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Abstract: This paper examines problems that arise from the fact that dynamic routing never relies on the precise,
current information about the network state. It is a normal expectation that dynamic routing has to give better
results than a static one. However, it takes some time to collect information about the network current state, and
optimization is always done with that imprecise information. This situation is examined by a complete mathemat-
ical analysis of a simple network. We show that dynamic routing gives better results than static, as expected, but
that the margin is much smaller then intuitively expected. Further analysis shows that that minor advantage can
easily be lost if there is even a small error in the dynamic routing tables, and actually dynamic routing can easily
become worse than static. Quantitative analysis shows that delays in building routing tables can affect dynamic
routing performance unexpectedly strongly. The conclusion is that dynamic routing should not try to adapt to
traffic changes very fast.
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1 Introduction

Optimization is one of the most widely applicable
mathematical techniques. Almost any practical prob-
lem can be represented as a system where certain
function should be minimized (or maximized) under
certain conditions. The systems usually change over
time and one of the possible classifications of corre-
sponding optimizations is tostaticanddynamiccases.
Alternative terminology isfixedandadaptive.

It should be noticed that pure static and pure dy-
namic optimizations are practically never used. Pure
static (fixed) optimization would imply that one so-
lution is used forever. That is very rarely the case,
we usually adjust optimization solutions to system
changes but relatively rarely, for example once every
week or once every hour. On the other side, pure dy-
namic (adaptive) optimization would adjust to system
changes infinitely fast (in time zero) which is impos-
sible. In such optimizations we try automatically to
adjust to the system changes as fast as possible. That
is the main problem with adaptive optimization. For
many problems we can consider that attempt to adjust
”as fast as possible” is also ”good enough”. In this pa-
per we show that in some (many?) cases such assump-
tion can be dangerous and that our intuitive feeling of
what is ”good enough” can be very misleading.

This relation between fixed and adaptive opti-
mization is investigated on the computer network

routing problem.

2 The Network Design Problem

The network design problem is defined as:

• For given locations of nodes (set of computer
sites), traffic matrix (offered traffic for each pair
of nodes) and cost matrix (cost to transfer a mes-
sage for each pair of nodes)

• With performance constraints: delay, through-
put, reliability,

• Find values for variables:

– Topology (which nodes will be connected
directly with a link and which will have to
communicate indirectly, using other nodes
as intermediate stations)

– Capacity assignment (how much traffic will
each link be able to carry)

– Routing (flow assignment) (which paths
messages between any pair of nodes will
follow) that

• Minimize the cost (of building and maintaining
the whole network) for given delay (time that a
message spend in the network)
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Other formulations of the problem are: minimize
delay for the given cost or maximize throughput for
given cost and delay. It has been shown that all these
problems are similar and that the same techniques can
be applied.

It has to be emphasized in the beginning that this
problem is intractable if full and exact solution is re-
quired. Networks can have many hundreds of nodes
(computers) and many thousands of terminals. Fortu-
nately, experience has shown that network design can
be done hierarchically and still be near optimal. An
example is a network for a country. First, we can de-
cide where to put trunks between major cities, then
connect small cities to nearest major cities, then make
local networks inside the cities. This approach allows
us to work with networks of at most 50 nodes at a
time. This is a great help, but the problem is still in-
tractable. If we have only 10 nodes, there are 45 po-
tential lines that connect different pairs of nodes. Each
link can be present or absent. This gives245 or3∗1013

different topologies. If we can examine 1000 topolo-
gies per second (too fast even for super-computers), it
would still require 1000 years to examine all of them.
Full-duplex is assumed here, i.e. there is only one link
between two nodes. Without that assumption there
would be 90 possible links and the problem would be
even worse.

2.1 Optimization Methods

Mathematical programming, network flow and queue-
ing theory are used to solve the distributed, packet-
switching network design problem. Many algorithms
from graph theory are also used. They include Di-
jkstra’s algorithm for the single source shortest paths
problem, Floyd’s algorithm for the all-pairs shortest
paths problem, Prim’s algorithm and Kruskal’s algo-
rithm for minimum cost spanning tree.

Depending on assumptions on some of the three
subproblems, different methods were used:

• Solving for capacity assignment when topology
and routing policy are given. If the costs are lin-
ear, LaGrange multipliers are good enough. For
nonlinear costs, dynamic programming is used.

• Solving for routing when topology and channel
capacities are given. The Minimum Link and
The Flow Deviation Algorithm are used; both are
heuristic.

• Solving for capacity and flow assignment when
topology is given is a more general problem.
This problem has many local minima and only
suboptimal solutions exist. There are algorithms

for linear, concave and discrete costs. For topo-
logical design, two algorithms, both heuristic,
are used. One is The Branch X-Change Method;
the other is Concave Branch Elimination.

Another approach is to use graph theory to find
the suboptimal topology.A cut between two nodes is
a set of arcs whose removal disconnects two nodes.
A minimal cut is one in which replacement of any of
its members reconnects the graph. There is a theorem
that states that the maximum flow between any two ar-
bitrary nodes in any graph cannot exceed the capacity
of the minimum cut separating those two nodes. There
is the stronger result that maximum flow is equal to
the capacity of the minimal cut. This Max-Flow Min-
Cut Theorem helps to optimize networks but some
systematic way of searching for the minimum cut is
needed.

Network design and analysis almost always in-
volve under-determined systems, especially when
routing policy has to be determined. The number of
possible routings grows with the factorial of the num-
ber of the nodes in the networks and the number of
possible topologies is exponential in the number of
links. The number of constraints (such as “everything
that goes in must go out” for each node that is neither
source nor sink) is typically polynomial in the number
of nodes in the network.

The network design problem with all three sub-
problems: topology, capacity assignment and routing
is intractable. When some of the three problems are
fixed or some assumptions are made, the remaining
problems may have optimal solution that can be ob-
tained within a reasonable time. Exactly, what as-
sumptions can be made about some of the three sub-
problems depends on the current state of the technol-
ogy.

3 The Routing Problem

The routing problem in packet-switched networks is
one of the three related problems during the design
phase. Routing has also to be calculated later, for dy-
namic adjustments to the traffic conditions on the net-
work.

The goal of routing is to direct offered load (user
traffic) from sources to destinations, along selected
routes, in such a way that some parameters are op-
timized while respecting some restrictions. Objec-
tives include maximizing network performance (mi-
nimizing delay and/or maximizing throughput) while
minimizing the cost of the network itself (equipment,
facilities and maintenance). Besides topology, addi-
tional constraints are imposed by the technology that
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is used, network services that are provided and user
requests.Routing as a multiobjective, multiconstraint
optimization problem has been a reach area for re-
search for many years. The evolution of network tech-
nologies constantly introduces new context in which
older routing technologies have to be reexamined and
adjusted.

3.1 Routing Functions

Many different routing algorithms usually have in
common the fact that they provide three core routing
functions:

• Assembling and distributing network and user
traffic state information. This information in-
cludes service requirements and current loca-
tions of users, services provided by and resources
available within the network, and restrictions on
use of these services and resources. State infor-
mation in generating and selecting routes and it
can contain not only measured, but also predicted
values.

• Generating and selecting feasible and optimal
routes based on user and network state infor-
mation. Feasible are routes that satisfy all con-
straints while optimal are best with respect to
some performance objective. This function is
often computationally intensive and may require
heuristic approach.

• Forwarding user traffic along selected routes. It
can be done in connection-oriented and connec-
tionless way. We are more interested here in con-
nectionless routing.

3.2 Centralized and Distributed Routing

Each of the three mentioned routing functions may
be implemented in different degrees of centralized or
distributed form. By changing the degree of central-
ization dynamism, robustness and manageability are
affected. Both, centralized and distributed implemen-
tations have advantages and disadvantages.

With a centralized implementation, a single node
completely determines routing. Such system is easier
for management because everything about routing is
in the same place and special hardware can be easily
added. However, if that node fails, routing is com-
pletely halted. Also, dynamic routing is less respon-
sive since it takes more time to collect all the neces-
sary information about the network in a single central
node.

With a distributed (decentralized) implementation
of the routing, it is possible to have multiple nodes

independently replicate routing function, without ex-
changing information, or to distribute functionality so
that each node provide portions of the functionality.
In both cases, it is more difficult to manage the rout-
ing system, but advantages are more important. The
fault tolerance is greatly increased. Response delay is
reduced since needed information is closer to places
where it needed. The amount of routing resources
at any node is decreased and system can can easily
incrementally grow. Most routing systems today are
distributed.

4 Routing in the Internet

Internet routing algorithms changed over time. They
were shifting in the direction of more dynamic rout-
ing, but not without problems. In practice they were
refined, and theoretical explanations were searched,
some of which are in this monograph.

4.1 Routing Algorithms

Routing algorithm should generally have some desir-
able properties: correctness, simplicity, robustness,
stability, fairness, optimality etc. However, global op-
timality and fairness to individual users are contradic-
tory goals. The optimal routing will be some trade-off
between optimality and fairness, and it is necessary to
define exact goal of optimization. Minimizing mean
packet delay and maximizing total network through-
put are in conflict and, as a compromise, the number
of hops is often minimized. Reducing the number of
hops tends to reduce both, the delay and amount of
bandwidth consumed.

As a consequence of theOptimality Principle
(which states that if router B is on the optimal path
from A to C, then the optimal path from B to C also
falls along the same route), the set of optimal routes
from all sources to a given destination forms a tree
rooted at the destination. Such a tree is called sink
tree and it is a benchmark against which other routing
algorithms can be measured.

4.2 Shortest Path Routing

Representative of static routing algorithms is the
Shortest Path Routing, implemented by Dijkstra’s al-
gorithm. The algorithm is well known and the only
thing that remains to be done is to determine distance
metric. It is usually the number of hops, but it can
be geographic distance, mean queuing or transmission
delay. In the most general case distance can be com-
puted as a function of the distance, bandwidth, aver-
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age traffic, communication cost, mean queue length,
measureddelay etc. with appropriate weights.

Another static routing algorithm isFlooding, in
which every incoming packet is sent out on every out-
going line, except the one it arrived on. It is not prac-
tical in most applications.

More advanced static routing algorithm that, be-
sides topology, takes into account load isFlow-Based
Routing. It is applicable in networks where data flow
for each pair of nodes is relatively stable. From mean
delays on all the lines, a mean flow for the whole net-
work is calculated. It can be optimized by going from
one feasible routing to another that relieves heavily
used links.

4.3 Distance Vector Routing

Distance vector routing is older of the dynamic rout-
ing algorithms. It is also known as the distributed
Bellman-Ford algorithm and Ford-Fulkerson algo-
rithm. It was the original Arpanet routing algorithm
since 1969, and later used in the Internet, under the
name RIP.

This was distributed, adaptive algorithm that was
an ambitious first attempt and source for lot of re-
search, but with some fundamental flaws. It belongs
to a class of shortest path algorithms.

Each communication link is assigned a positive
number as its length (which can be different in each
direction). This length should represent the level of
congestion on that link. Each path is a sequence of
links, and its length is the sum of the lengths of its
links. The Arpanet algorithm tries to send packets
along the shortest path between the origin and desti-
nation nodes. In such a way it avoids congested links
and reduces delays.

Since the length of a link measures traffic conges-
tion, and Arpanet algorithm is adaptive, this length
has to be periodically updated. Neighboring nodes
exchanged their estimated shortest distances to each
destination every 625 milliseconds. Each link length
is dependant on the number of the packets waiting in
the link queue.

Link lengths changed rapidly, reflecting statistical
traffic changes and effects of routing updates. To sta-
bilize oscillations, a large positive constant was added
to the link lengths. This effort reduced sensitivity of
the algorithm to traffic congestion without completely
removing oscillations. It has been noticed that there
is a tendency to route everything through less utilized
parts of the network, which in turn caused that part to
become heavily utilized. Everything then was routed
through other part of the network and that part would
become heavily utilized and so on, back and forth. For

several years this caused problems and finally, that al-
gorithm had to be replaced.

Each router maintains a routing table with one en-
try for each router in the network. This entry contains
two parts: preferred outgoing link for that destination
and estimated distance to that destination. As before,
distance can be measured as number of hops, delay in
milliseconds etc. Each router independently learns the
distance to each of its neighbors. For number of hops
it is trivially 1, delay can be measured by sending spe-
cial ECHO packets. Periodically, each router sends
that routing table to each of its neighbors. With that
information each node calculates the complete routing
table.

The problem with distance vector routing is slow
convergence, especially in case of bad news. When
some link fails, that information is propagated very
slowly. There were many attempts to overcome that
problem, for example the Split Horizon algorithm, but
none was good enough.

4.4 Link State Routing

Link state routing was a version of the dynamic rout-
ing algorithms which replaced the original Arpanet al-
gorithm in 1979. Besides the problem of slow conver-
gence, it also solves the problem of not considering
the bandwidth, both present in the older distance vec-
tor algorithm.

The complete topology and all delays are ex-
perimentally measured and distributed to each other
router. In such a way all relevant factors must have
been taken into account.

The router learns about its neighbors and esti-
mates the delay by sending ECHO packets which re-
quire immediate response. If queuing delays are in-
cluded in the delay estimate, the estimate will be bet-
ter, but there is a danger that the routing will oscil-
late between alternate paths. Link state packets can
be built periodically, or only when something signifi-
cant occurs.

The length of each link is calculated by using de-
lays for each packet that crosses that link. Each link
length is updated every 10 seconds and new value
is average (including queuing and propagation times)
during the preceding 10 seconds. These link lengths
are broadcasted at least once every 60 seconds by
using a flooding algorithm, modified with sequence
numbers and packet ages. The algorithm is asyn-
chronous and this improved its stability.

When all the information is accumulated, for each
link two values are computed, one for each direction,
and used separately or averaged. Dijkstra’s algorithm
is then run locally to find shortest paths to all destina-
tions.
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4.5 OSPF - The Interior Gateway Routing
Protocol

The latest version of the Internet routing protocol is
the OSPF (Open Shortest Path First), also a variant of
the link state algorithm. It was introduced in 1990,
and defined in RFC 1247.

Having experience with problems with previous
algorithms, the following requirements had to be met:

• It had to be “open” i.e. published in the open
literature, not proprietary.

• Support for different distance metrics: physical,
delay etc.

• Dynamic algorithm that adapts to changes in the
topology automatically and quickly.

• Routing based on type of service (care about
real-time traffic).

• Bifurcated routing, splitting single stream of
packet along multiple routes, in appropriate per-
centage.

• Support for hierarchical system. By 1990 it
was impossible for any router to know the entire
topology.

• Security

OSPF supports three kinds of networks: point-to
point between exactly two routers, multiaccess with
broadcastings (most LANs) and mutiaccess without
broadcasting (most packet-switched WANs). It con-
structs a graph of the whole network where routers,
networks and lines play the main role, not the hosts.
For each type of service it maintains separate graph
with separate distance function. ASes are internally
divided into areas and routers can be internal (in one
area), area border, backbone and AS boundary. Infor-
mation is exchanged between adjacent routers, which
is not the same as neighboring (on LANs only one
router is elected as designated router).

When a router boots it sends HELLO messages
on all of its point-to-point lines and broadcasts them
on LANs. After that each router periodically floods
LINK STATE UPDATE massages and constructs the
graph for its area and computes the shortest path.

4.6 BGP - The Exterior Gateway Routing
Protocol

While OSPF is recommended within a single AS, be-
tween ASes BGP (Border Gateway Protocol) is used.
It is defined in RFC 1654 and partially described in

RFC 1268. The main difference between the OSPF
and BGP is that an interior gateway protocol has only
to move packets as efficiently as possible, while exte-
rior gateway protocol routers have to worry about pol-
itics. Different ASes are independent units and they
have to decide whose packets will they accept, whose
packet will they forward, who has to pay for that etc.
Such policies are manually configured into each BGP
router.

From the point of view of a BGP router, the world
consists of other BGP routers and the lines connect-
ing them. Networks can be stub networks with only
one connection to the BGP graph, multiconnected net-
works that could be used for transit traffic and transit
networks (such as backbones) that are primarily used
for transit traffic.

BGP is distance vector protocol but with signif-
icant modifications. Each BGP router maintains not
just the cost to each destination, but the exact path.
This prevents the count-to-infinity problem.

5 Problems with Dynamic Routing

Highly dynamic optimal routing has been used in the
Internet [1], [2], [3]. Expectations that it will give
much better results were not completely fulfilled, be-
cause unexpected delays occurred often. Here and in
[4], [5], [6], [7], [8], [9] is presented an attempt to give
some theoretical explanation for such behavior. To-
day, this problem is again interesting but in the context
of wireless ad hoc mobile networks [10], [11], some-
times using evolutionary computing [12].

Here, for the routing problem we also have ac-
cepted terminology to classify routing as static versus
dynamic or fixed versus adaptive. In practice, how-
ever there is not a clear-cut between the two: fixed
or static routing is not fixed forever and dynamic or
adaptive is not infinitely fast in its adjustment to the
situation on the network. As mentioned before, fixed
routing has to accommodate for occasional link fail-
ures at least, and adaptive routing needs some time to
collect and analyze the current traffic on the network.
In reality, routing adjustments are made, the question
is how often. In can be done on a daily basis, or ev-
ery hour, every minute or every few seconds. If it is
done every few minutes, it can be called fixed if com-
pared to adjustments every few seconds, or it can be
called adaptive if compared to adjustments every few
days. Often terms like ”semi-adaptive”, ”semi-fixed”,
”highly-dynamic” etc. are used.

There are problems with distributed optimal rout-
ing algorithms. Kleinrock was the first [13] to point
out that ”... uncontrolled alternate routing in a con-
gested network can lead to chaos. Indeed, the tele-
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phone company tends to limit (and even prohibit
completely)alternate routing on unusually busy days
(Mother’s Day, for example).”

It takes significant time to calculate new routing
tables, both to accumulate data in any node, and to ex-
change data among nodes. By the time the calculation
is finished load may be sufficiently different to make
the tables obsolete, and the routing far from optimal.

By working on the knees of sharply rising delay
curves, highly dynamic optimal routing can expend
massive amounts of network resources for no bene-
fit. It will be shown that congestion can be avoided
in a useful range of cases by quasi-static bifurcated
routing with conservative load estimates, and that the
delay penalties for use of this, less then optimal, rout-
ing are small. There are cases where dynamic routing
can offer significant performance improvements, but
without full load information and without infinitesi-
mal route calculation time the game theoretic ”maxi-
mal loss” is not minimized.

A complete mathematical analysis of a simple
network will be done. It will show that dynamic rout-
ing offers an improvement over static routing that is
smaller than expected. That minor theoretical gain
can easily be lost, and situation can actually become
worse, if there is even a small error in the dynamic
routing tables. An interesting and somewhat surpris-
ing solution is offered. Congestions can be avoided if
optimization is not tried too hard. Dynamic routing is
good, but only if the tables can be recalculated very
quickly. Static routing is better then attempted, but
unsuccessful optimal dynamic routing.

6 Mathematical Model

A simple three node network and even simpler offered
load will be examined. Nodes areA, B andC, and all
traffic is fromA to B. There are two possible differ-
ent routes: a direct path fromA to B, and an indirect
path, of the length two, that goes throughC. Let us
assume that all three lines are of the same capacityµ
bits per second. Our routing problem is then reduced
to making a decision about what fractionα of the to-
tal offered traffic will be sent along the indirect path
of the length two. The remaining fraction1−α of the
total load will be send along the direct path. Let us
call α a branching coefficient. Let offered load beλ
bits per second andρ will, as usually, denote utiliza-
tion λ/µ. We will also assume a Poison input stream
of messages, and an exponential service time on lines.

There are some limitations for the parameters that
we introduced [4], [9]. Parameterα is a fraction
(probability) so we certainly have0 ≤ α ≤ 1. For this
particular case, there is an even stronger condition.

We may have to send some traffic along the longer
route, which is more expensive, has longer wait time
etc., only if the direct path is overloaded (whatever the
definition of the “overload” is). It is obvious, how-
ever, that it never pays off to send more traffic along
the indirect route than along the direct route. If the
lines were of different capacities, costs, reliabilities
etc., this would not have to be the case, but according
to our assumptions, we get the limitation that reason-
able interval forα is 0 ≤ α ≤ 0.5 (this will formally
follow from the requirement that utilization for each
line must be less than 1).

There may be some additional limitations forα.
If the total offered loadλ is less than the line capacity
µ, then there are no problems. The network, however,
may withstand the total offered load ofλ < 2µ or ρ <
2. The reason for this is that we have two alternative
paths, each of the capacityµ. It is obvious that when
the total load approaches2µ, there is no more freedom
in selectingα. It has to be equal to 0.5, or one path
will become overloaded, introducing infinite delays.

The new set of limitations forα can be calculated
as follows. With the total loadλ, line capacityµ, uti-
lizationρ, and the branching coefficientα, the utiliza-
tions of the direct pathρ1, and the utilization of the
indirect pathρ2 will be:

ρ1 = (1 − α)ρ and ρ2 = αρ (1)

In order to keep the network in a stable state (to
avoid infinite queues and delays), we have to avoid
overloading any of the two paths. By solvingρ1 < 1
andρ2 < 1, we get an additional constraintsα > 1 −
1/ρ andα < 1/ρ. If we check the second constraint,
we see that it is completely included in the previous
constraintα < 0.5.

Then, the final set of constraints is:

µ > 0 (2)

0 ≤ ρ < 2 (3)

max

(

0, 1 −
1

ρ

)

≤ α ≤ 0.5 (4)

Theleft constraint in the last expression is differ-
ent from zero forρ > 1.

6.1 Optimal Waiting Time

The waiting time (including service time) for an
M/M/1 queuing system is:

WM/M/1(ρ) =
1

µ(1 − ρ)
(5)
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WM/M/1 is a function ofλ andµ, but they are
connected throughρ, andµ can be considered con-
stant.

By using Kleinrock’s Independence Assumption,
the total waiting time for our network is:

W (α, ρ) = (1−α)WM/M/1(ρ1) + 2αWM/M/1(ρ2)
(6)

By substituting Equations (1) and (5), we get

W (α, ρ) =
1 − α

µ[1 − (1 − α)ρ]
+

2α

µ[1 − αρ]
(7)

or

W (α, ρ) =
3ρα2 + (1 − 3ρ)α + 1

µ[1 − αρ][1 − (1 − α)ρ]
(8)

Our goal is to optimize the waiting time so we need a
derivative. Parameter under our control isα. Differ-
entiation gives:

dW (α, ρ)

dα
=

ρ2α2 − 2ρ(2ρ − 3)α + 2ρ(ρ − 2) + 1

µ(1 − αρ)2[1 − (1 − α)ρ]2

(9)

The optimal (minimal) waiting time, when
branching probabilityα is selected optimally

Wopt =
(21 − 18

√
2)ρ + 32

√
2 − 45

µρ[(6
√

2 − 7)ρ − 12
√

2 + 14]
(10)

7 Changing Offered Load

Previous chapter assumes that we know that the of-
fered load isλ exactly, and that it does not change in
time. This case is not really interesting. In reality, of-
fered load is always changing in time, and that is what
makes difference between static and dynamic routing,
but also gives possibility for an error when calculating
dynamic routing tables.

7.1 Uniformly Changing Offered Load

Let us consider more general and more realistic case,
when the offered load changes in time between the
lower limit l and the upper limith, where0.3 ≤ l <
h < 2 must be satisfied. To make calculations easier
(or possible) we will assume that the load changes uni-
formly. That means that the value for the offered load
spends equal amount of time inside any subinterval of

the same size, included betweenl andh. Such dis-
tribution corresponds, for example, to constant-speed
load shift froml to h, back and forth. This assump-
tion that load changes uniformly betweenl andh is
somewhat artificial, but not very far from what really
happens in the network.

7.2 Optimal Dynamic Routing

We will now calculate the waiting time for optimal dy-
namic routing. We select our optimal branching prob-
ability α infinitely fast, and at any moment it follows
precisely the changing loadλ. The total waiting time
will be expected value with regard to the distribution
g(ρ) of the changing load:

Wopt dyn =

∫ h

l
Wopt(ρ) g(ρ) dρ (11)

By substituting Equation (10) andg(ρ) for uni-
form distribution, we get

Wopt dyn =
1

h − l

∫ h

l

(9
√

2 − 12)ρ − 17
√

2 + 24

µ(3
√

2 − 4)ρ(2 − ρ)
dρ

(12)

By solving this integral, we get the best we can
hope for in the case of uniformly changing load. Op-
timal dynamic routing gives waiting time:

Wopt dyn =
(24 − 17

√
2) ln

(

h
l

)

+
√

2 ln
(

2−l
2−h

)

2µ (3
√

2 − 4)(h − l)
(13)

7.3 Optimal Static Routing

Let us now examine static routing where the branch-
ing probability α will always have the same, fixed
value. To find the optimal value for that fixed branch-
ing probabilityα, we do again differentiation and in-
tegration, but in the reverse order. Previously, we dif-
ferentiatedW to find optimalα for a particularρ and
then, using that optimalα, integrated over all possible
values forρ (with regard to distribution forρ). Now,
we will integrate over all possible values forρ (as-
suming thatα is fixed) to find averageW and then
differentiate that expression with respect toα to find
the optimal fixed value forα, which minimizesW .

Average waiting time for a fixedα will be:

Wavg =

∫ h

l
W (ρ) g(ρ) dρ (14)
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or, after we substitute Equation (7) andg(ρ) for
uniformdistribution

Wavg =
1

h − l

∫ h

l

[

1 − α

µ[1 − (1 − α)ρ]
+

2α

µ(1 − αρ)

]

dρ

(15)

By solving this, we get

Wavg =
1

µ(h − l)
ln

(1 − αl)2[1 − (1 − α)l]

(1 − αh)2[1 − (1 − α)h]
(16)

Now, we differentiate this expression with regard
to α:

dWavg

dα
= (17)

3αl − 2l + α2hl − 4αhl + 2hl + 1 + 3αh − 2h

µ (1 − h + αh) (−1 + αh) (1 − l + αl) (−1 + αl)

we get an expression for the optimal waiting time
for static routing:

Wopt stat =
ln
(

l3[R+h(4l−5)−3l]2[R+h(2l−1)−3l]
h3[R+h(4l−3)−5l]2[R+h(2l−3)−l]

)

µ(h − l)
(18)

This case represents pure static routing if the
boundariesl and h are fixed and never change. In
practice, we use a quasi-static routing where the
boundariesl and h do change over time, but much
slower than the offered loadρ. We adjustl andh, and
correspondingαopt stat, but we do it once every hour
or so. For shorter periods of time routing is static,
while dynamic routing chases changing offered load
continuously.

7.4 Comparison

Now, we will compare optimal dynamic routing and
optimal static routing. Formula that is used to calcu-
late improvement is

Improvement=

(

Wopt stat

Wopt dyn
− 1

)

∗ 100% (19)

Thefollowing Table 1 shows improvement in per-
cents (reduction of delays) when optimal static rout-
ing is replaced by optimal dynamic routing, for differ-
ent intervals[l, h], where offered loadρ is uniformly
changing.

l,h 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9
0.3 0.6 1.3 1.8 2.2 2.5 2.7 2.8 2.9
0.5 0.2 0.6 1.0 1.3 1.7 2.0 2.3
0.7 0.1 0.4 0.7 1.1 1.5 2.0
0.9 0.1 0.3 0.6 1.0 1.6
1.1 0.1 0.3 0.7 1.3
1.3 0.1 0.4 1.1
1.5 0.1 0.7
1.7 0.4

Table 1: Dynamic vs. Static routing, improvement in
percents

Rows in the table give corresponding improvement
for particular l, columns forh. Sincel < h, only
the upper right triangle of the table is used, diago-
nal excluded. First impression is surprisingly small
improvement that dynamic routing introduces. It al-
lows us to make claim that too zealous optimization is
harmful. Even without any errors in calculating rout-
ing tables, best improvement we can hope for, the up-
per limit, is given in Table 1. Average improvement is
about 1%, maximal improvement is less than 3%. It is
not surprising that maximal improvement is achieved
when interval[l, h] is wide. Traffic then varies a lot,
and if we can follow that wide variations, improve-
ment will be more significant.

When we look at this modest improvement, we
should keep in mind that we are dealing with a very
simple model with only three nodes and one source.
In a larger network, it is possible that improvement
would be better, but chances for an error in the dy-
namic routing tables would also be better. The com-
bined effect would probably be the same.

The conclusion is that optimal dynamic routing
gives modest improvement over optimal static rout-
ing. That small improvement can easily be annihi-
lated, and actually dynamic routing can give larger de-
lays than static, if there are any errors in the dynamic
routing tables. Such errors always exist, because it
takes significant time to calculate new routing tables,
both to accumulate data in any node, and to exchange
data among nodes. By the time the calculation is fin-
ished, load may be sufficiently different to make the
tables obsolete, and the routing far from optimal.

8 Imprecise Adaptive Routing

Now, we show how that small advantage can be lost
and why dynamic routing can become worse than
static, even for relatively minor errors in traffic esti-
mate.

The goal in this section is to quantitatively exam-
ine how imprecise (obsolete) traffic information used
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for calculating dynamic routing affects delays in the
network and when dynamic routing becomes imprac-
tical because optimal static routing becomes better.

We need a simple, but not far from the reality,
mathematical model to represent obsolete traffic in-
formation. We have already made assumption that
offered load for the network changes uniformly be-
tweenl i h. We can add another assumption that uni-
form change is by constant speed froml to h and back
and so forth. Time delay in collecting traffic informa-
tion can then be represented by fixed underestimate of
the traffic (or, for the other direction, by fixed over-
estimate). That practically means that underestimated
valueρ − d should be substituted forρ in the expres-
sion for optimal value for branching coefficientα.

αopt d =
2ρ − 2d − 3 −

√
2ρ +

√
2d + 2

√
2

ρ − d
(20)

8.1 Optimal Imprecise Dynamic Routing

This impreciseαopt d we substitute into expression
for waiting time

Wopt d =
1 + 3 Aρ

d−ρ − A
d−ρ + 3 A2ρ

(d−ρ)2

µ
(

1 − ρ − Aρ
d−ρ

) (

1 + Aρ
d−ρ

) (21)

where

A = (2 −
√

2)(ρ − d) + 2
√

2 − 3 (22)

Now, we can calculate, as before, optimal wait-
ing time for the network when offered load uniformly
changes froml to h:

Wopt dyn d =
1

h − l

∫ h

l
Woptd(ρ)dρ (23)

Calculating this integral gives a complicated ex-
pression that can be written in parts:

Wopt dyn d =
1

µ
√

a1 ∗ a2(h − l)2(3 − 2
√

2)2
∗ (24)

∗
{

√
a1 ∗ a2

[

(17 − 12
√

2) ln

(

b(l) +
√

2d

b(h) +
√

2d

)

+

(34 − 24
√

2) ln

(

2b(l) +
√

2d

2b(h) +
√

2d

)]

+

+4
√

a1(a3 − a6)(29d
√

2 − 41d + 41
√

2 − 58)+

+2
√

a2(a5 − a4)(29d
√

2 − 41d + 82
√

2 − 116)
}

where

a1 = (2
√

2 − 3)(d2 + 4) + 2(6
√

2 − 8) (25)

a2 = (2
√

2 − 3)(d2 + 4) + (6
√

2 − 8) (26)

a3 = arctan

(

(
√

2 − 1)(d − 2l + 2)
√

a2

)

(27)

a4 = arctan

(

(1 −
√

2)(d − 2l + 2)
√

a1

)

(28)

a5 = arctan

(

(1 −
√

2)(d − 2h + 2)
√

a1

)

(29)

a6 = arctan

(

(
√

2 − 1)(d − 2h + 2)
√

a2

)

(30)

b(t) = t2 − (2 + d)t + d (31)

This formula ford = 0 reduces to formula for
waiting time for optimal dynamic routing, Equation
(13), that we had before.

8.2 Static and Imprecise Dynamic Routing

Now, we can compare imprecise dynamic routing with
optimal static routing. As before, we will calculate
improvement in percents (reduced delays) when op-
timal static routing is replaced by imprecise dynamic
routing. Improvement is calculated for different in-
tervals [l, h] where offered load uniformly changes.
Whend becomes large enough, improvement will be-
come negative, i.e. static routing will become superior
to this sufficiently imprecise dynamic routing.

l,h 0.7 0.9 1.1 1.3 1.5 1.7 1.9
0.5 -2.4 -1.3 -0.5 0.1 0.6 0.9 -0.2
0.7 -1.1 -0.6 -0.2 0.2 0.5 -0.6
0.9 -0.7 -0.4 -0.1 0.1 -1.0
1.1 -0.6 -0.4 -0.2 -1.5
1.3 -0.6 -0.6 -2.0
1.5 -1.0 -2.8
1.7 -4.2

Table 2. Improvements in percents ford = 0.15
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For d = 0.15 almostall elements are negative,
which means that is better not to try dynamic routing
with that size of error in traffic information. Static
routing is better and error is only 7.5% of the total
capacity.

9 Conclusion
Previous tables give an interesting and somewhat sur-
prising solution. Congestions can be avoided if we do
not try to optimize too hard. Dynamic routing is good,
but only if we can recalculate tables very fast. Static
routing is better than attempted, but unsuccessful op-
timal dynamic routing.
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