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Abstract: - This paper treats data reduction in array processing for the spatially colored noise case. The purpose 
is to reduce the computational complexity of the applied signal processing algorithms by mapping the data into 
a space of lower dimension by means of a linear transformation. We discuss ways to implement the 
transformation and show that it suffices to estimate the array covariance matrix instead of the noise covariance 
matrix in the design process of the optimal transformation. Computer simulations are given that illustrate the 
problem of interference from out-of-band-sources that result when a beamspace transformation is designed to 
focus on a particular sector. The presents an dynamic state estimator. The method uses ANN based bus load 
prediction for the prediction step in the DSE. 
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1 Introduction 
The computational complexity of the algorithms 
applied to the array signal processing problem is 
heavily dependent on the number of sensors in the 
array. Since large arrays with many sensors are 
preferable from an estimation accuracy viewpoint, 
accuracy and computational complexity are conicting 
issues. This has led to diferent schemes for dimension 
reduction via linear transforms, beamspace 
transformations, which reduce the computational load. 
Besides a reduction in computational complexity, a 
beamspace transformation can have other 
advantageous ejects, such as reduced bias, reduced 
sensitivity to directional interference, etc [4], [7]. 
Diferent criteria can be used when deriving the 
transform. If one knows from which angular sectors 
that signals may emanate from, a possible approach is 
to design a transformation that focuses on these 
sectors. This can, e.g., be accomplished by a bank of 
conventional beamformers, the output of which are 
collected in a new vector, with reduced size. A more 
sophisticated variation of this theme is to design a 
beamspace transformation that maximizes the signal-
to-noise ratio for signals impinging from the 
preselected. sectors [12], or minimizes the interference 
power under the constraint that signals from the 

sectors are left un-distorted by the transform. The latter 
method is easily implemented by a bank of linearly 
constrained minimum variance beamformers, see, e.g., 
[10], [11]. Yet another method is to design a 
transformation that preserves the Cramér-Rao bounds 
(CRB), for the parameters of interest, which is the 
approach taken in the present paper. This criterion is 
also considered in [1], [2], [8] for the white-noise case, 
i.e., an equal amount of un correlated noise at each 
sensor, and a stochastic signal model.  
    This paper concentrates on the spatially colored 
noise case, which is more realistic in any scenario, due 
to, e.g., directional interference from other sources 
(‘out-of-band sources'), mutual coupling between 
sensors, etc. The derived transform depends, in 
addition to the unknown DOAs, on the color of the 
noise process. However, it is shown herein that it is 
possible to implement the proposed transform without 
knowledge of the noise color and the exact directions 
of arrival; a fact that has great practical implications in 
a real scenario.  
    The paper presents a design approach and computer 
simulations that support the theoretical results. The 
simulations evaluate the approach against the method 
of spheroidal sequences [4], and the method presented 
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in [1], [8] with respect to the e!ect of out-of-band 
sources. The outline of the paper is as follows. 
Section 2 discusses the signal model, formulates the  
problem and derives the main results of the paper.  
Section 3 treats practical implementation issues and 
Section 4 presents the computer simulations.  
Section 5 treats dynamic load prediction. 
Section 6 discusses the analysis of anomalous data. 
Section 7 proposed DSE scheme.  
Section 8 treats test system simulation. 
Finally, conclusions are given in Section 9. 
 
 
2 The optimal model  
Consider an array of m sensors receiving p planar, 
narrowband, waveforms from the directions 
{ }pθθ L1 . The sensor outputs are modelled by the 
relation 
 

( ) ( ) ( ) (te )~tsA~ty~ +θ= 0 ,                     (1) 
 

where ( )0θA~  is the array steering matrix, 
( ) ( ) ( )[ ]pa~a~A~ θθ=θ L10 , and the source signals are 

collected in the vector 
 

( ) ( ) ( )[ T
p tststs L1= ]                         (2) 

 
The parameter vector  is a column vector containing 
the true directions of arrival.  The notation 

0θ
x~  is used 

to designate that the quantity, x, belongs to 
elementspace, i.e., the original data set to which the 
beamspace transformation is applied. The signal s(t) 
and the noise  are assumed to be independent, 
temporally white, zero-mean, complex Gaussian 
random variables with second-order moments 

( )te~

 
      ,   ( ) ( )[ ] ssRt*stsE = ( ) ( )[ ] Q~t*e~te~E = .        (3) 

 
The superscript, „*”, denotes complex conjugate 
transpose. The matrix Q~  is Hermitian and positive 
definite, but otherwise arbitrary. The signal covariance 
matrix, Rss, has rank d p. The latter condition implies 
that the signals may be spatially correlated, e.g., due to 
multipath, etc. The array covariance matrix is given by  

≤

 
( ) ( ) Q~*A~RA~R~ ss +θθ= 00 .                    (4) 

 
In general, to avoid ambiguous parameter estimates, 
some sort of structure must be imposed on the noise 
covariance matrix, see, e.g., [5], [8]. However, since 
the main question here is preservation of the CRB of 
the transformed data, we do not treat the problem of 
parameter identi"ability herein. Now, we introduce a 
linear transformation of the data from the complex m-

dimensional vector space, Cm (m being the number of 
sensors) to the complex n-dimensional vector space Cn 
where n≤ m. Denoting the m× n beamspace 
transformation by T, the beamspace signal model 
becomes 
 
 ( ) ( ) ( ) ( ) ( ) ( ) ( )tetsAte~*TtsA~*Tty +θ=+θ= 00      (5) 

 
where A~*TA =  is the beamspace steering matrix and 
e(t) is the resulting beamspace noise.  
Based on N snapshots of the beamspace data, y(t), the 
directions of arrival,  are to be 
estimated. Before stating and proving the main result 
of the paper, we briefly discuss the white-noise case, 
which is addressed in [1]. In this case, the spatial noise 
covariance matrix is a scaled version of the identity 
matrix, and the array covariance matrix is given by 

[ T
pθθ=θ L10 ]

 
( ) ( ) I~*A~RA~R~ ss

2
00 σ+θθ=               (6) 

 

where  is the variance of the additive thermal noise 
always present in the receiving equipment in a sensor 
array. Note also that the white-noise model assumes an 
equal amount of white-noise at each sensor. In order to 
retain the white-noise model in beamspace, an 
orthogonality constraint must be imposed on the 
beamspace transformation matrix: T*T=I. In [1], it is 
shown that the optimal beamspace transformation 
matrix satisfies the condition 

2σ

 
     R (T)⊇  R ( ) ( ) ( )( )[ ]pp d~d~a~a~ θθθθ LL 11         

(7) 
 
In the above equation, R (X) denotes the range space 
of X while ( )θd~  is the derivative of the steering vector 
with respect to θ . Thus, to obtain a beamspace CRB 
which equals the elementspace CRB, the range space 
of the beamspace transformation matrix should include 
the subspace spanned by the steering vectors and the 
derivative of the steering vectors evaluated at the true 
directions of arrival. It should be noted that the 
minimal beamspace dimension that satis"es the 
condition in Eq.(7) is n=2p. We now return to the 
colored noise case. The following theorem states a 
condition on the range space of the beamspace 
transformation that is sufficient to guarantee that the 
beamspace CRB equals the elementspace CRB. 
    Theorem 1. The CRB for the estimate of 0θ  in 
beamspace is equal to the CRB in element space, 
provided that the beam space transformation matrix T 
satisfies the following condition: 
 

R  (T)⊇  R ( )( )=θ−
0

1UQ~  R ( )( )0
1 θ− UR~ , 
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where  is defined as ( )0θU

( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]pp
DEF

d~d~a~a~D~A~U θθθθ=θθ=θ LL 11000
 

    Proof. Without loss of generality, partition the 
beamspace transformation matrix in the following 
way: 
 

[ ] [ 21
1 TTCUBQ~T

DEF
MM == − ],                 (8) 

 
where B, with dimension 2p× 2p, is a full-rank matrix 
and C, with dimension m× (n-2p), is an arbitrary 
matrix. For convenience, the dependence on 0θ  is 
suppressed. The partitioning reflects the condition R 
(T)  R ⊇ ( )UQ~ 1− . The beamspace signal becomes 
 

( ) ( )
( )

( )
( )⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

ty~T
ty~T

ty
ty

ty *

*

2

1

2

1 .           (9) 

 
Concentrating on , we can write ( )ty~T*

1
 

( )ty~T*
1 = ,     (10) ( )ty~T w

*
w

 
where 

,UBQ~Tw 2
1

−
=    ( ),ty~Q~y~w 2

1
−

=                 (11) 
 

Now, using the result of [1], the optimal 
transformation that preserves the CRB for the 
whitened data set, , should satisfy the condition 

R (Tw) R 

( )ty~w

⊇ ( )U/ 21

(ty~

Q~−

( )tw

. This condition is satisfied 
because B is full rank, see (1). Now, since y1(t)= 

= , we obtain the same CRB for 
estimates based on the data y1(t) as for estimates based 
on elementspace data, .  

( )ty~T*
1 y~Tw

)
     The data y2(t) can, in fact, be ignored since it 
conveys no more information about the parameters 
than is already present in y1(t). We have thus shown 
that the beamspace CRB equals that of the 
elementspace provided that R (T) R ⊇ ( )UQ~ 1− , which 
concludes the first part of the proof. It remains to show 
that R ( )UQ~ 1− ⊇  R ( )UR~ 1− . The proof of this is 
based on the following two claims: 
 

I. ( 111 −−− += A)~Q~*A~RIA~Q~A~R~ ss ,      (12) 
 

II. [ ]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

−
−−

I
D~Q~A~RD~A~R~D~Q~ ss

1
11       (13) 

 

    Proof of Claim I. Multiplying the right-hand side by 
R~ , we have 
 

( ) 111 −−− += A~Q~*A~RIA~Q~A~R~ ss =            
 

     
( ) ( )
( )( A~IA~Q~*A~RQIA~Q~*A~RA~

A~Q~*A~RIA~Q~Q~*A~RA~

ssss

ssss

=++

=++
−−−

−−−

111

111

)
 

 
which proves I. 
    Proof of Claim II. Multiplying the right-hand side 
by Q~ , we get 
 

[ ] =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−

I
D~Q~*A~RD~A~R~Q~ ss

1
1  

( ) D~D~Q~Q~*A~RA~R~Q~ ss =+ −− 11 , 
 
which proves II.  
     From Claim I, it follows that , 
where M1 is the full-rank matrix defined as the inverse 
of 

1
11 MA~Q~A~R~ −− =

A~Q~*A~RI ss+ . This implies that  
 

 R ( )UQ~ 1− = R ( )A~R~ 1− .             
(14) 

 
The implication of Claim II is that 
 

[ ] 2
1

1
11 UMR~

I
D~Q~*A~RD~A~R~D~Q~ ss −

−
−− =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=      (15) 

 
where M2 is the full-rank matrix defined by 
 

2M =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −

I
D~Q~*A~Rss

1
.          (16) 

 
Thus,   
  

 R ( )DQ~ 1− ⊃  R ( )UR~ 1− .                  (17) 
 
Using Eqs. (14) and (17), and noting that the range 
spaces of  and UQ~ 1− UR~ 1− have the same dimension, 
yields the desired result 
 

 R ( )UQ~ 1− = R ( )U~R~ 1− .                (18) 
 

The proof of Theorem 1 is thereby complete. The 
extension of the result in Theorem 1 to the case where 
θ  contains several parameters, e.g., elevation, is 
straightforward. The matrix U( 0) is modified to 
include the derivatives of the steering vector with 
respect to these parameters as well. The result in 

θ
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Theorem 1 also applies to other signal models, such as 
the deterministic parameterized signal model 
considered in [3]. There is a close similarity of the 
result in Claim I to the matched filter solution for 
detecting a single source at a known bearing in a 
colored noise environment. In that case, one can 
substitute the noise covariance matrix in the matched 
filter by the array covariance matrix without loss of 
detection performance, see, e.g., [7]. The explanation 
to this is that the matched filter is unique up to a 
multiplicative scalar, and since it holds that ( )0

1 θ− aR~  

is proportional to , the result follows.  ( )0
1 θ− aQ~

    The result of Claim I can thus be seen as a 
generalization of the single-source case. However, the 
result in Claim II is more intricate and has no obvious 
analogy. It is the combination of the claims into a 
single condition on the range space of the 
transformation matrix that is important. Thus, the fact 
that the range space of ( )0θU1−R~  is the same as that 

of  is a key point in Theorem 1. If this was 
not true, an estimate of the noise covariance matrix Q

( 0
1 θ− UQ~ )

~  
would be needed. The array covariance matrix, 
however, can be estimated by a simple time average. 
In a real scenario, the beamspace transformation can 
be updated to accommodate for a nonstationary 
scenario where both the source locations and the noise 
color may change with time. The matrix inversion 
lemma may be employed to recursively track the array 
covariance matrix in such a situation. An LMS - based 
update of the optimal beamspace transformation is also 
possible, for further reducing the computational 
complexity. 
 
 
3 Implementing 
We start this section by suggesting the following 
algorithm for beamspace DOA estimation: 
    (1) Determine a set of interesting angle intervals that 
will be processed in beamspace. Define also the 
following quantity: 
 

( )f
DEF

a~ θ= 1 ([ fnf a~U θL )],                  (19) 
 
where ( )fia~ θ , i=1,…, n, is a sufficiently dense set of 
fictitious array steering vectors located within the 
selected angle intervals. 
    (2) Estimate the array covariance matrix as 
 

           ( ) ( ) It*y~ty~
N

R~
N

t
ε+= ∑

=1

1 , 

 
where  a possible regularization. Iε
    (3) Calculate the quantity 
 

WUR~T f
/ 21

1
−= ,                                (20)  

 
where W is a diagonal weighting matrix to be defined  
subsequently. 
    (4) Decide on an initial beamspace dimension, 
denoted ns, that is large enough to accommodate for 
the maximum number of expected sources within the 
sectors. 
    (5) Apply the singular-value decomposition, SVD, 
to the quantity in Eq. (20). The transformation is then 
created as 
 

[ sn
/ qqR~T L1

21−= ],                 (21) 
 

where ns is the number determined in Step 4 and qi, 
i=1,…,ns , are the corresponding left singular vectors. 
(6) Orthogonalize T (optional). 
   (7) Optional step. Estimate the number of sources in 
the reduced beamspace domain using, e.g., the 
minimum description length (MDL), principle, see [9]. 
Do Step 4 again where now ns is set to min(ns,2 ). 
Repeat Steps 5 and 6. 

p̂

     (8) Estimate the directions of arrival. 
Step 1 can preferably be based on the Capon spectrum, 
since this is used in the design of the beamspace 
transformation, see below. In this step, some kind of 
detection problem must be solved. A possible way to 
do this is just to look at the spatial spectrum and decide 
on which sectors to choose. Another way is the 
automated approach, in which a hypothesis problem 
can be posted, resulting in a thresholding problem. We 
do not treat this problem further in the present paper 
though. In Step 2, a possible regularization of the data 
covariance estimate is included. This regularization 
makes the method robust to estimation errors in the 
data covariance matrix when the number of samples is 
low. The choice of ns in Step 4 may, e.g., be based on 
prior information on the maximum number of sources 
present in the sectors or such an estimate may be 
obtained by using, e.g., the MDL principle in 
elementspace. Another possibility is to choose the 
number ns as the number of significant singular values 
in the SVD of Step 5. Step 7 facilitates a possible 
further reduction in the beamspace dimension, 
accompanied by a corresponding reduction of the 
computational load. Finally, we note that the reason 
why the derivatives of the fictitious steering vectors 
are not included in Uf is that these can be well 
approximated by a finite difference of the included 
fictitious steering vectors, implying that the range 
space of Uf approximates the range space of U( θ 0). 
The introduction of the weighting matrix in Step 3 is 
pertinent to the success of choosing the proper 
subspace dimension that the beamspace transformation 
shall preserve. We will now discuss two different 
choices of weighting matrices, W. The first is the 
identity matrix, and the other is created by putting the 
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Capon spectrum for the fictitious directions of arrival 
on the main diagonal. Starting with the identity matrix, 
a column of the matrix defined in Eq. (20) has the 
magnitude 

       ( ) ( ) ( fi
/

fifi
/ *a~R̂~*a~a~R̂~ θθ=θ −− 21

2
21 )         (22) 

 
which is exactly the inverse of the Capon spectrum at 
the point specified by the fictitious DOA. Thus, 
truncating the SVD with no weighting can result in 
noise subspace directions being chosen instead of the 
signal subspace directions, yielding a loss in 
performance.  
    The second weighting is the Capon weighting. With 
this weighting, a column of the matrix in Eq. (20) has 
the magnitude 
 

*a~R̂~*a~*a~R̂~*a~
R̂~ /

1

2

1
21 11

−−
− = ,           (23) 

 
which equals the Capon spectrum.  
This is the recommended weighting, since the problem 
of choosing the wrong subspace in the truncation of 
the SVD is eliminated. 
 
 
4 Numerical examples 
In this section we present computer simulations that 
support the theoretical result. First however, we briefly 
describe two approaches for finding a beamspace 
transformation matrix that reduce the dimensionality 
of the problem. The author of [10] presents a method 
for calculating a near optimal, in the CRB sense, 

beamspace transformation matrix for the white-noise 
case. This method incorporates the use of a set of 
‘design DOAs' that cover an interval [ ba ,θθ ], within 
which the sources of interest are assumed to be 
located. The steering vectors of the design DOAs and 
the respective derivatives are collected in a matrix for 
which the singular-value decomposition (SVD), is 
calculated. The final transformation is then created by 
selecting as columns in the transformation matrix the 
left singular vectors corresponding to the n most 
significant singular values. As the singular vectors are 
orthogonal, the orthogonality constraint of the 
beamspace transformation matrix is satisfied. This 
method will be called the ‘white-noise method', since 
it preserves the Cramér-Rao bounds for the spatially 
white-noise case. In [4], the first n spheroidal 
sequences are used as columns in the beamspace 
transformation matrix. The authors select 
n= ⎣ ⎦ 22 −Bm , where ⎣ ⎦.  denotes the integer part. The 
method supplies orthonormal beamformer weights that 
capture most of the energy of a spatially band-limited 
process with a flat energy spectrum within the sector 
[ ba ,θθ ], see [4], [8] for details. Finally, it should be 
noted that the parameter values used in Section 4 
below result in n=2 if the rule defined above is used. 
Since the initial beamspace dimension is chosen as 6 in 
Section 4, the resulting beamspace transformation 
matrix captures an amont of energy well above the 
limit implied by the rule aboveu. We employ a uniform 
linear array with 25 sensors, separated by half a 
wavelength. Two source signals are located at -70 and -
40 within the interesting sector, defined by [-100:100] 
relative broadside of the array. There are three sources 
located outside the sector, the first at 130, the second at 

 
Fig.1: Number of snapshots: 200, ε=0. Solid: square root of the Cramér-Rao bound, ○-solid: the proposed 

method with Capon weighting, □-solid: the proposed method with no weighting, x-solid: spheroidal 
sequences, ◊-solid: the white-noise approach.
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180 and the location of the third is swept from -200 to -
80 in steps of 20. The sources outside the sector is 
referred to as ‘out-of-band’ sources. Note that the out-
of-band sources act as interference, since we try to 
estimate only the direction of arrival of the sources 
within the interesting sector. In effect, we have a 
spatially colored noise problem.  

    The initial beamspace dimension is set to 6, see 
Steps 4 and 7 of Section 3. The SNR values of the 
sources are  equal and set to 10 dB relative to the noise 
power in one element.   The number of snapshots is 
either 200 or 50 and the number of Monte Carlo trials 
is 100. A white-noise model is employed in beamspace 
together with the MDL estimate of the number of 
sources. The directions of arrival are estimated using 
the ‘stochastic maximum likelihood’ method, see, e.g., 
[6]. The numerical search is initiated in the following 
way: if the number of estimated sources in the MDL 
step is , the search is initiated in the  true DOAs 
within and nearest to the interesting sector. In Fig. 1, 
the root-mean-square error for the source located at -70 
is plotted as a function of the location of the moving 
out-of-band source for the proposed method, with the 
two diferent weightings discussed in 3, and the 
methods of [4], [1], [8]. The number of snapshots is 
200. No regularization of the estimated array 
covariance matrix is used in this case. As the number 
of samples is 200, the estimate of the array covariance 
matrix is of sufficient quality. In the figure, the solid 

line is the square root of the element space Cramer-
Rao bound.  

p̂ p̂

    The proposed method, with the proper weighting, 
yields an estimate with an accuracy very close to the 
bound. The other two methods, that have similar 
performance, produce estimates with considerably 
higher root-mean-square error. Note the severe 

degradation of the presented method if a proper 
weighting is not used. In Fig. 2, the approach is 
evaluated against the white-noise approach when the 
number of snapshots is decreased from 200 to 50. The 
result of this is that the quality of the array covariance 
estimate deteriorates, which in turn degrades the 
performance of the method. This is clearly seen from 
the result in Fig. 2. However, the good performance is 
restored by adding a scaled identity matrix to the 
estimated data covariance matrix making the method 
more robust to poor sample support (see Fig. 2). The 
excellent attenuation of the out-of-bandsources for the 
proposed method results in that the estimated model 
order for this method is in general lower than for the 
other two methods. This fact implies that the resulting 
multi-dimensional search is simplified for the 
proposed scheme. Thus, even though the 
implementation of the proposed transformation is 
computationally heavier than the other methods, the 
reduced model order compensates this. Another 
interesting approach was proposed by Irving and 
Sterling [9].  

Fig.2: Number of snapshots: 50. Solid: Square root of the Cramér-Rao bound, □-solid: the proposed method 
with no regularization,*-solid: the proposed method with ε=0.5, ○-solid: the proposed method with ε=1, ◊-

solid: the white-noise approach.

    They suggested to carry out data validation at the 
substation level where all the bus couplers and the 
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circuit breakers are represented in detail. To be able to 
handle zero impedance branches, they suggested to 
take as variables the powers flowing through the 
circuit breakers. Later on, Clewer et al [10] extended 
the approach to the whole system by proposing a 4-
stage iterative procedure based on a detailed substation 
representation together with a bus level network 
modeling. Unfortunately, the method involves many 
inter-related steps, which makes it rather complex. In 
addition, it is not guaranteed to converge [10]. Once 
the state vector is estimated, the extreme outliers are 
identified and deleted from the measurement set. 
Then, one iteration of the algorithm is executed 
starting from the previous solution. This measurement 
deletion is performed in order to cancel out the 
influence of the extreme outliers on the estimates. 
They are defined as measurements whose weighted 
residual have an amplitude larger than a given 
threshold, chosen between 6 and 10. In an attempt to 
decrease the complexity of the foregoing method 
while meeting the need of a generalized state 
estimation raised by Slutsker et al [22], [23], 
Monticelli [11], Alsac et al. [4], and Abur et al [1] 
advocated the use of a 2-step procedure that proceeds 
as follows.  
    First, a super-node-based state estimation is 
executed and a residual analysis is performed. In the 
event that the residuals associated with a branch or a 
bus are found to be large, then a detailed 
representation of the suspected substations is carried 
out and the state vector is expanded accordingly. 
Finally, the expanded state vector is estimated through 
either a conventional estimator  or a LAV estimator 
[1]. However, both methods suffer from the 
aforementioned weaknesses inherent to any post-
estimation approach. 
 
 
5 Dynamic load prediction 
The DLP method is based on more realistic and 
physically meaningful foundation in comparison to the 
conventional state prediction model. The main 
arguments which form the basis of DLP method are: 
    i) It is loads and generation which actually drive the 
system dynamics which is of concern in DSE 
(dynamic state estimator) of power system. 
    ii) Bus loads are more or less independent of each 
other. 
    iii) Bus loads follow a reasonably regular pattern 
and so are easier to predict with reasonable accuracy. 
For the purpose of DLP two types of busbars are 
defined: 
    a) Load bus bars - where only loads PL and QL are  
connected. Let, NL be the number of these bus bars, 
and 
    b) Generator busbars - where generators are 
connected. Since generator busbars may also have 
loads in addition to generation so the net power 
injection is considered at these busbars. Also, at 
generating busbars the voltage is controlled, therefore 
real power injection PG and voltage magnitude VG are 

used as the prediction state variables at these busbars. 
Let NG be the number of these busbars.  
    In order to satisfy the active power balance in the 
system one generating busbars is taken as slack busbar, 
its active power PG can not be specified and therefore, 
is not included in the prediction variables. Thus, the 
complete prediction vector S is defined as: 
 

      [ ]TT
G

T
G

T
L

T
L VPQPS ,,,

Δ

=           (24) 
 
S consists of 2N-1 components, where N is the number 
of busbars and N=NL+NG. In order to make regular 
exchange of variables S <=> X possible, the voltage 
angle of slack busbar is considered as reference angle 
and is set to zero. This makes the number of variables 
in both S and X equal to 2N-1. Active and reactive 
loads PLi, QLi; each busbar including the load at 
generator busbars (if any), is predicted for next time 
instant (k+1) using the ANN based bus load prediction 
[9]. Active bus injections (generation - load) for 
generating busbars can not be directly predicted for the 
simple reason that generation has to adapt itself to load 
variation. A simple method for adapting this variation 
in load to the generation is to use generation 
participant factors. That is, for the ith busbar, the real 
power injection at time instant k+1 is given by 
 

( ) ( ) ( )∑ +Δ+=+
∧

loadsj
LjiGiGi kPkPkP

ε

α 11
~

        (25) 
 

where: ( ) =+1kP~Gi Predicted active power bus 
injection at busbar i at time instant k+1; 

( ) =kP̂Gi Estimated active power bus injection at 
busbar i at time instant k; generation participation 
factor 

=αi
( )∑ =α≤α≤ 11 ii ;0  and 

 

( ) ( ) (kPkPkP LjLj

∧

−+=+Δ 11
~

)           (26) 
 

The generation participation factors are calculated 
using the economic load dispatch and are kept constant 
between two successive economic dispatch period. The 
DLP method uses bus power injections (P,Q) as 
prediction variables, while for filtering step complex 
bus voltage (e,f) are more appropriate. The prediction 
vector S and filtering step state vector X are related 
through 2N-1 nonlineared equations 
 

S = g(X).         (27) 
 

The change of variables from S → X at the end of the 
prediction step is performed using load flow solution 
[11]. The covariance matrix for injection prediction 
error is given by 
 

WSEAS TRANSACTIONS on COMMUNICATIONS Marius-Constantin Popescu, Onisifor Olaru, Nikos Mastorakis

ISSN: 1109-2742 327 Issue 3, Volume 8, March 2009



( ) ( ) ( )⎥⎦
⎤

⎢⎣
⎡ +−+=+ 111

~

0 kSkSCovkPS

( ) TJkPJ 000 1 +=   (28) 
 

where  
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~
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1

0
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∂
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( ) ( ) ( )( ) 1
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6 Analysis of anomalous data 
One of the objectives of state estimation is to detect, 
identify and remove or correct the anomalous, data 
from the incoming information, so as, to maintain the 
integrity of the data base. One major advantage of 
DSE is the availability of the predicted state X which 
can be very useful in anomaly detection. Pre-filtering 
scheme for anomaly detection consists of computing 
the innovation vector: 
 

   ( ) ( ) ( )( )kX~hkZk −=ϑ .        (30) 
 

In case, any anomalous data is present, the hypothesis 
( ) m  ∀λ〈λ maxm k  (where m is the measurement index, 
( ) ( ) ( )kkk mmm ρϑ=λ is the normalised innovation for 

measurement m and  is the mth diagonal element 
of  matrix ) will not hold. The choice of threshold 

is based on simulation. Under normal operating 

condition all the normalised innovation will be 
small and within threshold value. 

( )kmρ
( )kℜ

maxλ

( )kmλ

    Discrimination between Anomalies and Treatment 
of Anomalous Data. One important property of the 
innovation vector is that no "smearing" takes place in 
innovation process, that is, at time sample k, ( )kλ  will 
have abnormal values for only those measurements 
which correspond to the erroneous (bad) 
measurements.  
    Although, the occurrence of bad data can be 

ed from the abnormal values of , the quality 
of prediction, effect the value of , and a poor 
dynamic model for prediction may lead to 

detect ( )kiλ
λ

λ  value 
comparable to the magnitude of bad data. In such 
cases, medium size bad data is likely to go undetected. 
A more reliable method for detection of bad data is 
based on “skewness” of the innovation vector. Under 
normal operating condition, the distribution of ( )kϑ is 
symmetrical. In case of sudden load change, though 
the normalised innovation will have large values 
corresponding to measurements in the vicinity of the 
busbar where sudden load/generation change has 
occurred, the innovation vector  will maintain its 
symmetrical property. But in presence of bad data, the 
distribution of 

(kϑ )

( )kϑ  becomes asymmetrical and its 
“asymmetry index” (skewness measure) 
( ) ( ) ( )k3σ/kMk 3=γ  will be large, where, M3 is the 

third moment and σ  is the standard deviation of the 
normalised innovation vector at time sample k. The 
presence of bad data is determined from the value of 
asymmetry index. When bad data is present 
( ) maxk γ>γ , where maxγ is a threshold determined 

through simulation. Once presence of bad data is 

detected, measurements for which values are 
greater than the threshold, are considered bad and are 
eliminated from the measurement set. In case of 

(kiλ )

 Fig. 3 : ANN based DSE scheme  
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sudden load/generation change, a number of 
measurements surrounding the changed injections will 
exhibit large values for .  ( )kiλ
     This is mainly because of the error in prediction of 
X(k) which has not taken the sudden injection change 
into account. Such a situation can be taken care of by 
the proposed filtering scheme as it incorporates the 
non-linearities of the measurement function. 
 
 
7 Proposed dse scheme 
The overall procedure for the proposed DSE scheme is 
schematically shown in Figure 3. ( 1+kX )~ obtained 
after prediction step provides the complete predictive 
data base, whereas, ( )kX~  obtained after filtering step 
provides the complete data base for the current time. 
The proposed DLP based DSE model faithfully 
follows the recursive scheme of EKF, except that 
instead of the state transition based dynamic model it 
uses a combination of ANN based bus load forecasting 
and load flow solution to obtain the predicted state 

. It also incorporates non-linearities of the 
measurement function the filtering step. 
( )kX~

    Computational aspect: To reduce the computational 
burden and speed up the computational process of the 
proposed DSE scheme, following simplification in the 
algorithm is introduced: 
    (i) For computing predicted states from predicted 
bus loads fast second order load flow [10] is used. This 
load flow requires computation and factorization of the 
Jacobian matrix only once in the beginning of the fir 
iteration. For time step , the estimated state( 1+k ) ( )kX~  
is used as the starting value for the load flow 
computation. 
    (ii) Since Jacobian matrix is already available from 
tl load flow at the prediction step, so no computation 
for Jacobian elements is required for computation 

 ( )10 +kP
    (iii) Computation of predicted state error covariance 

, equation (33), introduces the heaviest comput 
tional burden in prediction step. Since the Jacobian 
matrix is very sparse, sparse matrix techniques a: used 
to obtain  column by column. 

( 10 +kP )

)

    (i) 17 sets of hourly load data from the IEEE-24 bus 
(17 load bus) reliability test system data were used. 

tern for each 

ultiplying the normalised 

urly reactive power load for each 

om choice and 

( 10 +kP
 
 
8 Test system simulation 
Test Systems: Simulation tests were performed on a 
number of systems, however due to limitation of space 
here results for only IEEE 118 bus test system is 
presented. The simulations were carried out for 30 
time samples. 
    Generation of Bus loads: In the absence of real  
system data the generation of bus load data was carried 
out as given below: 

    (ii) Hourly loads for each set were normalised with 
respect to the peak load of that data set.  
    (iii) These 17 load patterns were randomly assigned 
to various load busbars (one load pat
busbar)of the test systems.  
    (iv) Actual hourly load for each busbar of the test 
system was obtained by m
hourly load of the assigned load pattern with the peak 
load of the busbar. 
    (v) In the absence of any hourly load data for 
reactive power, ho
busbar was obtained by keeping the power factor at 
each busbar constant at the nominal value for that 
busbar as given in the test system data. 
    Measurement Generation: The selection of 
measurements used, was based on rand
redundancy (m/n)≅ 2 was maintained (450 
measurements were used). The time evaluation for the 
system state was sim lated by a load curve for each 
busbar. The power factor for the loads were kept 
constant. Changes in generation to take care of the 
load variations were obtained using generation partic-
ipation factors. For each time sample, a load flow was 
carried out using the load and generation values 
obtained through load curve and generation 
participation factor, to obtain the true state (X+) and 
true value of measurements (Z+). The actual 
measurements (Z) were obtained by adding a normally 
distributed noise (error) with standard deviation (

u

σ ) of 
2% for power injections and flow measurements andσ  
= 1% for voltage measurements, to Z+. 
    Initialisation: To start the DSE process the initi  
values for the various parameters wer

al
e specified as 

follows: Initial state ( )0x̂  was obtained using static 
state estimation from the measurements at k=0 and its 
error covariance was sp fied as P+(0) =diag(10-6). 
    Bad Data: Bad data conditions were simulated by 
introducing error in the measurement set at 5th tim

eci

e 

us 

g indices. 

sample in real power at bus 80, at 11th and 16th time 
sample in P80, P92 & Q115 at 21st time sample in P92. 
    Sudden Load Changes: Sudden load change 
condition was simulated by changing the load at b
number 54 at 11th and 16th time samples. 
    Performance evaluation: The performance of the 
algorithms were assessed using the followin
    Prediction step: The index used for assessing the 
performance of the prediction model is 
 

( ) ( ) ( )∑ +−=
n

i kXkXk
~1ζ ix n 1   (31) 

 
    Filtering step:  For assessing the
filter, the index used is 

   

 effectiveness of 

( )
( ) ( )

( ) ( )∑

∑=
+

∧

−
=

m

i i kZkZ
kJ

1

=
+

∧

−
m

i ii

i

m

kZkZ
1                        (32) 
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9 Conclusion 
This paper investigates the adaptive
sensor array processing for the colo
design criterion for the beamspace transformation is 

he Cramér-Rao bounds for the 

 data reduction in 
red noise case. The 

preservation of t
parameter estimates. A design procedure is given that 
produces a transformation that closely approximates 
the ideal one. The benefits are shown via computer 
simulations that focus on the problem of out-of-band 
sources. These can be viewed as interfering sources in 
beamspace, causing a loss in performance relative 
elementspace estimation. The results indicate that 
significant improvements can be gained in terms of 
meansquare-error performance if the outlined approach 
is followed. The proposed ANN based DSE provides 
better state estimates than the DSE with conventional 
prediction model. 
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