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Abstract:This paper presents a distributed adaptive scheme for detecting faults in wireless sensor networks. Each
sensor nodes makes a local decision based on the comparisons of its own readings with those of neighbors, along
with the dissemination of the decision to them, if necessary. At the end of each fault detection cycle, each node
dynamically adjusts critical parameters in the distributed fault detection algorithm, such as node degree and thresh-
olds, resulting in high performance for a wide range of fault probabilities. By extensive computer simulation the
scheme is shown to be scalable with the number of faulty sensor nodes except for sparse networks where the aver-
age node degree is extremely low.
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1 Introduction
Wireless sensor networks are expected to be increas-
ingly used in various industrial, health care, environ-
mental monitoring, and military surveillance applica-
tions [1],[2],[3]. They are often composed of hun-
dreds or even thousands of low-cost, tiny sensor nodes
each with sensing, data processing, and communicat-
ing capabilities. When a large number of sensor nodes
are distributed to monitor a vast field where the oper-
ational conditions are harsh or hostile, they are likely
to have faults and measurement errors, and thus be-
come unreliable. Hence it is crucial that the networks
remain operational all the time even in the presence of
faults in the networks. Moreover, faulty sensor nodes
need to be identified and isolated unless they can act
as communication nodes.

Fault tolerance problems in wireless sensor net-
works have recently been investigated and the results
are presented in the literature [8],[18]. Among others
fault detection in sensor readings, malicious node de-
tection, and fault-tolerant event detection have been of
the main concern and they are closely related.

Jaikaeo et al. [4] have pointed out the response
implosion problem which occurs when a high volume
of incoming replies triggered by diagnosis queries
cause the central diagnosing node to become a bottle-
neck. Three operations, sampling, self-orchestrated,
and diffused computation schemes, to overcome the
problem were presented. On-line detection of sensor
faults using a cross-validation-based technique was
proposed in [5]. Statistical techniques are employed

to locate sensor nodes that have the highest probabil-
ity to be faulty. In [8] an external manager was in-
troduced to perform fault detection in an event-driven
wireless sensor network. A network management ar-
chitecture, named MANNA, was proposed. System-
level diagnosis in ad-hoc network based on the PMC
model was presented in [6]. A new diagnostic model
based on one-to-many communication paradigm was
introduced. Both hard and soft faults are detected. In
addition, the change in network topology during di-
agnosis was also considered. Performance analysis of
a distributed comparison-based self-diagnosis proto-
col for wireless ad-hoc networks has been presented
in [7].

Malicious node detection in wireless sensor net-
works has been investigated in [11],[12],[13]. In [12]
a mechanism based on signal strength and geograph-
ical information for detecting malicious nodes was
proposed. Curiac et al. [13] employed an auto-
regression technique in detecting malicious nodes.
Sensor’s output is compared with its estimated value
computed by an autoregression predictor to identify
suspicious nodes. A neural network based approach
has been proposed in [11], where malicious nodes in
sensor networks are discovered by using an on-line
neural network predictor based on past and present
values obtained from neighboring nodes.

Fault tolerance has also been studied in event de-
tection of wireless sensor networks. In [9] Bayesian
fault recognition algorithm was presented to solve
the fault-event disambiguation problem in sensor net-
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works. Ding et al. [14] have proposed a localized
fault identification algorithm, where each sensor node
compares its own sensed data with the median of those
of neighbors to determine its own status. The perfor-
mance of the localized diagnosis, however, is limited
due to the non-uniform nature of node degrees in sen-
sor networks with random deployment. Luo et al. [10]
have proposed a fault-tolerant energy-efficient event
detection paradigm for wireless sensor networks. For
a given detection error bound, minimum neighbors
are selected to minimize the communication volume.
Both Bayesian and Neyman-Pearson detection meth-
ods are presented.

A distributed fault detection scheme for sensor
networks has been proposed in [15]. It uses local
comparisons with a modified majority voting, where
each sensor node makes a decision based on com-
parisons between its own sensing data and those of
neighbors, while considering the confidence level of
its neighbors. The scheme, however, is a little com-
plex in the sense that information exchange between
neighboring nodes has to occur twice to reach a lo-
cal decision based on a threshold. Li et al. [16] have
presented a distributed fault detection algorithm base
on the idea of classifying two clusters with different
readings from a set of sensor readings. Maximum
spanning trees are employed in the clustering of sen-
sor nodes. Transient faults in sensing and communi-
cation have been investigated in [17]. A simple dis-
tributed algorithm has been proposed to tolerate tran-
sient faults in the fault detection process. Some other
fault management schemes can be found in the survey
written by Yu et al. [18].

Most of the algorithms presented so far achieve
extremely high performance for a relatively low fault
probability. They, however, need to be scalable since
their performance degrades significantly as the num-
ber of faulty nodes increases. This is due to the trade-
off between detection accuracy (DA) and false alarm
rate (FAR) in most fault detection algorithms for wire-
less sensor networks. When the fault probabilityp is
low, both DA and FAR can be kept extremely high and
low, respectively. Asp increases, however, the algo-
rithms can hardly meet the requirements regardless of
the values of the important parameters such as thresh-
olds.

In this paper, we present a distributed adaptive
fault detection scheme for wireless sensor networks
to overcome the low scalability problem of existing
fault detection algorithms. The scheme can achieve
consistent performance for a wide range of fault prob-
abilities by dynamically adjusting the network topol-
ogy and algorithm parameters to adapt to the increase
in the number of faulty nodes. Computer simulation
shows a notable difference in performance except for

sparse networks.
The remainder of the paper is organized as fol-

lows. Section 2 describes the network and fault mod-
els for fault detection in wireless sensor networks.
Our distributed adaptive fault detection algorithm is
presented in Section 3. Experimental results are
shown in Section 4. Conclusion is made in Section
5.

2 Network and Fault Models
We consider fault detection problem in wireless sen-
sor networks wheren sensor nodes are distributed ran-
domly or regularly in a 512×512 square grid of unit
area. All sensor nodes in the network are assumed
the same communication range. In other words, each
node can only communicate with its neighbors within
the distance in any direction. Sensor networks with
three different average node degrees, 7, 15, and 20,
are considered for random deployment. In the case of
regularly deployed sensor networks, degrees of 4, 8,
12, and 20 are chosen for simplicity of configuration.

In this paper, a sensor’s reading is said to be er-
roneous if it is significantly different from those of its
neighbors. A sensor node that generates an erroneous
measurement is not always treated as a faulty sensor
node. When a sensor node exhibits consistent faulty
behavior, it will be determined to be faulty and iso-
lated from the network, if necessary. Sensor nodes
with some transient faults or some measurement er-
rors will be treated as normal nodes.

Faults may occur in any nodes in a sensor net-
work with the same probabilityp, regardless of their
locations. In addition,p is assumed to increase with
time to reflect the increase in the number of faulty
sensor nodes in the network as time goes on. Noise-
related measurement errors and incorrect sensor read-
ings due to some transient faults are also assumed to
occur independently in time and space with probabil-
ity q. Sensor nodes with malfunctioning sensors will
be isolated only for fault detection purposes. They,
however, are allowed to participate in the network op-
eration as communication nodes since they are still ca-
pable of routing information.

3 Adaptive Fault Detection

Existing fault detection algorithms can be classified
into two types:centralized anddistributed. In cen-
tralized approach, a centralized senor node performs
fault management of the entire network. It, however,
can hardly be applied to large-scale networks due to
the single point of failure, high volume of message
traffic, and rapid energy depletion in the nodes closer
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to thecentral node. Hence most research on fault de-
tection of sensor networks is focused on developing
distributed and computationally efficient fault detec-
tion algorithms [18].

In distributed fault detection, fault status of each
sensor node is determined by local decision (such as
majority voting, comparison of sensed data with the
median of the received data from neighbors, etc.) [14]
or by local decision with dissemination of the decision
to neighbors [15],[17]. The following two metrics, de-
tection accuracy (DA) and false alarm rate (FAR), are
used in this paper to evaluate the fault detection per-
formance, where DA is defined as the ratio of the num-
ber of faulty sensor nodes detected to the total num-
ber of faulty nodes and FAR is the ratio of the number
of faulty sensor nodes diagnosed as faulty to the total
number of good nodes.

Based on our analysis and subsequent extensive
simulation we have observed the following two facts
that can be used in developing fault detection algo-
rithms.

• As the threshold for local decisionθ increases,
both DA and FAR increase, resulting in unsatis-
factory performance for relatively highp.

• Dissemination of the local decision to neighbors
decreases both DA and FAR, resulting in unsat-
isfactory performance for relatively highp.

Hence DA and FAR cannot be kept high and low,
respectively, as the number faulty sensor nodes in-
creases, showing poor scalability with respect top.
Especially in a harsh environment faults are likely to
occur more frequently and unexpectedly. The result-
ing increase inp requires a scalable fault detection al-
gorithm to almost guarantee high DA and low FAR at
the same time.

Our distributed adaptive fault detection algorithm
is designed to maintain high DA and low FAR even
with a significant increase in the number of faulty sen-
sor nodes in wireless sensor networks. To do that each
sensor node constructs a neighbor table NT including
the comparison results of its own sensor readings and
those of neighbors. The table will be updated each
time fault detection is performed or periodically at a
given time interval. Since the mean time between fail-
ures (MTBF) is expected to be much longer than the
fault detection cycle time, it is not necessary to update
the table very often. Moreover, our fault detection al-
gorithm to be presented is quite insensitive to a small
increase inp. The information stored in the table will
be used to redefine the neighboring nodes for fault de-
tection and to dynamically adjust the algorithm pa-
rameters such as thresholdθ and the effective node
degreedt (at timet) for fault detection, etc. Heredt is

determined by subtracting the number of faulty neigh-
boring nodes identified from the initial node degreed.
Based on the results of fault detection each node will
be in one of two states: good (0) and faulty (1).

Several other terms are also defined and included
in the table below for convenience.

Summary of Notation
—————————————————————-
d : node degree of a sensor node
dt : effective node degree at timet
d̃ : average node degree of a sensor network
xi : sensor reading at nodei, vi

p : fault probability
q : transient fault probability for good nodes
r : transient fault probability for faulty nodes
θ : decision threshold
ki : no. of matching neighbors
m : window size for tolerating transient faults
α : threshold for screening out transient faults
F : fault status of a sensor node
—————————————————————-

The proposed fault detection scheme, consist-
ing of five steps, can be depicted as follows, where
two sensor nodes are neighbors of each other if the
distance between them is less than the transmission
range. Although sensed data are exchanged in the
description of the algorithm, any local decision (nor-
mal/abnormal) at each node can also be used instead
to identify faulty sensor nodes with simple modifica-
tions.
—————————————————————-
Adaptive Fault Detection Scheme
For a sensor network with average node degreed̃
0. Create NT (neighbor table) and setF to 1 (faulty)
1. Obtain the sensor readingsx′js of neighbors
2. Determineki, the number ofmatching neighbors
3. If ki ≥ θ, setF to 0 (good)
4. Repeatl times for the undetermined nodes

If one of its matching neighbors is determined
to be good, then setF to 0 (good)

5. Update NT and adjustθ by takingdt into account
—————————————————————-

In step 0, the fault status of each sensor node is
initialized to 1 (i.e., faulty). That is, a sensor node can
change its status to 0 (i.e., good) only if it determines
itself to be good. In step 1, each sensor node receives
sensor readings from its neighboring nodes. It then
determines the number of matching neighbors in step
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2. In step 3, if the number of matching neighbors is
greater than or equal to the given thresholdθ, the node
will determine itself to be good. Step 4 is not neces-
sary (i.e.,l=0 is possible) although it can improve the
performance depending on the network topology, fault
pattern, and fault probability. Apparently the commu-
nication overhead involved will increase withl. Hence
in practicel=1 would be desirable, if necessary.

In step 5, various adjustments can be made to
adapt to the increase in faulty sensor nodes in the net-
work, and hence to improve or maintain fault detec-
tion performance. The reason for the adjustment will
be explained shortly. Among others we consider the
following three cases in this paper.

• θ = d̃ (average node degree)

• θ = dt
2

• θ = max(δ, dt
2 ), whereδ is a small positive inte-

ger.

The first one can be applied even in the case
wherep is relatively high, although the communica-
tion overhead involved in disseminating the local de-
cision to neighbors might cause some problem if re-
quired more than once. The second one is the well-
known majority voting, which is adequate for a rela-
tively small value ofp. The third one, our proposed
threshold, is a practical compromise between them.
In other words, it applied majority voting until the
node degree is relatively high. At the time it reaches a
small predetermined number, the threshold freezes at
the point, resulting inθ higher than that of the major-
ity voting. Hereδ= 3 (or 2) is chosen for comparison
and illustration.

As an illustration of the adaptive fault detection
scheme consider the sensor nodes in a randomly de-
ployed sensor network, where five nodes are faulty
(crossed out) and nodevi is chosen to describe how
the fault detection proceeds. Without loss of gener-
ality δ=2 is chosen. In step 1,vi obtains the sensor
readings of its five neighborsv1−5. In step 2, it com-
pares its own reading with those of neighbors to de-
termineki, the number of matching neighbors. Since
di=5 andki=3 in the case,ki is greater than or equal
to di/2. Hencevi will determine itself to be good in
step 3. In the meantime,v2 performs the same thresh-
old test (but withθ=4) and finds that it cannot pass the
threshold since it has only three matching neighbors
out of seven. At the end of step 3,vi is determined to
be good, whilev2 remains in the same initial state.

In step 4, however, the decision made byvi will
be disseminated andv2 will then be determined to be
good with the help ofvi, as indicated by an arrow.
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Figure1: An illustration of the proposed fault detec-
tion algorithm

If v7 and v10 are still undetermined, they will cor-
rectly determine themselves to be good in the next
round with the aid ofv2. Dissemination of the de-
cision made at a sensor node requires communication
overhead, limiting the number of times it can be ap-
plied. Although the scheme is depicted with a variable
l for generality, we only consider the cases ofl=0 and
1, to make the algorithm practically useful.

Step 5 updates NT (neighbor table) and adjustsθ
anddt periodically. Assuming that the current fault
detection cycle requires the adjustment of parameters,
we changeθ anddt accordingly by taking the faulty
nodes identified so far into account. In this example,
vi removesv1 andv3 from its neighbor list for fault
detection purposes and changes its node degreedi to
3. This dynamic adjustment will allow the fault de-
tection scheme to be applied effectively even with in-
creasing number of faulty nodes in the network with
time. Suppose thatv5 turns into a faulty node at a cer-
tain time and generates unusual sensor measurements.
Without step 5,vi cannot pass the threshold test since
ki at this time is 2 whileθ is 3. Step 5 will allowvi to
determine itself to be good, since it has two matching
neighbors andθ at this time is 2 as well.

To justify the effectiveness of the proposed adap-
tive fault detection scheme, we use Fig. 2, where
all then sensor nodes are assumed to be good in the
beginning and the number of faulty sensor nodes in-
creases linearly with time. Transient faults may occur
during the entire period of time, although sensor nodes
with transient faults or noise-related measurement er-
rors are treated as good nodes, and thus should not be
isolated from the rest of the network. In the figure,
the dotted and solid vertical lines represent the good
and faulty nodes, respectively. That is,n sensor nodes
are divided into two groups: good (dotted) and faulty
(solid) nodes.
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Figure2: The usefulness of adjusting parameter val-
ues

Consider the number of active nodes at two adja-
cent fault detection cycles,tk andtk+1. The number
of faulty nodes at timetk is denoted byfk. Also the
number of faulty nodes identified up to timetk is rep-
resented byzk. Hencefk-zk is the number of faulty
nodes determined to be good due to the incomplete-
ness of the fault detection scheme.

Suppose that at the end of fault detection cycletk
the node degree and threshold are adjusted, depending
on the results of fault detection. That is,zk nodes are
diagnosed as faulty so far, and thus removed from the
neighbor list for the purpose of fault detection. Ap-
parently each node updates its table and setdt andθ
accordingly. At timetk+1 the number of active nodes
is n−zk, as opposed ton. Hence the ratio of the num-
ber of abnormal readings to the total number of active
nodes,Radapt, can be written as

Radapt =
fk+1 + ntran − zk

n− zk
, (1)

wherentran representsthe number of transient faults
or noise-related measurement errors at the time. If our
adaptive scheme is not applied, the ratioRorg is given
by

Rorg =
fk+1 + ntran

n
(2)

The ratios are important since the majority voting
and our proposed adaptive scheme will usen

2 and
max(δ,n−zk

2 ) as θ, respectively. For both threshold
tests, the number of nodes with normal readings is the
same, while the number of abnormal readings is re-
duced in our adaptive scheme. In Fig. 2, for example,

fk+1+ntran is n/2 at timetk+1. For the majority vot-
ing, in that case, each sensor node will receive on av-
erage the same number of normal and abnormal read-
ings from its neighbors, resulting in poor fault detec-
tion performance. On the other hand, at timetk+1 our
adaptive scheme removeszk faulty nodes from con-
sideration, equivalent to reduction in the fault proba-
bility p, and thus can maintain high performance even
with increasing number of faulty sensor nodes.

Since transient faults are likely to occur in sen-
sor readings, decision based on a single sensing data
might be incorrect. To tolerate transient faults in sen-
sor readings, a matching neighbor in step 2 of the fault
detection algorithm can be determined based on the
comparison results ofm consecutive fault-detection
rounds with a thresholdα. If the window sizem=10
and α=0.7, for example, at least seven (out of ten)
sensor readings must pass the equality test to become
a matching neighbor. In other words, three transient
faults in sensor readings can be tolerated.

Our adaptive scheme with filtering some transient
faults will further enhance the fault detection perfor-
mance. Screening out some transient faults usingm
consecutive measurements will effectively reduce the
number of transient faultsntran in Fig. 2. If all
of them are filtered, the ratioRadapt will change to
fk+1−zk

n−zk
. Lowering the ratio will improve DA, and this

in turn will makezk+1 very close tofk+1, and so on.
As long as the ratio is kept below a certain limit, our
adaptive scheme will maintain consistent performance
for a wide range ofp. Hence the performance strongly
depends on how often fault detections are performed
and how oftenθ anddt are adjusted.

4 Experimental Results

Computer simulation is carried out in a sensor net-
work, where 1024 sensor nodes are deployed ran-
domly in a rectangular region of size512×512 units.
All the nodes are assumed to have a common trans-
mission range. The fault probabilityp is defined to be
a function of time, initialized to a certain value and
increased with time. The increase inp between two
adjacent update cycles is assumed to be 0.05 to es-
timate the performance in highly fault-prone sensor
networks. More frequent updates will lowerp, and
thus can achieve better performance.

We first perform simulation for some existing
schemes: majority voting (MV), majority voting with
dissemination (MVD), local detection with threshold
θ≈d̃ (LT), and local detection with thresholdθ≈d̃ and
dissemination (LTD) [17]. The results for various val-
ues ofp when the average node degreed̃ is approxi-
mately 20 are shown in Fig. 3 and Fig. 4. LT achieves
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thebestperformance among them as far as DA is con-
cerned, while MVD outperforms others with respect
to FAR. Due to the tradeoff between DA and FAR, sat-
isfactory results cannot be obtained whenp ≥ 0.25.
Even for p < 0.25 further improvement in perfor-
mance is desirable.
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Figure3: Detection accuracy (DA) for MV, MVD, LT,
and LTD whend̃ ≈ 20
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Figure4: False alarm rate (FAR) for MV, MVD, LT,
and LTD whend̃ ≈ 20

We then perform simulation for our adaptive fault
detection scheme where the thresholdθ and the effec-
tive node degree at timet, dt, are adjusted in accor-
dance with the increase in the identified faulty sensor
nodes in the network. They are named AMVD and

ALTD to emphasize adaptivity. The number of faulty
nodes is increased as the simulation proceeds. To take
the changes into account,θ is adjusted accordingly.
The results for̃d≈20 andd̃≈7 are shown in Fig. 5 and
Fig. 6, respectively, for various values ofp.
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Figure5: DA and FAR for AMVD and ALTD when
d̃ ≈ 20
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Figure6: DA and FAR for AMVD and ALTD when
d̃ ≈7

Both DA and FAR are kept extremely high and
low, respectively, for a wide range ofp values. For
d̃≈7, however, some degradation in performance is
observed asp increases due to the low network con-
nectivity. In wireless sensor networks, however, the
average node degree is expected to be high to main-
tain sensing coverage and achieve robustness to faults.
Moreover, as the number of faulty nodes increases, the
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Figure 7: DA and FAR for ADS0 and ADS1 when
d̃ ≈20

effective node degree decreases, requiring additional
sensor nodes to be deployed to establish proper net-
work connectivity.

Due to the dissemination in step 4 of the fault de-
tection scheme, the communication overhead forθ≈d̃
could be problematic whenp is relatively high. To
overcome this problem, we make a practical compro-
mise, and then perform simulation forθ =max(δ,dt

2 ),
whereδ=3 is chosen. The scheme is named ADSl

wherel is the number of iterations in step 4. The re-
sults ford̃ ≈20 are shown in Fig. 7, where ADS0 and
ADS1, the adaptive scheme withl=0 and 1, respec-
tively, achieve extremely high performance. ADS0

and ADS1 for d̃≈ 7 need improvements in FAR as
shown in Fig. 8, asp increases. As the number of
faulty nodes in a sparse sensor network increases, per-
formance degradation is likely to be unavoidable with-
out adding more sensor nodes. Since the average node
degree is expected to be relatively high in sensor net-
works, we can claim that ADS0 and ADS1 can achieve
acceptable performance for a wide range ofp without
increasing the communication overhead. Similar per-
formance has also been observed forδ=2.

In order to estimate how much the proposed
scheme tolerates transient faults, we then perform
similar simulation with some transient faults in sensor
readings. Fault detection is applied periodically. The
period is assumed to be much less than the time for
an increase of 0.05 in the fault probabilityp. In other
words, a number of fault detection rounds are com-
pleted in the mean time between failures. Each good
node may now have a transient fault in sensor reading
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Figure 8: DA and FAR for ADS0 and ADS1 when
d̃ ≈7

with probabilityq. Hence in reality the sensed data at
a node may be erroneous with probabilityp+(1-p)q.
Also all the faults are assumed to be independent. De-
cision is made based on the current comparison re-
sult along withm-1 previous results. That is, a node
makes decision on its fault status using preassigned
values ofm andα. Without loss of generalitym=10
andα=0.7 are chosen in the simulation. The results
for d̃≈20 andq=0.15 are shown in Fig. 9, where the
initial fault probability andθ are set to 0.1 and max(3,
dt
2 ), respectively.

Both DA and FAR for ADS0 and ADS1 are ac-
ceptably high and low, respectively, although ADS1

achieves much improvement in FAR with some degra-
dation in DA. Since there is a negligible tradeoff be-
tween DA and FAR in selecting the value ofl, it is not
a concern to find the optimum value ofl. If the com-
munication overhead involved in dissemination of the
local decision at each node is a major concern,l=0
will be the best choice.

We additionally consider transient faults that
cause a faulty sensor node to assume a normal value.
To reflect this in the simulation, we definer to be the
probability that a faulty sensor node reports a normal
reading due to a fault. In practice,r is likely to be
much smaller thanq since the range of normal val-
ues is much narrower than that of abnormal values.
The results ford̃≈20, q=0.1, andr=0.1 are shown in
Fig. 10, where onlyl=0 and 1 are chosen to reduce
the communication overhead in fault detection. As ex-
pected, both DA and FAR are still acceptably high and
low, respectively. If the majority voting is applied in-
stead, the performance will degrade considerably due
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Figure 9: DA and FAR for ADS0 and ADS1 when
d̃ ≈20 andq=0.15

to negative impact ofq andr, on top of the existing
faulty sensor nodes.

Simulation results for̃d≈15 are shown in Fig. 11.
Some degradations in performance both in DA and
FAR are observed, although the degradations are neg-
ligibly small.

We also perform simulation after changing the
value ofδ to 2. The results for̃d=15 andq=r=0.1 are
compared in Table 1. A slight improved performance
has been observed whend=20. As expected, FAR can
be improved by choosingδ=3, while DA can be en-
hanced by loweringδ to 2. Overall an extremely high
performance has been observed for both values ofδ.

Table 1: DA for ADS0 and ADS1 whend̃≈15,q=0.1,
andr=0.1

ADS0 ADS1

p δ=3 δ=2 δ=3 δ=2
0.05 0.9997 0.9999 0.9981 0.9973
0.10 0.9998 0.9998 0.9982 0.9986
0.15 0.9999 0.9996 0.9982 0.9982
0.20 0.9998 0.9995 0.9983 0.9978
0.25 0.9996 0.9995 0.9970 0.9963
0.30 0.9994 0.9988 0.9955 0.9942
0.35 0.9988 0.9979 0.9935 0.9895
0.40 0.9980 0.9960 0.9899 0.9830
0.45 0.9972 0.9930 0.9825 0.9713
0.50 0.9957 0.9866 0.9709 0.9529
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Figure10: DA and FAR for ADS0 and ADS1 when
d̃ ≈20 andq=r=0.1
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Figure11: DA and FAR for ADS0 and ADS1 when
d̃ ≈15 andq=r=0.1
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Table2: FAR for ADS0 and ADS1 whend̃≈15,q=0.1,
andr=0.1

ADS0 ADS1

p δ=3 δ=2 δ=3 δ=2
0.05 0.0147 0.0138 0.0019 0.0017
0.10 0.0165 0.0140 0.0023 0.0020
0.15 0.0190 0.0144 0.0024 0.0023
0.20 0.0221 0.0163 0.0030 0.0027
0.25 0.0253 0.0169 0.0037 0.0028
0.30 0.0303 0.0182 0.0046 0.0038
0.35 0.0382 0.0205 0.0064 0.0043
0.40 0.0513 0.0249 0.0083 0.0058
0.45 0.0693 0.0304 0.0117 0.0085
0.50 0.0954 0.0403 0.0187 0.0116

Thesimulationis conducted in highly fault-prone
sensor networks to obtain a worst case performance
and to reduce the simulation time involved. Hence
the actual performance might be much better than that
shown above. Much improved performance can be
expected if we run the fault detection algorithm and
adjust parameters more often. As the update interval
decreases, the number of newly added faulty nodes
also decreases, resulting in a relatively small increase
in p between two adjacent update cycles. If the in-
crease is 0.01 instead of 0.05, for example, both DA
and FAR become almost perfect for a wide range ofp.

In the case of a regularly deployed sensor net-
work, the performance of the fault detection scheme
is more predictable. From the simulation of four reg-
ularly deployed sensor networks with the node degree
of 4, 8, 12, and 20, we have observed very similar
performance trends with high DA and low FAR.

5 Conclusion

In this paper, we presented an adaptive scheme for
detecting faulty sensor nodes in wireless sensor net-
works. Faulty nodes are identified locally in a dis-
tributed manner. Each sensor node makes a decision
based on the information obtained from its neighbor-
ing nodes. To cope with the low scalability problem of
existing fault detection algorithms parameters for fault
detection are dynamically adjusted to adapt to the
changing network status. The resulting improvements
in performance were observed by computer simula-
tion. Both detection accuracy and false alarm rate are
controlled to be acceptably high and low, respectively,
even with the increasing number of faulty nodes. Sim-
plicity of the fault detection scheme is emphasized

to make it practically useful. Transient faults are
treated properly to utilize the sensor nodes as much
as possible by screening out only the faulty nodes
repeatedly generating erroneous measurements. The
scheme was also applied to regularly deployed sensor
networks. Similar performance was observed, as ex-
pected. The relation between the fault detection cycle
and the mean-time-between-failures (MTBF) needs to
be further investigated to determine the time to adjust
the parameter values.
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