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Abstract- A new detection algorithm for decoding multiple-input multiple-output (MIMO) transmission 

is proposed and analyzed. The method is based on combining sphere decoding (SD) and zero forcing 

(ZF) techniques. The proposed method performs a fixed number of operations to detect the signal, 

independent of the noise level, and hence provides a fixed complexity near optimal performance. The 

algorithm is especially suited for systems with a large number of transmit antennas and allows efficient 

implementation in hardware. The high efficiency of this algorithm is obtained by limiting the number of 

overall SD iterations. Moreover, in the proposed method matrices with high condition number are more 

likely to undergo SD.  

 
Index Terms- MIMO, detection complexity, spatial multiplexing, sphere decoding, zero forcing, maximum-

likelihood. 

 

1  Introduction 
 
Multiple-input multiple-output (MIMO) wireless 

communication systems are capable to provide 

very high data rates, without requiring an 

increased transmission bandwidth. It is believed 

that future wireless communication systems will 

incorporate a large number of transmit and receive 

antennas. IEEE802.16 and WiMax standards are 

already discussing future user terminals and base 

stations characterized by a large number of 

antenna arrays. This kind of setup altogether with 

high rate QAM modulation schemes make  the 

maximum likelihood (ML) decoding algorithms 

of MIMO systems a very challenging issue for 

future hardware implementation. The complexity 

of the ML detection for MIMO systems grows 

exponentially with the number of transmit and 

receiving antennas as well as the constellation 

points. Actually the ML decoding algorithm is 

based on searching for the closest point in the 

lattice to the received vector. 

One of the most promising transmission methods 

for MIMO is spatial multiplexing (SM). In SM, 

the transmitter endowed with M transmit 

antennas, transmits M independent information 

streams, one from each antenna. In this case the 

receiver, endowed with MN ≥ receive antennas, 

is to decode the transmitted information streams. 

It is known that the optimal solution to the 

decoding of SM signals is ML, which involves 

exhaustive search in case of multiple dimensions 

used in high-performance applications [1]. 

Spherical decoding (SD) is an iterative method for 

WSEAS TRANSACTIONS on COMMUNICATIONS M. Haridim, H. Matzner, V. Neder, D. Ezri

ISSN: 1109-2742 353 Issue 3, Volume 8, March 2009



 

 

the computation of the ML estimator in SM 

MIMO [2]. Like the ML algorithm, SD finds the 

lattice points closest to the received vector, but the 

search is limited to the points located inside a 

sphere centered at the received vector, leading to a 

significant reduction of the decoding complexity.  

SD offers a computationally efficient decoding 

algorithm with ML performance. However, one of 

the most severe problems in the implementation 

of SD lies in the fact that the number of iterations 

per realization is neither defined nor bounded. 

Thus, usually, SD methods are not suitable for 

hardware implementation. Several works have 

been dedicated to develop SD with fixed 

complexity ([3]-[6]). 

In the K-Best lattice decoder with breadth-first 

tree search was presented. This method uses the 

breadth-first tree search technique which 

introduces fixed throughput. In this method, the 

best K candidates, which have the smallest overall 

Euclidian distance, are kept at each search so that 

that a fixed amount of nodes are visited each time. 

Main disadvantage of this method is that the K 

parameter cannot be defined analytically and it is 

highly dependent of the channel conditions. 

In [5] the authors propose the depth-first tree 

search SD. This is a straightforward way of 

enforcing a run-time constraint to terminate the 

search, on a symbol vector by symbol vector 

basis, after a maximum number of visited nodes. 

The detector then returns the best solution found 

so far, i.e., the current ML and counter-

hypotheses. The detecting performance of this 

method can be degraded in case of bad channel 

conditions. 

In[5] an unconstrained list sphere detector with a 

search method that is bounded independently per 

search level is proposed. The bound is determined 

based on the distribution of the candidates found 

in each search level for the large number of 

detected sub-carriers. It is shown that the search 

process cannot be bounded for the first search 

level without a substantial performance loss. This 

method exploits the main idea of [4] but with 

lower upper bound, also it doesn’t provide the 

constant rate, but only bounds it. 

In [6] it is shown that diversity achieving schemes 

may be devised by combination of the low 

complexity zero forcing (ZF) algorithm and ML 

detection. This method is based on division of the 

channel matrices into 2 sets according to the 

condition number. Matrices with condition 

number lower than a predefined threshold are ZF 

decoded, while the others are ML decoded. 

However, this result does not allow hardware 

implementation of SD for the ML estimates since, 

again, the number of iterations is not defined. 

Moreover, the threshold based technique implies 

receiver calibration, which should be recalibrated 

for different channel conditions. 

In order to further reduce the complexity of SD, 

we propose a new decoding algorithm, based on 

combining SD and ZF. The main idea behind the 

proposed algorithm is to limit the number of 

overall SD iterations such that the matrices with 

high condition number, identified as more 

problematic ones, will be fully SD decoded. In 

this manner we assure high efficiency 

performance. This paper is organized as follows. 

In Section II the SM system is briefly introduced. 

In Section III we consider different 

implementations of the SD algorithms, namely, 

the zero-forcing (ZF), ML, and SD algorithms. 

Section IV describes the principles of the 

proposed algorithm. Section V presents and 

discusses the simulations results. Conclusions are 

given in Section VI. 

 

2  SM System Description 
The mathematical model for the received vector 

y  in the case of SM is 

                             vHsy ρ+=                        (1) 
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H  is the channel matrix, ρv is a vector of 

independent complex valued Gaussian random 
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A schematic illustration of the SM scenario is 

given in Fig. 1. 
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Fig. 1- Schematic representation of an SM system 

 

3   Review of Prominent SM 

Decoding Algorithms 
 

3.1 Zero Forcing 
The linear zero forcing (ZF) algorithm computes 

the least square estimator [8]  

                    
yH=sZF

+ˆ
                                   (2) 

where +H denotes the left pseudo-inverse of H. 

The estimator ZFŝ  undergoes standard processing 

as in the single input single output case (SISO). 

The complexity of finding the ZF estimate is 

essentially determined by the complexity of 

finding the pseudo-inverse of matrix H in Eq. (1).  

In the case of 2×2 MIMO, assuming that the 

transmission power is 1W, it can be shown that 

the SNR at any receiving antenna is given by: 
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This equation shows that a relatively high spatial 

correlation between the antennas results in a small 

values of H
-1

 ( { }Hdet is small in this case), which 

in turn leads to high noise around any lattice point 

and hence a low SNR.  

For large matrices, the simplest way of calculating 

the pseudo-inverse is by means of QR 

factorization, H = QR. It can also be calculated in 

a more stable way (which avoids inverting the 

upper triangular matrix R) by means of the 

singular value decomposition (SVD) of H. The 

ZF algorithm is not optimal in the case of MIMO, 

but remains attractive due to its low 

implementation complexity. The problem with the 

ZF approach is evident when the channel matrix 

H is ill conditioned (has a large condition 

number), corresponding to strong correlation 

between the channels. In this case, the entries of 
+H in Eq. ( .מקור ההפניה לא נמצא! שגיאה ) are 

large. This leads to large noise at the output of the 

ZF estimator. The ZF solution provides diversity 

order of 1+− MN  and array gain of 
M

MN 1+−
. 

 

3.2 Maximum Likelihood 
We now address the optimal ML decoder for SM. 

In this case, the ML detection comes down to 

finding the log-likelihood ratio (LLR): 
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Applying Bayes’ formula we obtain: 
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Using Eq. (1) we obtain: 
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which can be approximated as: 
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Finally,  we end up with SM decoder definition: 

                                                           
2

minarg Hsys
s

−=
Γ∈

ML                      (3)                                                                                                               

This solution implies exhaustive search and 

therefore it quickly becomes impractical when the 

number of streams or number of constellation 

points is large. The ML solution provides 

diversity order of N and array gain of 
M

N
. 

 

3.2 Sphere Decoding (SD) 
SD is an iterative method that converges to the 

ML when the number of iterations is not bounded. 

In SD, the multidimensional search implied by the 

ML criterion is transformed to multiple searches 

in one complex dimension.  

The building block of the optimal LLR is the 

search for the minimizer of the cost functional 

2
min Hsy
s

−
Γ∈

                       (4)       

over some set of points Γ . Continuing for 

simplicity on the 22×  case, denoting the ZF 

solution as ŝ , the cost functional in Eq. (4) may 

be rewritten as: 
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Applying QR decomposition on H we end up 

with: 
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We begin with searching for points s  for which 

the cost functional Eq. (4) is smaller than an 

arbitrary r
2
. Taking only the first term in the sum 

Eq. (4) we obtain a necessary (but not sufficient) 

condition for a point s  to lie inside the sphere as 

( ) 22

mm

2

mm
ˆ d<ssr − . This condition is equivalent 

to sm being bounded between: 
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For every sm satisfying Eq. (6), we shall define 
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2
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1 ŝsrddm −−=− . A stronger necessary 

condition can be found by looking at the first two 

terms in (5), which leads 1-ms  to be bounded 

between 
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Continuing in the similar manner for sm-2 and so 

on we can obtain all the points inside the sphere. 

Fig.2 illustrates the SD for the case of 16-QAM 

with two antennas. In this case, for each point of 

S1 in the 1
st
 circle, we search for points in the 

circle inside S2.  
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Fig.2- Illustration of the SD for the case of 16 QAM with two antennas 

 

One of the major problems with the SD algorithm 

is that the number of iterations is not constant and 

may significantly vary between matrices. This 

makes hardware implementation of SD very 

difficult. When the number of iterations of SD 

algorithm is not limited, the array gain and 

diversity order are the same as for the ML. 

 

4.  The Proposed Algorithm Combining SD 

and ZF  

The SD algorithm provides an exact ML solution, 

and exhibits the exponential worst-case 

complexity. On the other hand ZF is a suboptimal 

algorithm, especially when H is ill conditioned 

(large condition number), but has a polynomial 

complexity. The idea behind the proposed 

algorithm is to combine SD with ZF in a manner 

that exploits the advantages of both algorithms. 

Observations show that under Rayleigh fading 

environment, there is a small number of channel 

matrices, which have relatively large condition 

number. In such a case most of the matrices could 

undergo SD without significant noise 

amplification and therefore without much 

performance degradation. The channel matrices 

with large conditional number should undergo 

SD. Moreover, we can achieve fixed throughput 

operation of the algorithm by limiting the overall 

number on channel matrices intended for the SD. 

Such SD-ZF hybrid scheme can provide a fixed 

complexity near optimal MIMO decoding 

solution. 

The proposed method assumes a constant 

hardware clock budget for the decoding of the K  

matrices, each with dimensions N×M. We further 

assume that the clock budget is larger than that 

needed for ZF decoding of all matrices. 

The proposed decoding method is based on two 

main assumptions. Fist, we assume that matrices 

with high condition number should be likely to 

undergo SD. The second assumption is that the 

hardware clock budget must remains constant for 

the decoding of K matrices. Note that we do not 

attempt to construct an SD algorithm with finite 

number of iterations for each matrix, but restrict 

the number of overall iterations for the decoding 

22
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of multiple matrices. Utilizing all of the above 

ideas, a complete algorithm sums up to the 

following steps:  

 

1. Compute the linear ZF decoder for each of the 

K  SM inputs (or matrices). 

 

2.                                      

              yH=s +ˆ                                       (2) 

 

An SVD based approach is preferred here since it 

expedites the calculation of the condition number. 

 

3. Order the K matrices according to the 

condition number, in descending order (largest 

first). This way the more problematic matrices in 

terms of decoding are assigned with a high 

priority.  

 

4. Apply SD to the matrices according to the 

above-mentioned order until the hardware clock 

budget runs out. We note that the SD algorithm 

requires the ZF solution already obtained in the 

first step, resulting in no waste of clock budget in 

the first step. 

 

5.  

Thus, in the proposed algorithm, the matrices 

with high condition number are first to invoke the 

SD mechanism, which means efficient use of the 

hardware resources. The performance of the 

proposed algorithm is low bounded by that of ZF 

(in case the clock budget is identical to that 

required for ZF decoding), and it is high bounded 

by the performance of ML (in case the clock 

budget is sufficient for SD of all matrices).  

The performance of the algorithm in actual 

scenarios is determined by the clock budget 

allocated and the distribution of the condition 

number of the channel matrices.  

 

5  Simulation Results and Discussion 
In this section, we evaluate the performance of 

the proposed algorithm by means of simulation. 

For simplicity and runtime limitation of 

simulation, we consider an uncoded 2x2 MIMO 

spatial multiplexing system with QPSK 

modulation. The system is tested for a  Rayleigh 

fading channel. Details are shown in Appendix 1. 

For simplicity we assume perfect channel 

knowledge at the receiver. Simulation results for 

the proposed algorithm are shown in Fig.3. 

 

We define the clock relation parameter n as 

 

                     
ZF

TOT

n

n
n=                                    (3) 

 

Where TOTn  is the number of overall hardware 

clocks, reserved for the decoding, and  ZFn  is the 

number of hardware clocks, reserved for ZF 

decoding. 

Fig.’s 3-5 show the BER curves corresponding to 

the performance of the proposed algorithm with 

different clock budgets. The BER curves for ZF 

and ML are added to for comparison purposes. 

Obviously the BER is smaller as the clock budget 

is increased. This figure clearly shows that in our 

method when the matrices are sorted by their 

conditional number, a small fraction of them 

undergoes SD, but still we can get significant 

enhancement in the performance. Moreover, for 

n=10, where on average 18% of the matrices is 

undergoing SD, the performance is almost 

identical to the optimal ML decoder. 
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Fig. 3- Simulation results of ML, ZF and proposed SD algorithms in Raleigh channels 

 

 

 

Fig. 4- Simulation results of ML, ZF and proposed SD algorithms in the WiMax Ped-B 3 kM/h channel 
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Fig.5-  Simulation results of ML, ZF and proposed SD algorithms in the WiMax Veh-A 60 kM/h channel 

 

6  Conclusion 
 We have presented a novel fixed complexity 

combined SD-ZF algorithm for decoding MIMO 

transmission, which is upper bounded by exact 

ML solution, depending of overall number of 

iterations, reserved for the decoding. Higher 

number of overall iterations causes the algorithm 

to be closer to the optimal ML solution. Our 

simulation results show that using the proposed 

algorithm only few percent of the receive matrices 

need to undergo SD to achieve near optimal 

performance; therefore the overall number of 

iterations could be relatively low, which provides 

low complexity hardware implementation. 

Moreover, the employment of the SD to a small 

portion of the matrices, will allow the 

accommodation of large antenna arrays featuring 

a large number of spatial streams. 
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Appendix 1 

 

WiMax Ped-B channel definition: 

 

 

 

 

 

WiMax Veh-A channel definition: 
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