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Abstract: Repeat-Accumulate code has been widely used in various practical communication systems due to its
special structure that can be encoded with a low complexity turbo-like encoder and decoded with a high-speed
parallel algorithm. However, the construction of RA codes with large girth is still a challenging problem. In this
paper, the girth upper bound of RA codes is analyzed and a novel RA code construction scheme is proposed. This
scheme generates the parity-check matrix with superimposed structured interleavers, guaranteeing the resulting
matrix to be globally optimized. Compared with the RA codes constructed with traditional structured interleavers
such as π-rotation interleavers, pseudo-random interleavers, combinatorial interleavers, and modified L-type inter-
leavers, the codes constructed with the proposed method exhibit better error-correcting performance. Moreover, a
parallel VLSI codec architecture is proposed for the RA codes generated with the proposed method in this paper.
Modifying the conventional RA encoder architecture, the codec for RA codes from our proposed method may have
the same hardware implementation complexity as that for traditional RA codes, while the data throughput of our
codec may achieve up to 450Mbps, which may be of great value for practical applications.

Key–Words: Repeat-Accumulate (RA) codes, low-density parity-check (LDPC) codes, superimposed structured
interleaver (SSI), hardware implementation

1 Introduction
Repeat-Accumulate (RA) code is a class of low-
density parity-check (LDPC) codes with outstanding
error-correcting capability and inherently paralleliz-
able decoding scheme [1][2][3]. Moreover, the RA
code has a ”turbo-like” structure with two constitute
codes being a repetition code and a convolutional
code, the encoding of which may thereby be imple-
mented with linear-complexity. As a result, RA code
has been accepted as one of the most successful LDPC
codes and are widely used in various communication
systems such as DVB-S2 [4][5] and WiMax [6][7].

However, the construction of an RA code still
has some challenging problems. A parity-check ma-
trix with fully random interleavers may obtain good
error-correcting performance, while the hardware im-
plementation complexity may be very high. For prac-
tical applications, the parity-check matrix should be
constructed with semi-random interleavers that could
obtain near Shannon limit error-correcting perfor-
mance and could be implemented with complexity
close to that of structured matrix. In recent years,
many efficient semi-random interleavers are proposed
for RA codes, such as π-rotation interleavers [8],
pseudo-random interleavers [9], and combinatorial in-
terleavers [10]. The parity-check matrixes with these

interleavers are generally constructed with a concate-
nated scheme, which generates the parity-check ma-
trix with two steps: construct a based matrix and then
each zero element of the based matrix is expanded
to be a zero submatrix and each nonzero element is
expanded to be an interleaved identity matrix. This
scheme may obtain an LDPC code with good trade-off
between coding performance and hardware complex-
ity, while the parity-check matrix is locally optimized
result rather than a globally optimized one. In recent
years, the construction of RA codes with globally op-
timized scheme is a hot topic.

In this paper, a novel scheme is proposed for
constructing good RA codes. This scheme gen-
erates the parity-check matrix with superimposed
structured interleavers (SSI), and thereby guarantee-
ing the resulting matrix globally optimized. Com-
pared with the RA codes constructed with tradi-
tional structured interleavers such as π-rotation in-
terleavers, pseudo-random interleavers, combinato-
rial interleavers and modified L-type interleavers, the
codes constructed with the proposed method exhibit
better error-correcting performance with the same
hardware implementation complexity.

The rest of this paper is organized as follows. In
Section 2, the girth upper bound of RA codes is an-
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alyzed. In Section 3, the repeat-accumulate codes
and its parity-check matrix construction schemes with
traditional structure interleavers are described. Then,
the proposed code construction method with superim-
posed structured interleavers is proposed in Section 4.
After that, simulation results for codes generated with
the proposed algorithm are presented in Section 5.
Moreover, the hardware implementation issue of the
RA codes with superimposed structure interleavers is
discussed in Section 6. Finally, conclusions are drawn
in Section 7.

2 The Girth Upper Bound of Repeat
Accumulate Codes

Repeat-Accumulate Code is a special class of LDPC
code, which is also represented by a Tanner graph.
The path {v0, c0, v1, c1, . . . vn, cn, v0} in the Tanner
graph is called a cycle, where vi and si represent the
variable node and the parity check node respectively.
Cycles in the Tanner graphs of LDPC codes prevent
the sum-product algorithm from converging [11][12].
Furthermore, cycles, especially short cycles, degrade
the performance of LDPC decoders, because they may
affect the independence of the extrinsic information
exchanged in the iterative decoding. Hence, LDPC
codes with large girth are desired. The length of the
shortest cycle in the graph is called girth. The parity
matrix of RA codes contains a sub-diagonal matrix
Hm, thereby only design the Hc to increase the girth.

For (ρ, λ)-regular LDPC codes, length N, the
girth upper bound[13] is determined by :

m =

⌊
log N + log ρλ−ρ−λ

2λ

2 log(ρ− 1)(λ− 1)

⌋
(1)

Girthmax = 4m + 4 (2)

where ρ and λ are column weight and row weight.
By taking into account the same density regular

(q, a)RA codes, we get the following equations:




a = λ− 2
2(1−R) + qR = ρ

ρ = λ(1−R)
(3)

where R is the code rate and here the degree-1 node
is considered a degree-2 node. Hm is a sub-diagonal
matrix and it can’t produce a cycle, thereby the girth
upper bound evaluation of RA codes approximately
equals the girth upper bound of the code of parity ma-
trix Hc.

Using the above equations, the girth upper bound
evaluations of (3,6) regular LDPC code and (4,4) reg-
ular RA code are demonstrated in Fig.1. The girth

upper bounds of RA codes of length several hundreds
or hundred thousands are less than that of the regular
LDPC codes, while the RA codes of length one thou-
sand to one hundred thousand retain the same bounds.
It sideways shows that the RA codes have the good er-
ror correcting performance, which are widely applied
in practical systems.

The girth upper bound of RA code may decrease
when considering Hm. Thus, when codes with larger
girth are considered the weight two columns of the
accumulator have the effect of reducing the mini-
mum distance bound for RA codes, when compared to
LDPC codes with the same girth. Hence it is of great
importance to design good interleavers, that equals to
optimize Hc.

3 Traditional Construction Schemes
for Repeat Accumulate Codes

RA codes can be considered as a special class of Irreg-
ular Low Density Parity Check (LDPC) codes [13].

The RA code parity matrix is composed of two
sub-matrices, H = [Hm,Hc] , where Hmis an M by
M dual-diagonal square matrix and Hc is an M by
N −M matrix, where N is the code length,M = (1−
R)N , R is the code rate. An example of Hm is shown
as follows.

Hm =




1 0 0 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1




It is clear that Hm is constant for given M and
thereby the crucial issue is to optimize the interleavers
to improve the coding performance. It equals to opti-
mize Hc.

It has been proved that RA codes with randomly
chosen interleavers may obtain good performance.
Thereby most RA research has only considered the
error rate result of RA codes pseudo-randomly in-
terleavers [1], [14], [15]. However, randomly con-
structed interleavers may have implementation chal-
lenges. Many researchers focus on the trade-off be-
tween performance and implementation complexity,
and many such interleavers have been proposed.

3.1 RA Code Construction Scheme with π-
rotation Interleaver

The algorithm constructs Hc as a composition of
m×m circularly shifted identity matrices, which can
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Figure 1: The girth upper bound evaluations of the same density LDPC codes and RA codes

be described by a 1 × m permutation vector. We la-
bel the single sub-matrices πA,πB ,πC , and πD, which
rotates π/2 counterclockwise each other. For exam-
ple, using the (m = 3) permutation vector of [2 3
1], indicating the position of the nonzero element in
each row-counting from the left. Thereby we obtain
the following four π-rotations.

πA =




0 1 0
0 0 1
1 0 0


 πD =




1 0 0
0 0 1
0 1 0




πB =




0 1 0
1 0 0
0 0 1


 πC =




0 0 1
1 0 0
0 1 0




Then we can create a rate 1/2 Hc from πA, πB , πC

and πD by arranging them as follows, obviously sym-
metrically.

Hc =




πA πB πC πD

πB πC πD πA

πC πD πA πB

πD πA πB πC




3.2 RA Code Construction Scheme with
Pseudo-Random Interleaver

The construction contains two steps: First, construct a
base parity-check matrix with a random generation or
PEG algorithm. Second, each nonzero element of the
base matrix is expanded to be an L by L sub-matrix,
denotes π(i, j), in whose k-th row, the element of the

f(αi ·(αj)k) column is 1, others 0, for 0 ≤ k ≤ L−1,
L = 2p−1. α is the primitive element in Galois Field
GF (2p) and its corresponding value denotes f(α),
where p is a prime integer. For example, we set the
parameter p = 3, i = 1, j = 2, then we get,

π(1, 2) =




0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1
1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0




The constructed interleaver is called pseudo-random
interleaver and the sub-matrix is structured and deter-
mined by i and j. The pseudo-random interleaver can
be as follows:

Hc =




π(i0, j0) 0 · · · π(i4, j4)
π(i1, j1) · · · π(i3, j3) 0
· · · π(i2, j2) · · · π(i5, j5)

π(i7, j7) 0 π(i6, j6) · · ·




3.3 RA Code Construction Scheme with
Combinatorial Interleaver

In [8], it has been proved that for every possible
Steiner 2-design there exists a row and column per-
mutation that maps the incidence matrix of the design
into an RA code interleaver and accumulator, thus
producing a high rate RA code which is 4-cycle free
and the combinatorial interleaver can be implemented
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easily. But construction 1 and 3 introduced in [8] only
construct the RA codes with q = 3. Although con-
struction 2 can construct regular RA codes with any a
and q, it can not make the irregular RA codes. These
three construction methods are not flexible to design a
variety of RA codes. Readers can refer to it in details.

3.4 RA Code Construction Scheme with L-
type and modified L-type Interleaver

Given K information bits, the number of repetition q,
the base interleaver

∏
and the interleaver parameter

l,the L-type interleaver first selects the K message bits
in order and then selects from the message bits again,
skipping l bits ahead after each selection. This process
is repeated q times, as given as follows.

∏
= [

∏
1(1), . . . ,

∏
1(K)] . . .

[
∏

q−1(1) + q − 2, . . . ,
∏

q−1(K) + q − 2],
[
∏

q(1) + q − 1, . . . ,
∏

q(K) + q − 1]

where, for 1 ≤ i ≤ q
∏

1 = [1, 1 + q, . . . , 1 + (K − 1)q]∏
i = [

∏
i−1(1),

∏
i−1(1 + l), . . .

∏
i−1(1 + K − l)],

[
∏

i−1(2),
∏

i−1(2 + l), . . .
∏

i−1(2 + K − l)],
. . .
[
∏

i−1(l),
∏

i−1(l + l), . . .
∏

i−1(l + K − l)].

Thus the L-type interleaver is constructed. Setting
l = 2a, a (3, a)-regular RA code can be constructed
without 6-cycles whenever K ≥ 8a3 by using L-type
interleaver [16].

In order to eliminate these length-8 cycles, a mod-
ified L-type interleaver is proposed as follow. In prac-
tice the bits iK+1 to (i+1)K of

∏
, which is denoted

by
∏

i+1, are a type of row-column permutation of bits
(i−1)K +1 to iK of

∏
, denoted by

∏
i. First the bits

are written row-wise into a matrix , Pi with l columns
and read out column-wise. Next, the bits from each
column are written row-wise into another matrix, Qj ,
and read out column-wise. The j − th column of Pi

is written into a matrix Qj with j columns.
In summary, the above RA code construction

scheme always contains the following steps: First,
construct an Mb by Nb − Mb base matrix, where
M = MbL, N = NbL and L is an integer; Then each
non-zero element of the basic matrix is expanded to
be an L by L sub-matrix, which is generally a circu-
lant permutation matrix distinct from identity matrix
or a random matrix and each zero element is expanded
to an L by L zero matrix. It is noted that with the
above steps the basic matrix and the expanded ma-
trix are constructed independently, and thereby the re-
sulted parity-check matrix is locally optimized rather
than globally optimized.

4 Proposed RA Code Construction
Scheme

In [17], parallel edges are permitted in a protograph,
whose Tanner graph G = (V, C,E) consists of a set
of variable nodes V , a set of check nodes C, and a set
of edges E, the mapping e → (ve, ce) is not necessar-
ily 1:1. The statement shows the sub-matrices can be
superimposed in the same location. The above ideas
motivate us to come up with designing better inter-
leavers for RA codes from the global view, which we
call superimposed structured interleavers(SSI).

Before starting designing SSI, some signs are in-
troduced for convenient description. For simplicity,
(i, j, l) means the non-zero element in row l in π(i, j).
Clearly, the sub-matrix π(i, j) is structured and deter-
mined by i and j. After introducing the signs, the
construction of SSI is proposed as follows:

Step1: According to the code length, and rate,
choose the suitable expansion factor L = 2p − 1,
where p is a prime integer.

Step2: If all column-blocks are filled, algorithm
exits. Otherwise, if weights of all rows are great than
the maximum, go to step7; else, randomly select one
row under the upper bound.

Step3: If all π(i, j) do not meet the requirements,
go to step2; Otherwise select one.

Step4: If no sub-matrix has been inserted, go
to Step5; Otherwise compare with the inserted sub-
matrix, if nonzero elements overlap, go to Step3.

Step5: Given G, If all the nonzero ele-
ments satisfy: for any k non-zero elements in
H ,1 ≤ k ≤ G/2, denoting (i0, j0, l0), (i1, j1, l1)
. . . (i2k−1, j2k−1, l2k−1),

{
l2k−2 = l2k−1

f(αi2k−2 · (αj2k−2)l2k−2) = f(αi2k−1 · (αj2k−1)l2k−1)

insert the sub-matrix; otherwise go to Step3.
Step6: If all the sub-matrices have been inserted

completely in this column-block, then insert the next,
go to Step2; otherwise directly go to Step2.

Step7: delete the formerly inserted sub-matrix, go
to Step2.

After that, slightly coordinate the sub-matrices to
meet the row-block requirements if necessary, then the
formula on behalf of superimposed structured inter-
leaver could be shown in equation (4).

5 Simulations and Numeric Results

With the SSI, a rate 0.5, code length 2032 RA code is
constructed with L=127, and the column-weight den-
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Hc =




π(i0, j0)⊕ π(i1, j1) 0 · · · π(i8, j8)
0 · · · π(i3, j3) 0
· · · π(i2, j2) · · · π(i5, j5)⊕ π(i4, j4)⊕ π(i9, j9)

π(i7, j7) 0 π(i6, j6) · · ·


 (4)
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Figure 2: The performance of RA codes with superimposed structured, combinatorial and π-rotation interleavers

sity function and row-weight density function are

λ(x) = 0.5x + 0.5x3 (5)

and
ρ(x) = 0.125x4 + 0.875x5 (6)

The error correction performance of the code is pre-
sented in Figure 2. We are aware of one combinato-
rial interleaver for RA codes from [8], named mod-
ified construction 2. The performance curve of the
code with the same degree distribution and rate con-
structed is plotted, length 2022. The performance
of the RA code with π-rotation interleaver and the
same parameters are presented, length 2000. In Fig-
ure 3, we demonstrate the performance of the RA code
with SSI compared to that with pseudo-random inter-
leaver, plotted by round and square lines respectively,
length 16352, rate 0.5, weight density function same

as shown in (5)(6). In Figure 4, the performance com-
parison of the RA code of length 9690 with SSI and
that of length 10000 with modified L-type interleaver
is proposed, plotted by round and square lines respec-
tively.

It is shown in Figure 2 that the performance of
the code generated with the proposed method is much
better than that generated with the combinatorial al-
gorithm. The performance improvement is about 0.78
dB for output bit error rate of 10−7. It is observed
that the code generated with the proposed method out-
performs the π-rotation RA code about 0.1 dB and
has a lower error floor. It is also seen from Figure
3 that the RA code with SSI significantly outperforms
the code with pseudo-random interleaver and exhibit
improved error-floor performance. In Figure 4,the
performance improvement gets 0.05dB, compared the
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Figure 3: The performance of RA codes with superimposed structured and pseudo-random interleavers

RA code with SSI with that with modified L-type in-
terleaver.

Compared with them, the RA codes with SSI are
capable of outperforming the RA codes with three
above interleavers, while the code length is almost the
same.

6 Implementation Architecture

6.1 Encoder Architecture
RA codes can also be seen as a class of “Turbo-like”
codes [18]. The encoding schedule is shown in Fig-
ure 4. The K information bits m = [m1 . . . mK ] are
repeated l times, showed as follows:

−→
b = [m(1)

1 ,m
(2)
1 . . .m

(l)
1 , . . . , m

(1)
K ,m

(2)
K . . . m

(l)
K ].

Then, the output sequence
−→
b is permuted with inter-

leaver
∏

, and the result of which is
−→
d , where

∏
= [π1, π2, . . . πn], (7)

and −→
d = [bπ1 , bπ2 , . . . , bπn ]. (8)

After that the parity bits −→p may be calculated by
equation (6), for 1 ≤ i ≤ Kl/a,

{
gi = d(i−1)a+1 ⊕ d(i−1)a+2 ⊕ · · · ⊕ dia

pi = pi−1 ⊕ gi
(9)

where a is the parameter of the combiner, which deals
with the message before entering into the accumula-
tor. Then the final systematic codeword is

−→c = [−→m,−→p ] (10)

Thus an RA code with length N = K(1 + l/a)
and rate R = a/(a + l) is obtained.

Thereby we propose an RA code encoder imple-
ment architecture as shown in Figure 5. It consists of
an array of memory blocks corresponding to the RA
interleaver, denoted as MEMI, and a parity-check-bit-
generating unit, denoted as PCBGU[10]. As shown
in section 4, the SSI is structured and MEMI is asso-
ciated with nonzero elements of the interleaver. The
output ports of the MEMI are connected to input ports
of PCBGU, which generate one parity-check bit each
clock cycle. With this encoder, the whole encoding
procedure could cost Nb · L clock cycles. Thereby in
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Figure 4: The performance of RA codes with superimposed structured and modified L-type interleavers

the first (Nb−Mb) ·L clock cycle, source bits are out-
put, and simultaneously operated in the MEMI. In the
Mb·L clock cycles, the parity-check bits are generated
by PCBGU. It is clearly shown that the implementa-
tion complexity of the RA code with SSI is proba-
bly the same as that of the RA code with the pseudo-
random interleaver.

6.2 Decoder Architecture

RA codes can be described by a Tanner graph[19]. as
shown in Figure 6. The regular RA code described by
a Tanner graph in Figure 6 has the same parameters in
Figure 4, where the message bit nodes are presented
at the top of the figure and the parity check bit nodes
at the bottom.

As described in section 3, the RA codeword vec-
tor−→c is divided into−→m and−→p , where−→m are the infor-
mation bits and −→p the parity check bits. Correspond-
ing to HcT = 0, then

Hm · −→p = Hc · −→m (11)

Then we have,

−→p = H−1
m ·Hc · −→m (12)

where H−1
m is the lower triangular matrix. We can

calculate −→p with equation (12) in any arbitrary infor-
mation vector −→m.

Thereby the RA code can be seen as an LDPC
code[20] and the LDPC high-speed parallel decoder
architecture could be adopted[21][22][23].

Due to its “turbo-like” structure that can be en-
coded with a low complexity turbo-like encoder and
decoded with a high-speed parallel algorithm, these
advantages make the RA codes with SSI valuable for
practical communication systems.

6.3 FPGA Implementation

Based on the serial architecture shown in Figure 6,
the RA encoder can be implemented easily in FPGA.
However, the speed may not be high enough to be ap-
plied in many special practical systems, which pro-
motes us to take a novel parallel encoder architecture.
It is noted that eliminating some nonzero elements of
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Figure 6: Encoder architecture for RA codes with SSI

Hm splits H into an assemble of parity check matrices
for sub-RA codes.

Based on the above idea, (L,L − 1), (2L, 2L −
1), ...((Nb−1)L, (Nb−1)L−1) are eliminated, where
(i, j) means the element of a matrix in i − th row,
j − th column, NbL = N . Then the parallel encoder
architecture is obtained and Nb information bits can
be encoded synchronously.

Based on the parallel architecture, an encoder and
decoder implementation of an RA code with SSI with
the Xilinx Vertex-IV xc4vlx100 is achieved, where the
decoder is taken by 6bit quantization. The code length
is 15330 and the rate is 5/6. The variable node degree
distribution and parity check node degree distribution
are

λ(x) = 0.0003+0.1663x+0.3334x2 +0.5x3 (13)

and
ρ(x) = 0.002x18 + 0.998x19 (14)

respectively.
The codec is described in VHDL, and SYNOP-

SYS FPGA Complier II is used to synthesize the

Table 1: Encoder FPGA resource utilization statistics

Resource Name Used Available Utilization 

Slices 1371 49152 2%

Slice Flip Flops 746 98304 0.75%

Input LUTs 2171 98304 2%

Bonded IOBs 17 772 2%

BRAMs 40 240 16%

GCLKs 3 32 9%

VHDL implementation. The encoder and decoder re-
source utilization statistics are listed in Table 1 and
Table 2, respectively.

Moreover, the codec can work at the clock fre-
quency of 240MHz in Vertex-IV xc4vlx100 and the
data throughput of 450Mbps is achieved, which is
very valuable for real high-speed applications.
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Figure 7: Decoder architecture of a length-N RA code generated with the proposed method

Table 2: Decoder FPGA resource utilization statistics

Resource Name Used Available Utilization 

Slices 42273 49152 86%

Slice Flip Flops 48522 98304 49%

Input LUTs 53679 98304 54%

Bonded IOBs 37 772 3%

BRAMs 164 240 68%

BUFGCTRLs 3 32 9%

7 Conclusions

In this paper, a novel scheme of constructing RA
codes is proposed. This scheme generates the parity-
check matrix with superimposed structured inter-
leavers, guaranteeing it close to global optimum as
possible. Compared with the RA codes constructed
with traditional structured interleavers such as π-
rotation interleavers, pseudo-random interleavers and
combinatorial interleavers, the codes constructed with
SSI exhibit better error-correcting performance with

the same hardware implementation complexity and
the data throughput of our codec can achieve up to
450Mbps.
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