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Abstract: - We have simulated the behaviors of nonlinear fiber Bragg gratings (FBGs). The generalized 
nonlinear equations governing these structures are solved by a method which uses a Fourier series procedure 
and a simple iterative method. All of the nonlinear effects are considered. Bragg soliton generation in intrinsic 
media and birefringence effects in FBGs are studied. We found that the first order dispersion can causes time 
shifting in the input pulse peak. It is shown that FBGs are proper for optical switching too. They can use in 
filters, nonlinear fiber optical applications, soliton propagations etc. 
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1 Introduction 
Application of a special type of the periodic 
structures called fiber Bragg gratings (FBGs) are 
introduced for about three decades [1], [2]. They 
have many applications in the optical 
communications such as optical filters, couplers, 
reflectors, dispersion comparators, etc [3], [4]. 
FBGs are consisting of a periodic modulation of the 
medium refractive index, along the core of the fiber 
[5], which has a short length that reflects particular 
wavelengths of light and transmits all others. In 
other words, they can be used as an inline optical 
filter to reject specific frequencies (frequency 
selector mirrors). Generally, the refractive index 
variations can be uniform or apodized [1], but usual 
structures for FBGs are: 
 

- uniform index gratings; 
- apodized structures; 
- chirped grating, and 
- phase-shifted gratings. 

 
An attractive aspect of FBGs is the narrow 
bandwidth of them which can be used in an optical 
fiber [6], as notch filters. The large dispersive 
behaviors of these structures make them good 
devices for linear dispersion comparators, optical 
add/drop multiplexers (OADM) [7] in wavelength 

division multiplexing (WDM) systems [3] and 
optical multiplexers-demultiplexers with an optical 
circulator. Propagation of solitons is another 
application of FBGs. Nonlinear pulse propagation 
and compression, have been also reported in short 
period FBGs [8]-[10]. Due to the existence of a stop 
band in the transmission spectrum of FBGs, known 
as a photonic band gap (PBG), the nonlinear pulse 
propagation has many applications (such as an 
optical switch) in them. 
For a medium with some nonlinearity, propagation 
of the waves is possible even though its frequency 
lies within the stop band such as Bragg solitons in 
the case of Kerr nonlinearity. Description of pulse 
propagation is based on a set of non-integrable 
nonlinear coupled (and maybe non-usual such as 
found in [11]) partial differential equations. They 
have solitary wave solutions. 
In this paper, at first we review a general theory of 
FBGs. Then, in Section 2, the soliton propagation is 
discussed in the FBGs and the results of pulse 
propagation in these structures will be shown. In 
Section 3, the grating solitons are introduced. Bragg 
soliton generations are considered in Section 4. 
Important phenomenon called birefringence in 
fibers will be the next section contents. Section 6 
belongs to a brief review of instabilities in the 
steady state response of the propagated pulse due to 
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modulation instability parameter. FBG applications 
are subject of Section 7 and finally, conclusions are 
presented in Section 8. 
 
 
2 FBG Formulation 
A simple grating used in a FBG is shown in Fig.1 
 

 

Fig. 1. A simple grating 
The waves propagated in this medium id diffracted. 
For the incident angle θi the reflected angle θr we 
have [1]: 
 

Λnmλ)sin(θ)sin(θ ri ==−                                (1) 

where Λ is the grating period and n
λ  is the 

medium wavelength with the medium index of n . 
For the incident and the diffracted wave numbers, ki 
and kd, there is a relation with the grating wave 
number Λπ2k g = , as: 

ggi mkkk =−                                                      (2) 

 
If the incident light be in the fiber axis direction, 
using (1) we have: 
 

Λλ n2=                                                                (3) 
 
This is the Bragg condition [1]. 
To study the nature of forward and backward waves 
we can solve the Helmholtz equation considering 
the periodic variations of the grating refractive 
index, )z(ngδ , in the form of a Fourier series as: 

∑
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                     (4)             

 
Defining the forward and backward electric field 
amplitudes as fA and bA  respectively, one can write 
the governing FBG equations in a coupled form of: 
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Whereδ is the detuning factor, gv  is the pulse group 
velocity,κ is the coupling coefficient 
andγ expresses the amount of the medium 
nonlinearity due to self-phase modulation (SPM) 
and cross-phase modulation (XPM) which defines 

as
eff

02

cA
n ω

γ = ; so effA is the effective area and 2n is 

the nonlinear coefficient of the fiber medium. When 
a pulse propagates in a fiber, two cases may be 
considered; the linear case with 0=γ , and the 
nonlinear case with 0≠γ . In the linear case with a 
CW operation of pulse the above equations will be: 
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One solution of (6) can be written as: 
 

)exp()exp()( 21 zqiBrzqiAzAf −+=  
)exp()exp()( 12 zqiArzqiBzAb +−=                (7) 

where 22q κγ −±= and
q

r
+

−=
δ

κ
. 

The relation between κδ and κq are plotted in 
Fig.2; this is the dispersion curve. 
 

 

Fig. 2. Relation between detuning and q 
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When κδκ <<− the q-value is purely imaginary, 
we have a reflected wave from FBG and this is 
called a photonic band-gap too. For κδ > the wave 
would be passed entirely from the grating. 
The reflectance spectrum and the transmission 
factor of FBGs can be derived from (1) using the 
proper boundary conditions. In z=L (where L is the 
grating length) after solving these equations the 
reflection coefficient will be: 

)sin()cos(
)(sin

qLiqLq
qLkirg δ−

=
                            

(8) 

It is plotted in Fig. 3 for different detuning factor. 
 

 

Fig. 3. FBG reflectivity versus the detuning factor 
 
Due to dispersion effects in FBGs such as group 
velocity dispersion (GVD) and their increments 
especially around the stop band, there is a pulse 
broadening after the pulse propagation through the 
FBG. It will be serious near the band gap which has 
a more delay in pulse propagation. We simulate this 
broadening for a typical pulse propagated in a FBG 
and our results is seen in Fig. 4 [12]. 

 
 

Fig. 4. Simulation of pulse propagation in FBG considering 
dispersion effects 

Our simulation is based on a Fourier series 
expansion combined with a simple Jacobi iterative 
method (a predictor-corrector method) [12]. 
As you can see, there is an appreciable decrease in 
the pulse amplitude during its propagation. 
For lower detuning the propagation delay increased 
and this is shown in Fig. 5. 
 

 

Fig. 5. Pulse propagation delay versus detuning 
 

For nonlinear dispersion and in CW case we have 
the following relations for fA and bA : 

)exp( zqiuA ff =  
)exp( zqiuA bb =                                            (9) 

 
If 0p denotes the pulse power, two 
amplitudes fu and bu are: 
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Using (10) the values ofδ and q are: 
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A plot of detuning versus q is shown in Fig. 6 [1]. 
Note for 1f = the group velocity is zero and for 

1f > there is a negative group velocity which 
means the reflected waves. 
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Fig. 6. A plot of detuning versus q for (a) 0f < , (b) 0f > ; 

for 1f ±= we are on stop band exactly 

 
 
3   Grating Solitons 
As said, there are nonlinear effects in the fibers 
grating usually called Kerr effects, and for pulses 
propagated outside the band gap there is high 
dispersion. Kerr effect is the index dependency to 
the field strength I : 

Innn )2(
1 +=  

where 1n is the background index and )2(n defines 
the amount of the medium nonlinearity.  
In gratings, there are solitons which are the 
consequence of two mentioned effects; the Kerr 
effect and outside the band gap dispersion which are 
called the grating solitons [3], [4]. For solitons 
which have spectrum inside the photonic band gap 
we have gap solitons. 
Since the amount of the dispersion in the grating are 
more than the usual fibers, there is a difference 
between the solitons in the grating and conventional 
fibers. In fact, the grating solitons are dens respect 
to the fiber solitons. Soliton analysis can be done 
using the coupled mode theory (CMT) [5], [6]. 
Utilizing the CMT, decompose the inside field of 

the grating as forward and backward 
parts fE and bE [7], [8]: 
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After some mathematical manipulations and 
simplifications and using the Helmholtz equation 
the coupled equations derived as: 
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 where 

0n
cv =  and κ , the coupling coefficient, is 

defined as 01n λπ . The detuning from the Bragg 

wavelength is )(
c
n

B0
0 ωωδ −= and the nonlinear 

factorγ is 
λ

π

0

2

n
n

. As mentioned, the nonlinear terms 

contain the effects of SPM and XPM [10]. 
Operating at the Bragg frequency, the field 
components fE and bE satisfy the Klein-Gordon 
equation [10]: 
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Assume ))(exp( tKziE f Ω−= ; we have a 
dispersion equation for the structure such as: 
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we will have the following normalized equation: 
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Neglecting SPM, for 0=δ  the above equations are 
integrable and we can find their solitary equations 
using the Thirring model as [13]: 
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With the aid of the above equations it is possible to 
have positive or negative solitons depends on the 
sign of evv − . 
Now, the total waves inside the fiber can be written 
as: 
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(20) 
For vv,1 e <<≈µ and we have a slow soliton. 

When the nonlinear coefficients 2n and 1n be 
comparable, the Bragg filter would be transparent 
[14], [15]. Finally, forward and backward solitons 
are correspond to 0→µ and ∞→µ respectively. 
 
4 Bragg Soliton Generations in 

Intrinsic Medium 
We can generate the Bragg solitons [16]-[18] in an 
electro-magnetically induced transparency medium 
[19].  Such media have big Kerr coefficient (or a 
large amount of [ ]3Re χ  where the factor χ denotes 
the medium susceptibility), low absorption 

coefficient and photonic band-gap controllability 
[20]. The refractive index can be written as: 
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0χ is the background susceptibility 
andδχ (modulation depth) is its amplitude 
variations; they both are frequency dependent. So, 
depending on the input pulse frequency it is possible 
to change band-gap. 
 
5 Birefringence Effects on FBGs 
Birefringence (BRG) effects are usually occurred in 
all types of FBGs. This effect can divide the peak to 
two parts at the Bragg wavelength [20]. Since the 
Bragg wavelength depends on the grating period 
and the effective index, physical and environmental 
effects such as temperature, stress and stretching the 
fiber can change the fiber index as: 
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Where P andT are pressure and temperature 
respectively. The variations of the effective index 
cause BRG and this is due to the changes in 
propagation constants of the guided waves. The 
value of BRG along the z-axis is: 
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0n is the initial core index, ||n and ⊥n are the parallel 
and perpendicular indices [21]. Fig. 7 shows the 
Bragg wavelength variations for different 
polarizations. 
Deriving the refractive index and hence the 
propagation constant, explain the reflectance 
spectrum of distributed FBGs. It is found that this 
spectrum has more than one peak in Bragg 
wavelength and decomposes perfectly for higher 
forces. The results are plotted in Fig. 8. Such 
specification can be used in sensors.  
 
6 Modulation Instability (MI) 
Consider a FBG, excited by CW input pulse. The 
related MI parameter can cause instabilities in the 
steady-state response, in spite of CW input. 
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Fig. 7. The Bragg wavelength variations versus applied force 
 

 
Fig. 8. The reflectivity as a function of the wavelength 
 
This phenomenon is simulated using the coupled 
equations [5], and assuming a perturbation ka  
imposed on input and output wave amplitudes 
modeled by: 
 

bfkeauA iqz
kkk ,)( =+=                       (24) 

Substitute (24) in the coupled equations and 
consider CW operation, we can derive a set of 
coupled equations for these perturbed terms as [23]: 
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T
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=
γ is the effective nonlinear 

coefficient. 
Select the following relations for these perturbing 
terms: 
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Substitute (26) in (25), to have non-trivial solutions 
for ka we derive the following transcendental 
equation: 
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where
gv

s Ω
≡ . Here, we assume that the MI gain is 

equal to )SIm(2 m ; where mS is the root with the 
largest imaginary part.  
The gain values for variousδ are plotted in Fig. 9 
and Fig. 10 [1]. As shown, for anomalous dispersion 
there is some gain even in 0=δ  and it is possible to 
have instabilities. But, for normal GVD the MI gain 
is zero at 0=δ  and we have stable conditions.  
The instable conditions and gain spectrum are 
studied in FBGs with non-Kerr nonlinearities [23]. 
In a nonlinear medium we can write the forward and 
backward waves as [24]: 
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Fig. 9. A plot of gain versus detuning for anomalous 

dispersion 

 
Fig. 10. A plot of gain versus detuning for normal dispersion 
 
Assuming the disturbance terms in the form of: 
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(29) 
Define [ ]mSImG ≡ and using (28) we can compute 
the gain-coupling relation. In this case, it is possible 
to have instability for anomalous dispersion whereas 
for normal dispersion there is a lower possibility for 
instability. 

 
7 Grating Applications 
In the nonlinear cases, FBGs are the bistable devices 
and we can use them as all-optical-switches. There 
are many methods to design such switches; self-
induced nonlinear switches [25], AND-gate 
switches [26], pump-induced switches [27] and 
surface relief effects (in photo-polymer) [28]. All-
optical switches are introduced in 1990 for the first 
time [29]. Gap-solitons are examples of FBG 
switching (self-switching in the pulse-propagation 
case). In these switches, the output energy of FBG 
increases with the pulse power (about %30-%40). 
Simulation results of these effects are plotted in Fig. 
11. 
 

 
(a) 

 
(b) 

 
Fig. 11. Simulation results of the switching effects in a FBG; 

(a) high power pulse, (b) low power pulse 
 
For lower energy cases, the wavelength lies in the 
stop-band and the coupling coefficient are grater 
than the detuning, so the pulse attenuates and FBG 
acts as a filter. Increasing the pulse energy can 
generate the nonlinear effects and the output energy 
raise. It is possible to see the gap-solitons if we use 
the pulse with higher energies. In other words, the 
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energy transfer is done for high energy pulses, using 
gap-solitons.  
AND-gates are another application of gap-solitons 
in the gratings [26], [30]. In these types of switches, 
there are two-orthogonal polarized pulses for two 
bits, where their frequencies are lying in the band-
gap of the FBG. High and low energy output pulses 
correspond to bit ‘1’ and ‘0’ respectively. This is 
shown in Fig. 12.  

 
                      
                  
 

Fig. 12.  Power dependence of the AND-gate 
 
Nonlinear XPM effects are the other switching 
applications of FBGs [31]-[34]. If we apply two 
pulses with low and high amplitudes into the fiber, 
the XPM effect can causes the pulse propagation 
through the fiber due to the index nonlinearities and 
detuning variations. We simulate this behavior and 
plotted it in Fig. 13.  
 

 
Fig. 13.  Simulation of low-power pulse propagation, 

considering XPM 
 
Grating couplers, which use the interactions of 
nonlinear Kerr effects on FBGs, are another 
application of FBGs [35]-[37]. In this switch, there 
is a four-port fiber with periodic-index variations 

along a central section of fiber with length L [38]-
[40] for any incoming wave with wavelength 
of Bλλ = , it will be reflected from port-2 and the 
other waves with the wavelengths nonequal 
to Bλ exit from port-4. Port-3 is an isolated port. In 
fact, there is a band-reject filter at the center of this 
coupler. XPM effects can change the grating index, 
for this case [41], [42]. 
Arrayed waveguide gratings (AWGs) are other 
usage of the grating, proper for optical filters and 
optical arrayed switches [43]. N1× or NN × arrayed 
switches can be replaced for 21× or 22 × switches 
(where cascading of them is a complicated process) 
[44]-[45]. Utilizing the AWG with polymeric 
materials, it is possible to design a temperature-
sensitive N1× or NN × switch [44].  
Timing jitter tolerance can improved using a super 
structure FBG based rectangular pulse switching 
technology [46]. In this technique, the pulse shape 
converts from soliton to rectangular form. 
 
  
8 Conclusion 
In writing this article, we provide a glimpse of FBG 
theory and simulation. General description of FBG 
formulation and nonlinear propagation of solitons 
inside them are studied in brief. The nonlinear 
birefringence effects were introduced, distributed 
FBGs are considered and it was found that they can 
have applications in sensors. We hope our 
subjective selection of the above discussions along 
with the references reported here can present a 
general guideline in this area. 
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