0
4

9:
39
:3
9

9:
40
:1
4

9:
40
:4
9

9:
41
:2
4

9:
41
:5
9

9:
42
:3
4

9:
43
:0
9

9:
43
:4
4

9:
44
:1
9

9:
44
:5
4

9:
45
:2
9

9:
46
:0
4

9:
46
:3
9

9:
47
:1
4

9:
47
:4
9

9:
48
:2
4

9:
48
:5
9

9:
49
:3
4

9:
50
:0
9

9:
50
:4
4

9:
51
:1
9

9:
51
:5
4

9:
52
:2
9

9:
53
:0
4

9:
53
:3
9

9:
54
:1
4

9:
54
:4
9

B
y
te
s
/s
e
c

 t

Bandwidth (Bytes/sec)

0

50000

100000

150000

200000

250000

300000

11
:2
7:
12

11
:2
7:
42

11
:2
8:
12

11
:2
8:
42

11
:2
9:
13

11
:2
9:
43

11
:3
0:
12

11
:3
0:
44

11
:3
1:
14

11
:3
1:
42

11
:3
2:
12

11
:3
2:
43

11
:3
3:
13

11
:3
3:
42

11
:3
4:
13

11
:3
4:
43

11
:3
5:
12

11
:3
5:
42

11
:3
6:
12

11
:3
6:
43

11
:3
7:
12

11
:3
8:
10

11
:3
8:
40

11
:3
9:
10

11
:4
0:
13

11
:4
0:
43

11
:4
1:
13

11
:4
1:
44

11
:4
2:
13

11
:4
2:
43

B
y
te
s
/s
e
c

 t

48728

8915

936 50
3475

124352

0

20000

40000

60000

80000

100000

120000

140000

P
a
c
k
e
ts

Size Distribution

0-64 bytes

65-127 bytes

128-255 bytes

256-511 bytes

512-1023 bytes

> 1024 bytes

52225

7463

2510
161

2532

84310

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

P
a
c
k
e
ts

Size Distribution

0-64 bytes

65-127 bytes

128-255 bytes

256-511 bytes

512-1023 bytes

> 1024 bytes

Bandwidth (Bytes/sec)

0

50000

100000

150000

200000

250000

300000

350000

400000

9:
01
:1
0

9:
01
:5
0

9:
02
:3
0

9:
03
:1
0

9:
03
:5
0

9:
04
:3
0

9:
05
:1
0

9:
05
:5
0

9:
06
:2
8

9:
06
:4
8

9:
07
:0
8

9:
07
:2
8

9:
07
:4
8

9:
08
:0
8

9:
08
:2
8

9:
08
:4
8

9:
09
:0
8

9:
09
:2
8

9:
09
:4
8

9:
10
:0
8

9:
10
:2
8

9:
10
:4
8

9:
11
:0
8

9:
11
:2
8

9:
11
:4
8

9:
12
:0
8

9:
12
:2
8

9:
12
:4
8

9:
13
:0
8

9:
13
:2
8

B
y
te
s
/s
e
c

 t

WSEAS TRANSACTIONS on COMMUNICATIONS Drago Zagar, Goran Martinovic, Slavko Rupcic

ISSN: 1109-2742 1019 Issue 9, Volume 8, September 2009

network as best-effort service, but by low level network
load, as in our experimental network, the difference in
the used bandwidth is negligible.

Fig.14. Bandwidth on Client 1 – QoS set up

Fig.15. Flow parameters for Client 2

7 Conclusion

This paper deals with quality of service realization and
experimental implementation in the communication
network. Quality of service is of great interest when
transmitting sensitive real-time data, as e.g. video and
audio. If we could define and set the QoS parameters to
achieve a prerogative treatment of our data, then we
could achieve the adequate quality for our applications.
To achieve end-to-end quality of service it is very
important that all network components support the QoS
protocols.
Interactive multimedia services will be more and more
available, but outside necessary hardware requests, these
new systems will succeed only if a user interface will be
user-friendly (even the users without technical
knowledge), if the quality of service will be of
satisfactory level, if the contents will be versatile and if

the service price will be acceptable for majority. It is
obvious that the users will be satisfied with the
guaranteed quality of service, but this class of service
allocates maximum system resources and therefore it is
most expensive. If the users will not pay for the quality
of service, they will always ask for the best possible
QoS. That leads to service diminution and to well-known
best-effort service. By introducing the appropriate QoS
accounting the QoS negotiation will become the real
method for QoS achievement.
This paper introduces an experimental implementation
of the QoS system with some guaranteed services on
demand. Characteristics of the used audio and video
were analyzed, and applications for negotiation and
ensuring the desired quality of service between the
server and clients were developed. The main classes of
developed applications as well as the connections
between application objects were described.
Experimental measurements show that for some specific
data flow (video data) with the defined Guaranteed type
of service, parameters affecting the QoS will be
maintained within defined borders. The identical flow
having defined Best-effort service will receive an
acceptable service in the lightly loaded network and an
unacceptable service in the heavy loaded network.

References:

[1] Y. Bernet. „�etworking Quality of Service and

Windows® Operating Systems“,Sams, November
2001

[2] W. Fei, W. Wen-Dong, L. Yu-Hong, C. Shan-Zhi „A
New Architecture Integrating Web QoS and Network
QoS”, WSEAS Transactions On Computers Issue 5,

Volume 5, May 2006 ISS� 1109-2750

[3] B. Dekeris, L. Narbutaite. „IP QoS evaluation using
interoperability of differentiated and integrated
services“, WSEAS Transactions On Communications,

Issue 2, Volume 4, February 2005, ISS� 1109-2742

[4] Steinmetz R., K. Nahrstedt. „Multimedia:

Computing, Communications, and Applications“,
Prentice Hall, July 1995.

[5] Y. Bernet, J. Stewart, R. Yavatkar, D. Andersen, C.
Tai, B. Quinn, K. Lee. „Winsock Generic QOS

Mapping“ ,1998
[6] T. Zahariadis, C. Rosa, M. Pellegrinato, A. Bjork

Lund, G. Stassinopoulos. „Interactive Multimedia
Services to Residential Users“, Proceedings of

Second IEEE Symposium on Computers and

Communications, June 1997
[7] M. Hsieh, E. Hsiao-Kuang Wu. „Postgate: QoS-

aware Bandwidth Management for Last-mile ADSL
Broadband Services”, WSEAS Transactions On

Communications, Issue 5, Volume 5, May 2006
ISSN 1109-2742

Bandwidth (Bytes/sec)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

11
:2
9:
46

11
:3
0:
11

11
:3
0:
36

11
:3
1:
01

11
:3
1:
26

11
:3
1:
51

11
:3
2:
16

11
:3
2:
41

11
:3
3:
06

11
:3
3:
31

11
:3
3:
56

11
:3
4:
21

11
:3
4:
46

11
:3
5:
11

11
:3
5:
36

11
:3
6:
01

11
:3
6:
26

11
:3
6:
51

11
:3
7:
16

11
:3
7:
41

11
:3
8:
06

11
:3
8:
31

11
:3
8:
56

11
:3
9:
21

11
:3
9:
46

11
:4
0:
11

11
:4
0:
36

11
:4
1:
01

11
:4
1:
26

11
:4
1:
51

11
:4
2:
16

B
y
te
s
/s
e
c

 t

WSEAS TRANSACTIONS on COMMUNICATIONS Drago Zagar, Goran Martinovic, Slavko Rupcic

ISSN: 1109-2742 1020 Issue 9, Volume 8, September 2009

[8] M. Albrecht, M. Kőster, P. Martini, M. Frank.
„End-to-end QoS Management for Delay-sensitive
Scalable Multimedia Streams over DiffServ“,
Proceedings of the 25th Annual Conference on

Local Computer �etworks (LCN’00), Tampa, FL,
USA, November 2000

[9] A. Vogel, B. Kerhevé, G. v. Bochmann, J. Gecsei.
„Distributed Multimedia and QOS: A Survey“ 1995

[10] C. Ruey-Shun, T. Yung-Shun, K. C. Yeh, H. Y.
Chen. “Using Policy-based MPLS Management
Architecture to Improve QoS on IP Network”,
WSEAS Transactions On Computers, Issue 5,
Volume 7, 2008 ISSN: 1109-2750

[11] W.F.Poon, K.T. Lo, J. Feng. „First segment

partition for video-on-demand broadcasting

protocols“, 2002
[12] J. Levendovszky, C. Orosz. “Generalized Statistical

Bandwidth for Optimal Resource Management”,
WSEAS Transactions On Communications, Issue
10, Volume 5, October 2006, ISSN 1109-2742

[13]A.Iyer. „A Study of IP QoS“,
http://qos.ittc.ukans.edu/study/Mainpage.html

[14] G.Armitage. „Quality of Service in IP �etworks:

Foundations for a Multi-Service Internet“, Sams
2000.

WSEAS TRANSACTIONS on COMMUNICATIONS Drago Zagar, Goran Martinovic, Slavko Rupcic

ISSN: 1109-2742 1021 Issue 9, Volume 8, September 2009

