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Abstract:The realization of a digital phase-locked loop (DPLL) requires to choose a suitable phase detector and to
design an appropriate loop filter; these tasks are commonly nontrivial in most applications. In this paper, the phase
detector is examined, and a simple model is given to describe the characteristics of the timing function. The DPLL
system is then formulated as a state estimation problem; then an extended Kalman filter (EKF) is applied to realize
this DPLL for estimating the sampling phase. Therefore, the phase detector and loop filter are simply realized by
the EKF. The proposed DPLL has a simple structure and low realization complexity. Computer simulations for a
conventional DPLL system are given to compare with those for the proposed timing recovery system. Simulation
results indicate that the proposed realization can estimate the input phase rapidly without causing a large jittering.
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1 Introduction

Phase-locked loop (PLL) which constitutes a basic
building block for many synchronizers like carrier re-
covery or timing recovery is essential in most digital
communication systems[1, 2, 3]. Owing to the con-
tinued advancement in VLSI, all digital phase-locked
loop (DPLL) has been under extensive investigation
for several years [4, 5]. To realize a DPLL system,
however, the selection of a phase detector [6, 7, 8] is
crucial and the design of a loop filter is nontrivial.

A DPLL is, in general, a nonlinear system due to
the nonlinear behavior of the phase detector. Unfortu-
nately, few studies have been published on modeling a
phase detector. Hence, the loop filter design often ig-
nores the dynamics of the phase detector, causing the
performance of the DPLL less reliable. The conven-
tional loop filter design involves in selecting the order
of the loop filter and determining its loop gains such
that the performance of a DPLL satisfies fast phase
acquisition and small phase jitter. However, the two
characteristics of conventional DPLL systems with
fixed loop gains are contradictory since fast phase
acquisition requires wide loop bandwidth and small
phase jitter requires narrow loop bandwidth [9, 10].
Moreover, the determination of the loop gains is dif-

ficult using the transfer function approach, especially
when the order of the loop filter is high. A Kalman fil-
ter (KF) was realized as a loop filter to fulfill the above
characteristics together with time-variant loop gains
[11, 12, 13, 14], and these Kalman gains were shown
to be equivalent to the time-variant loop gains of a
DPLL. The performance of this DPLL bit synchro-
nizer is significantly improved by using these time-
variant loop gains in place of the fixed gains of a con-
ventional DPLL.

Although Driessen [11] used a KF to realize the
loop filter of a DPLL, this realization did not take the
phase detector into account and the timing informa-
tion was assumed to be known in advance. In this pa-
per, we use an extended Kalman filter (EKF) to realize
the loop filter as well as the phase detector of a DPLL,
and the loop gains are easily obtained via the extended
Kalman filtering techniques. The proposed system has
a simple structure and low realization complexity.

The rest of the paper is organized as follows. In
section II, the channel model is described and the
function of a DPLL is briefly reviewed. The phase de-
tector is also examined and modeled in section III. In
section IV, we formulate the DPLL system as a state
estimation problem and apply an EKF to realize this
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DPLL. In section V, phase domain models of both
a conventional DPLL and the proposed EKF-based
DPLL are described. In section VI, simulations are
shown to verify the proposed DPLL. Finally, conclu-
sions are given in section VII.

2 Channel Model and DPLL System
Overview

The baseband model of a synchronous data transmis-
sion system is shown in Fig. 1. The information se-
quence{ak} is independently chosen from the set of
{1,−1} with equal probability, and the data bitak is
transmitted through a transmission channel at time in-
stanttk = (k − εk)T , whereT is the bit interval and
εk is the input phase, normalized with respect toT .
Owing to the channel imperfections, an equalizer is
commonly included to eliminate the intersymbol in-
terference. Thus, the overall impulse responseh(t)
encompasses the transmission channel and an equal-
izer; the output of the equalizer can then be described
as:

r(t) =
∞∑

i=−∞
aih(t− (i− εi)T ) + n(t) (1)

wheren(t) is the filtered noise.
Assumeεk is slowly time-variant, and write the

sampling data of (1) at time instantt̂k = (k−ε̂k|k−1)T
as:

rk =
L∑

i=−L

ak−ihi((εk − ε̂k|k−1)T ) + nk (2)

where rk = r((k − ε̂k|k−1)T ), nk = n((k −
ε̂k|k−1)T ), and L is chosen such that the term,
hi((εk− ε̂k|k−1)T ) = h(iT +(εk− ε̂k|k−1)T ), is neg-
ligible for |i| > L. In a compact form, (2) is rewritten
as:

rk = aT
k h((εk − ε̂k|k−1)T ) + nk

= yk + nk (3)

where the data vectorak = [ak+L · · · ak · · · ak−L]T ,
the channel parameter vectorh((εk − ε̂k|k−1)T ) =
[h−L((εk − ε̂k|k−1)T ) · · ·h0((εk − ε̂k|k−1)T ) · · ·
hL((εk − ε̂k|k−1)T )]T , and the superscriptT denotes
the transpose. Thus,yk denotes the noise-free data of
rk. The DPLL processes the measurement datark to
adjust the sampling timêtk such that the timing error
ek = tk − t̂k = (εk − ε̂k|k−1)T is approaching zero,
whereε̂k|k−1 is the predicted estimate ofεk. Specifi-
cally, the information sequence{ak} is either known
as a prior in the training mode or replaced by its es-
timate {âk} in the tracking mode, and this class of
DPLLs is classified as the data-aided (DA) structure.

3 Mueller and Müller’s PD

A baseband model of a synchronous data transmission
system is shown in Fig. 2 where the input dataak may
be 1 or−1 with equal probability,h(t) denotes the
impulse response of the cascade of the transmission
channel and the equalizer, andn(t) is the measure-
ment noise. Denote the timing error asτk. Then the
received samplerk can be expressed by the following
equation,

rk = ak
T hk + nk (4)

where ak = [ak+L, . . . , ak, . . . , ak−L]T , hk =
[h(−LTs− τk), . . . , h(0Ts− τk), . . . , h(LTs− τk)]T ,
nk = n(kTs − τk), the superscriptT denotes the
transpose,Ts is the period of input data, andL is
normally chosen such thath(iTs) is negligible for
i > L.

A data-aided baudrate PD uses the received sam-
plerk and the input dataak for deriving the timing er-
ror. Mueller and M̈uller [7] presented a class of data-
aided PDs by showing that a timing function of the
timing error can be obtained as the linear combination
of the channel impulse response, i.e.,

ρ(τk) = uT hk (5)

where the coefficient vector is u =
[u−L, . . . , u0, . . . , uL]T . Mueller and M̈uller also
developed two particular classes of PD, type A
and type B, with each class corresponding with a
coefficient vector. These PDs have been useful in
most DPLL applications.

3.1 LMS-realized Mueller and Müller’s PD

This realization first uses the received samplerk and
the input dataak to estimate the channel impulse re-
sponse by the LMS algorithm; then the timing infor-
mation is derived via (5). Therefore, the timing func-
tion is obtained as follows:

ĥk = ĥk−1 + µ(rk − aT
k ĥk−1)ak (6)

ρ̂(τk) = utĥk (7)

whereµ is the step size.

3.2 PD Modeling

The timing function,ρ(τk), in general is a nonlin-
ear function of the timing errorτk. To design the
loop filter and analyze the DPLL performance,ρ(τk)
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Figure1: Model for the synchronous data transmission system
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Figure2: The baseband model of a synchronous data transmission system

is conventionally approximated by its linearization at
τk = 0, yielding

ρ(τk) ' Gpdτk (8)

whereGpd = ∂ρ(τk)
∂τk

|τk=0 is called the PD gain. This
PD model considers only the steady-state behavior but
neglects the inherent dynamic property. It is known
that the LMS adaptive algorithm is a dynamic system
and can be analyzed by its averaging behavior. Hence,
we apply this technique to develop a simple one-pole
model for expressing the PD dynamics. The one-pole
PD model,P (z), is given below

P (z) =
2µGpd

1− (1− 2µ)z−1 (9)

Note that the model pole depends only on the LMS
step size and the steady-state response is identical to
that of the conventional model.

The derivation of this model is explained as fol-
lows. For an FIR filter of2L+1 taps, as shown in [?],
the LMS has2L + 1 modes, with the time constant of
each mode equal to1 − 2µλi, i = 0, · · · , 2L, where
λi is the i−th eigenvalue of the correlation matrix
of input data. This correlation matrix,E[aka

T
k ],

is exactly an identity matrix because the inputak

is random, uncorrelated, and is 1 or -1 with equal
probability. Thus, all eigenvalues are equal to 1;
all modes have the same time constants of1 − 2µ.
Consequently, the PD dynamics can be characterized
by a single-pole model with its pole at1 − 2µ. Since
its steady-state response isGpd, the one-pole model
(13) is therefore derived.

3.3 Computer PD Simulation

The impulse response of the raised cosine channel is

of the form,h(t) =
sin πt

T
πt
T

cos βπt
T

1−( 2βt
T

)2
, whereβ ∈ [0, 1]

is theroll-off factor. The coefficient vector, as shown
in [7], can beu1 = 1, u−1 = −1, ui = 0 for
| i |6= 1. Let the timing errorτk be 0 for the first
500 samples,0.1 for 500 < k ≤ 2000, and0.05 for
2000 < k ≤ 3500. ChooseL = 4 such that 9 channel
parameters are estimated by the LMS algorithm. The
initial parameter values are zeros and the first 500
iterations are used to eliminate the effect of initial
settings. Fig. 3 depicts the measured timing function,
ρ̂(τk), the predicted output of the model, and the
settings forβ = 0.5, µ = 0.005, and SNR= 30dB.
Note that the settings are derived from the timing er-
ror τk and the channel response. The one-pole model
is thenGpd

0.01
1−0.99z−1 whereGpd = −1.5708. This
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simulation demonstratesthat the predicted outputs
follow the measured data closely. Hence the one-pole
model characterizes the LMS-realized PD dynamics
accurately. The small discrepancy between the model
output and the measured timing error arises because
of the measurement noise and the unmodeled PD
nonlinearity. Thus, as the SNR decreases, the ripple
increases. Note that although it is not illustrated here,
the roll-off parameterβ also influences the ripple.
The ripple increases asβ increases because the PD
gain,Gpd, will decrease.

4 Extended Kalman Filter for a
DPLL System

In this section, we formulate the DPLL system as a
state estimation problem, and an EKF is applied to re-
alize this DPLL for estimating the sampling phase due
to the nonlinear relationship between the input phase
and the noise-free datayk. To establish the model
[11], define the state vectorxk = [εk ε̇k]T , where
ε̇k is the timing offset; write the process equation as:

xk+1 = Φxk + vk (10)

where the state transition matrixΦ =

[
1 1
0 1

]
and

vk =

[
uk

wk

]
representing a zero mean phase jitter

uk and zero mean timing offset jitterwk. Since the
noise-free datayk of the measurement equation (3) is
a nonlinear function of the state vectorxk = [εk ε̇k]T ,
it is linearized about the predicted estimatex̂k|k−1 of
xk as:

yk = aT
k h(0) + Hk(xk − x̂k|k−1) (11)

The vectorh(0) contains the samples of the overall
channel impulse response without a phase error, i.e.,
h(0) = [h−L(0) · · ·h0(0) · · · hL(0)]T . Notably, the
transpose of the Jacobian matrix plays the role of the
measurement matrix in the regular Kalman filtering
and is given by

Hk =
[

∂yk
∂εk

∂yk
∂ε̇k

]
xk=x̂k|k−1

=
[

aT
k h′(0) 0

]
εk=ε̂k|k−1

(12)

where h′(0) = [h′−L((εk − ε̂k|k−1)T ) · · ·
h′0((εk − ε̂k|k−1)T ) · · ·h′L((εk − ε̂k|k−1)T )]Tεk=ε̂k|k−1

and h′i((εk − ε̂k|k−1)T ) =
∂hi((εk−ε̂k|k−1)T )

∂εk
for

i = −L, . . . , 0, . . . , L. Thus, the EKF for a DPLL
system can be described as:

{
xk+1 = Φxk + vk

zk = Hk(xk − x̂k|k−1) + nk
(13)

where the datazk = rk − aT
k h(0).

Furthermore, assumevk andnk are white Gaus-
sian noise with zero mean and their corvariance ma-
trices are given by

E[vkv
T
i ] =

{
Qk, i = k
0, i 6= k

(14)

and

E[nkni] =

{
Rk, i = k
0, i 6= k

(15)

whereE[.] denotes the expectation operation. De-
noteP k = E[(xk − x̂k)(xk − x̂k)T ] andP k+1|k =
E[(xk+1− x̂k+1|k)(xk+1− x̂k+1|k)T ]. The extended
Kalman filter algorithm for estimating the phase and
timing offset of a DPLL fork ≥ 0 is described in
the following with the initial state vector̂x0|−1 and
the corvarinace matrixP 0|−1 [15, 16]. The extended
Kalman gain equation is

Kk = P k|k−1H
T
k (HkP k|k−1H

T
k + Rk)−1(16)

The estimation equation is

x̂k = x̂k|k−1 + Kk(rk − aT
k h(0)) (17)

The error covariance equation is

P k = (I −KkHk)P k|k−1 (18)

The prediction equations are

x̂k+1|k = Φx̂k (19)

and

P k+1|k = ΦP kΦT + Qk (20)

The computational steps using equations (12) and
(16-20) are depicted in Fig. 4.

5 Phase Domain Analyses of a DPLL
In this section, the proposed EKF approach is fur-
ther shown to resemble a 2nd-order DPLL with time-
variant loop gains. Before doing this, we briefly de-
scribe a conventional 2nd-order DPLL and then com-
pare it with the proposed EKF-based DPLL.
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Figure3: The measured timing function, the model output, and the settings forβ = 0.5, µ = 0.005, and SNR=
30dB

The phase domain model of a conventional 2nd-
order DPLL is depicted in Fig. 5, which consisting
of a phase detector, a loop filter and a numerical-
controlled oscillator (NCO). Although the phase de-
tector is, in general, a nonlinear device, it is often
mathematically linearized as a constant gain. That is,

τk = Kpd(εk − ε̂k|k−1) (21)

whereτk denotes the phase detector output andKpd

is called the phase detector gain. The conventional
design approach has to choose a suitable phase de-
tector and determine the fixed constantsKp andKi

of the loop filter [17] such that the estimated phase
follows the input phase in some performance crite-
ria. However, these tasks are usually difficult and
time-consuming because the nonlinear dynamics of
the phase detector has been ignored. In this study, an
EKF is used to completely describe the DPLL with
time-variant loop gains and these design parameters
can be easily obtained by the Kalman filtering tech-
niques.

The phase domain model of the EKF-based DPLL
is derived as follows. By substituting (17) into (19),
the state estimation equation is given by

x̂k+1|k = Φx̂k|k−1 + ΦKk(rk − aT
k h(0)) (22)

We further defineKk = [αk βk]T , and then rewrite
(22) in the following. Fork = 0,

ε̂1|0 = ε̂0|−1 + ˆ̇ε0|−1 + α0z0 + β0z0 (23)

and

ˆ̇ε1|0 = ˆ̇ε0|−1 + β0z0 (24)

Fork = 1 and using (24), write

ε̂2|1 = ε̂1|0 + ˆ̇ε1|0 + α1z1 + β1z1

= ε̂1|0 + ˆ̇ε0|−1 + β0z0 + α1z1 + β1z1

= ε̂1|0 + α1z1 + Σ1
i=0βizi (25)

Finally, the estimate of̂εk|k−1 is obtained recursively
by

ε̂k|k−1 = ε̂k−1|k−2 + αk−1zk−1 + Σk−1
i=0 βizi (26)

The phase estimate equation (26) is updated by in-
putting the phase informationzk through a filter with
time-variant loop gains,αk andβk. An EKF that com-
pletely models the DPLL and governs the phase up-
date equation (26) is depicted in Fig. 6.

WSEAS TRANSACTIONS on COMMUNICATIONS
Tsai-Sheng Kao, Sheng-Chih Chen, Yuan-Chang Chang, 
Sheng-Yun Hou, Chang-Jung Juan

ISSN: 1109-2742 749 Issue 8, Volume 8, August 2009



����������	 
���
�� ��
�����
�� ���

� ����
�	 
�
���	 � ��
�	 
���� 	  ��
!
!�"��#$
���
���	%�

�����&����	 
�
�#"#$��#(')��*�
�#$� 
��+'�
�,"��#-������
�	 
)�
���	 � ��
�	 
��

. #$�0/�
!'�	�
� �
!
��1�

2 ��	 
�#-��#"� �!#3
���	 � ��
�	 

����&� 	 �(
�#"#$��#(')��*�
�#$� 
��+'�

4 � ��
!
�#"� 5�
�	  �
���
!
)�$��#"
)��
���	1
)6���
�	 � �!�
�	 
�������7�	 
�� ��	  �
��
!
!�"��#$
)�&
)	1��
�	 #"� 8

9:;<
−

=
>?@

−

A

>>?>? BC −
−− += DE DDDDE DDDD FGAGGAH

IJ

KLL >@ MM

KL<L< >@ ==
B$BNCC<< >? OPH== E DDDDDD M −+= −

>?BC
−−= DDDDD AGHQA







+=

=

+

+

DEDDD
DDD RSSTAA
=S=

?>
?> <<

>?<<
−= DDD ==

DG

Figure4: Extended Kalman filter algorithm for the DPLL
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Figure5: Phase domain model for a conventional 2nd-order DPLL

6 Computer Simulations

In this section, computer simulations for the conven-
tional DPLL system are given to compare with those
for the proposed timing recovery system. The overall

channel impulse response is assumed to be a raise-
cosine function with the roll-off factorα = 0 and
L = 1. The signal-to-noise ratio (SNR) is defined

as 10 log E[ (rk−nk)2

n2
k

]; in this example, SNR is set
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Figure6: Phase domain model for an EKF-based DPLL

to be 20 dB. First, assume a constant phase delay
between the transmission time instant and the sam-
pling time instant, i.e.,εk = 0.2, and ε̇k = 0 for
k > 0. For the conventional DPLL design, Mueller
and Müller’s phase detector [7] is adopted, that is,
τk = rkak−1 − rk−1ak andKpd = −2. After sev-
eral simulation trails, setKp = −2.75 ∗ 10−2 and
Ki = −3.88 ∗ 10−5 for the loop filter. The result is
depicted in Fig. 7 (a), and the estimated phase con-
verges fork > 200 with a slightly large jittering. To
have a smooth response, setKp = −9.3 ∗ 10−3 and
Ki = −4.93 ∗ 10−5 and Fig. 7 (b) shows the simu-
lation result. The estimated phase converges slowly
for k > 400. Notably, both fast phase acquisition and
small jitter cannot be simultaneously met for a con-
ventional DPLL with fixed loop gains.

For the EKF-based DPLL, set the covariance ma-
trices Qk = 10−10I and Rk = 0.01, whereI is
the identity matrix. The initial settingŝx0|−1 and
P 0|−1 are zeros and0.1I, respectively. The estimated

phasêεk and timing offset̂̇εk are respectively plotted
in Fig. 8(a) and (b). Note that the proposed DPLL
rapidly estimates the input phase and timing offset for
k ≥ 60 with a small jittering.

In the second simulation, the proposed DPLL is
further demonstrated to track the input phase with a
nonzero timing offset; in this case,εk = εk−1 + ε̇k−1,
and ε̇k = 0.002 for k > 0. Figure 9(a) and (b) plot
the estimated phasêεk and timing offset̂̇εk, and show
that the estimated ones closely follow the true ones for
k ≥ 70.

7 Conclusions

In this article, the phase detector is examined and a
simple model is given to describe the characteristics
of the timing function. The EKF has been success-
fully applied for realizing a DPLL, which completely
describes the phase detector and loop filter. Thus, the
time-variant loop gains can be obtained by the ex-

tended Kalman filtering techniques. In addition, the
proposed timing recovery system has been compared
with a conventional DPLL system. Simulation results
indicate that the proposed realization can estimate the
input phase rapidly without causing a large jittering.
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Figure8: (a) The estimated phaseε̂k, and (b) the estimated timing offsetˆ̇εk
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Figure9: (a) The estimated phaseε̂k, and (b) the estimated timing offsetˆ̇εk
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