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Abstract: -The Hopfield neural network (HNN) is introduced in the paper and is proposed as an effective 
multiuser detection in direct sequence-ultra-wideband (DS-UWB) systems. It can approximate to maximum 
likelihood (ML) detector by mathematical analysis. According to the HNN-based technique, the computer 
simulation results show that they have good performances and much lower computational complexity in a 
multiuser environment. 
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1   Introduction 
Ultra-wideband (UWB) transmission has recently 
attracted a great amount of attention in both academia 
and industry for applications in wireless 
communications [1-6]. The UWB systems can 
perform very high transmission data rate, and they are 
mainly applied to the indoor transmission. According 
to [3], the transmission data rate can get up to 100 
Mbps at the transmission distance of 10 meters, and it 
arises to 200 Mbps when the transmission distance is 
reduced to 4 meters. In the aspect of video application, 
the UWB wireless transmission may replace the 
complex wired cable line. At present, the UWB 
systems still consume electricity. Its major application 
has contained transmission between DVD player and 
HDTV. In the future, the UWB systems that consume 
low electricity are applied to many portable devices.  
In the wireless communication systems, we encounter 
some problems such as channel estimation, symbol 
synchronization and multiuser detection. In the 
different multipath indoor environments, the UWB 
systems also endure multipath interference (MPI). 
With the increase of user number, the multiuser UWB 
systems will cause serious the multiuser interference 
(MUI). Hence, it is important to solve MUI and MPI 
effects. One solution to this problem is to use the 
multiuser detection. We can use the optimal multiuser 
detector based on the maximum likelihood (ML) rule 
proposed by Verdu [7] for Code-Division 
Multiple-Access (CDMA) systems. In the UWB 
systems, the optimal multiuser detection based on ML 
rule was proposed by [8]. Its performance is optimal, 
but its computational complexity grows exponentially 
with the number of users. Several suboptimum 
multiuser detection schemes have been proposed in 
CDMA systems [9-11] to reduce the high complexity. 

Some authors proposed to use neural network to 
reduce the computational complexity, such as 
multilayer perception (MLP) [12], RBF network [13] 
and Hopfield network [14-15].  

In the paper, we propose a multiuser detector, 
which realizes near ML detector by using Hopfield 
neural network (HNN) technology in DS-UWB 
systems. A Hopfield net is a form of recurrent 
artificial neural network invented by John Hopfield 
[16]. Hopfield nets serve as content-addressable 
memory systems with binary threshold units. For the 
multiuser detection, we apply a neural algorithm 
proposed by [17] to approximate to ML function. The 
remainder of the paper is organized as follows. In 
Section 2, the model of DS-UWB systems and 
common detectors are introduced. In Section 3, the 
HNN detector is introduced and studied in DS-UWB 
systems. The simulation results are shown in Section 
4. Finally, conclusions are given in Section 5. 
 
 
2  System Model 
 
2.1 Transmitter Model 
We consider a K-users DS-UWB system over the 
UWB indoor multipath fading channels, where each 
user employs unique DS spreading code. The 
transmitted base band signal qk(t) for the kth user is 
obtained by spreading a set of binary phase-shift 
keying (BPSK) data symbol {bk[i]} onto a spreading 
waveform sk(t), which is written as 
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where Ek is the symbol energy of the kth user, P is the 
packet size, { }[ ] 1kb i ∈ ±  is the ith data symbol of the 
kth user, and Tb is the symbol interval duration. The 
spreading waveform sk(t) is also written as 
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where k=1,2,…,K, 2
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chip of the kth user, Nc is the chip numbers, Tc is the 
chip interval duration, and ( )w t  is the chip waveform 
of duration Tc = Tb / Nc. 

 is 

k l

 
2.2 Channel Model 
The UWB indoor channel model is based on the 
Saleh-Valenzuela (S-V) approach [18] where the 
impulse response is composed of the exponential 
decay clusters to model the dense multipath 
components. For the UWB indoor transmission 
environment, the channel impulse response of UWB 
indoor channel model is formulated as follows: 
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where Lk denotes the total number of propagation 
paths of the kth user, ,k lα  is the channel coefficient of 
the lth path of the kth user and  is the multipath delay 
of the lth path of the kth user. In this paper, we 
suppose that the multipath delay ,k lτ  is an integral 
multiple of Tc. 

 

2.3 Receiver Model 
When passing the signal through the indoor 
environment, the obstacles in the transmitted path will 
cause the multipath transmission. Therefore, the total 
received signal can be formulated as follows: 
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where and  is linear 
convolution, is defined as template signal of the kth 
user, which is a convolution between the kth user’s 

spreading code and channel coefficient, n(t) is 
zero-mean additive white Gaussian noise. Hence, the 
discrete-time received signal after sampling (iTb) is 
written as follows: 
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where 

    *
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Besides, output vector of the bank of K matched filter 
outputs [7] can be written as follows: 

,= +y RAb n%                           (6) 

where y=[y1[1], y2[1],…, yK-1[P], yK[P]]T is the 
received signal vector, R is the crosscorrelation 
matrix which is KP×KP dimensional matrix , 
A=diag{ 1E ,…, KE , 1E ,…, KE , 

1E ,…, KE } is the transmitted amplitude matrix, 

b=[b1[1], b2[1],…, bK-1[P], bK[P]]T is transmitted bit 
vector and n =[ , ,…, , ]T is a 
Gaussian random variable with zero-mean and 
covariance matrix σ2R. Their expressions are 
formulated as follows: 
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where  is a K×K dimensional matrix. [ , ]i jR

 

 

2.4  Multiuser Detectors 

 

2.4.1  Conventional Detector 
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The signal that received by a Conventional Detector 
(CD) can be detected:  

{ }ˆ [ ] sgn [ ] ,CD
kb i y i= k                    (7) 

 
2.4.2  Decorrealting Detector 
The decorrealting detector (DD) applies the matrix 

 to the output of the matched filter: 1−R

      { }DD 1ˆ sgn ,−=b R y                     (8) 
 
2.4.3 Minimum Mean Square Error Detector 
The MMSE detector which considers the background 
noise has also affected the output of the channel 
matched filters.  

( ){ }1MMSE 2 2ˆ sgn ,σ
−−= +b R A y          (9) 

 
2.4.4  Maximum Likelihood Detector 
According to [19], the optimal multiuser detector can 
be achieved by maximum a posteriori (MAP) 
estimation. Because the probability of bk[i] =1 is equal 
to the probability of bk[i] =-1, the ML estimation can 
be generalized by the MAP estimation. The formula of 
ML detector is written as follows: 

ML

[ 1, 1]
ˆ arg max 2 ,

KP

T T

∈− +
⎡= −⎣b

b b Ay b ⎤⎦ARAb      (10) 

 
 
3 Hopfield Neural Network Multiuser 
Detector 
A Hopfield network was proposed by Hopfield in 
1982 [16], and it was a network of associative 
memories. The Hopfield network that is a kind of 
neural network is single layer networks with output 
feedback consisting of simple neurons that can 
collectively provide good solutions to difficult 
optimization problems. The typical HNN algorithm 
with N neurons is formulated as follows: 

{ }( ) signl lX m U=  

               (11) ,
1

sign ( 1) ,
N

l j j l
j

W X m V
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where Wl,j is the connection weight between the output 
of the jth neuron and the input of the lth neuron, Xl(m) 
that is the output of lth neuron at the mth iteration is 

either +1 or -1, Vl that is the decision threshold of the 
lth neuron has the range -1<Vl <1 and Ul is network 
weighting value of the lth neuron. The sign{ } is 
signum activation. The connection weights of HNN 
have the following restrictions: 

Wl,l,= 0, l∀  (no neuron has connection with 
itself) 

Wl,j = Wj,l, ,j l∀  (connections are symmetric) 
The above restrictions are used and then the equations 
of motion for the activation of the neurons of the HNN 
always lead to convergence to a stable state. If 
non-symmetric weights are be used, the network may 
exhibit chaotic behavior. In order to understand the 
process of HNN, we must analyze it by the viewpoint 
of energy. This viewpoint is from Lyapunov function 
[20]. According to Lyapunov function, the state of 
motion is equal to the equilibrium of system if the 
energy achieves to minimum. In the discrete HNN 
with N neurons, an energy function which is 
considered to be a Lyapunov function is defined to 
express the energy of network, and it is formulated as 
follows:  

,
1 1 1
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where ( )lX m

V

 is the state value of the lth ne , 

( )jX m  is the state value of the jth neuron, j  is the 
connection weight between the lth neuron and the jth 
neuron, and  is the decision threshold of the lth 
neuron. Besides, the energy function of HNN can be 
rewritten by vector-matrix, 
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with , 0l lW = , for 1, 2, ,l N= L . 
The optimum multiuser detection based on the 

ML decision was proposed by Verdu [7]. Its 
performance is optimal, but its time complexity grows 
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exponentially with the number of users. In order to 
reduce computational complexity, we employ the 
HNN detector that can approximate to ML detector in 
DS-UWB systems. 

Recall (10), it can be rewritten as follows: 

ML

[ 1, 1]
ˆ arg max 2
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T T

∈ − +
⎡= −⎣b

b b Ay b ARAb⎤⎦  
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where H = ARA and . ( )diag=D H

Because  for any ( )T trace=b Db D [ ]1, 1 KP∈ − +b , 
the (14) can be rewritten as follows:  
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Comparing (13) with (15), we can obtain relationships 
that are shown as follows: 

,N KP=  
,= −V Ay  

{ } ,= − −W H D  

                     (16) lim ( ).HNN

m
m

→∞
=b X

Hence, we can apply (16) to build the HNN detector in 
DS-UWB systems. The computational complexities 
of these are lower than ML detector due to iterative 
method. The structure of HNN detector is shown in 
Fig. 1 
 
 
4 Simulation Rseults 
Based on Intel UWB channel extensive measurements 

in an indoor environment, UWB systems appear with 
four typical channel characteristics in an indoor 
environment  (e.g. channel model 1(CM1), CM2, 
CM3 and CM4). The model parameters were found by 
experiment to match different UWB channel 
characteristics [21]. CM1 is light-of-sine (LOS) and 
the transmission distance is between 0 and 4 meters; 
CM2 is non-light-of-sine (NLOS) and transmission 
distance is between 0 and 4 meters; CM3 is NLOS and 
transmission distance is between 4 and 10 meters; 
CM4 is NLOS and transmission distance is more than 
10 meters. The sampling time of four channel models 
are 2ns. Fig. 2, Fig. 3, Fig. 4, and Fig. 5 show the 
discrete time channel model with 2ns sampling time in 
CM1, CM2, CM3, and CM4, respectively.  

Then, we compare the performance of three 
different detections: MMSE, ML, and HNN by 
extensive simulations of the synchronous 10-users 
DS-UWB systems. In order to solve multipath effect, 
we employ the all Rake receiver to collect the energy 
of all paths for DS-UWB systems for system 
simulation. In addition, we assume that the packet size 
is 4 bits and the number of user is 10 in DS-UWB 
systems. In Fig. 6 the MSE of HNN detector  in CM1 
and SNR=10dB is depicted. The HNN detector would 
converge after 130 iterations. In Fig. 7, Fig. 8, Fig. 9, 
and Fig. 10, the simulation results of BER in 
DS-UWB systems that employ MMSE, ML, and 
HNN detectors are depicted in CM1, CM2, CM3, and 
CM4, respectively. In these figures, the ML detector 
can achieve optimum than other multiuser detectors 
such as MMSE and HNN, but its computational 
complexity which grows exponentially with the 
number of the users forbids application in real system. 
In general, the optimum b must be selected from 2KP 
patterns. The MMSE detector is suboptimal, but 
received amplitude and noise must be known. 
Besides, its (R+σ2A-2)-1 is difficult to be 
complemented on hardware. The performance of 
HNN-based detector in DS-UWB systems is better 
with the increase of iteration. However, the 
performance improvement is no longer obvious when 
it achieves about 130 iterations. That is because the 
HNN detector has many local minimum, but it is 
unable to determine which minimum is the global 
minimum.  The HNN detector can waste fewer 
multiplications and adders to approach the 
performance of ML detector.  

 
 

5 Conclusion 
This paper demonstrated the HNN detector in 
DS-UWB systems. First, the common multiuser 
detectors such as MMSE and ML are applied to the 

WSEAS TRANSACTIONS on COMMUNICATIONS Chia-Hsin Cheng, Guo-Jun Wen, Yung-Fa Huang

ISSN: 1109-2742 581 Issue 7, Volume 8, July 2009



DS-UWB system. The optimal detector is the ML 
algorithm, but its complexity is higher. Although the 
performance of suboptimal detector such as MMSE is 
good, its crosscorrelation matrix R is difficult to be 
implemented on hardware. So, we employ the HNN 
detector to efficiently reduce the computational 
complexity of ML detector. Besides, its performance 
approximates to the performance of the MMSE 
detector. Since the HNN-based detector has many 
local minimum, the improvement of the performance 
would be constrained. Therefore, how to solve to 
determine which minimum is the global minimum in 
the HNN detector is our future research.  
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Fig. 1 The structure of HNN detector in DS-UWB Systems. 
 

 
Fig. 2 Discrete time impulse response of UWB CMl 
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Fig. 3 Discrete time impulse response of UWB CM2 

 
Fig. 4 Discrete time impulse response of UWB CM3 
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Fig. 5 Discrete time impulse response of UWB CM4 

 
Fig. 6 The MSE of HNN detector and SNR=10dB in CM1. 
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Fig. 7 The simulation of BER in DS-UWB systems that employs MMSE, ML and HNN detectors with UWB 

CMl. 

 
Fig. 8 The simulation of BER in DS-UWB systems that employs MMSE, ML and HNN detectors with UWB 

CM2. 
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Fig. 9 The simulation of BER in DS-UWB systems that employs MMSE, ML and HNN detectors with UWB 

CM3. 

 
Fig. 10 The simulation of BER in DS-UWB systems that employs MMSE, ML and HNN detectors with UWB 

CM4. 
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