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Abstract:- Equations are derived for calculation of the propagation constants and of the dispersion of the 
fundamental modes in anisotropic waveguides .This work shows how to obtain approximate analytic 
expressions which can be used to calculate with sufficient accuracy for practical applications the waveguide 
and polarization dispersion of the dominant orthogonally polarized modes in anisotropic optical fiber 
waveguides and  distributions of electric and magnetic fields of these modes are obtained in a transverse cross 
section of the waveguide.  It is shown that the anisotropy of a dielectric in the transverse cross section and the 
elliptical of the shape of this cross section  alter the waveguide dispersion of modes in such waveguides 
compared with an isotropic waveguide. In the case of waveguides which conserve the state of polarization of 
the transmitted signal the changes in the waveguide dispersion due to the transverse anisotropy of the refractive 
index are considerably greater than the changes due to the elliptical of the shape of the transverse cross section 
of the waveguide. In a waveguide with a transverse anisotropy of the refractive index the maximum waveguide 
dispersion of two mutually orthogonal modes occurs at different frequencies. 
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1 Introduction 
Fiber optics transmission and communication 

are technologies that are constantly growing and 
becoming more modernized and increasingly being 
used in the modern day industries.however, 
dispersion is one of the properties of optical fibers 
that cause attenuation or a marked decrease in 
transmitted power. Dispersion occurs when the light 
traveling down a fiber optic cable becomes longer in 
wavelength and eventually dissipates.The 
broadening of light pulses, called dispersion is a 
critical factor limiting the quality of signal 
transmission over optical links. Dispersion is a 
consequence of the physical properties of the 
transmission medium. for example the single mode 
fobers, used in high-speed optical networks are 
subjected to chromatic dispersion that causes pulse 
broadening depending on wavelength, and to 
polarization mode dispersion that causes pulse 
broadening depending on polarization. Excessive  

 
spreading will cause bits to overflow their intended 
time slots and overlap adjacent bits and then the 
receiver may then have difficultly discerning and 
properly interpreting adjacent bits, increasing the bit 
error rate(BER) [1].  
The polarization-mode dispersion in optical fibers 
has attracted considerable attention over the past 
few years.  Different techniques for polarized –
mode dispersion (PMD) measurements and 
characterization have been reported in many 
references. Two main factors contribute to PMD in 
circular fibers: the deformation of the circular 
Geometry of the fiber and the internal stresses 

which leads to stress anisotropy, both of which 
could happen during manufacturing.  Other factors 
that could contribute to PMD in fibers are bends, 
twists, and cabling process. A circular fiber with 
small core elliptical deformation causes a difference 
between the group velocities in the two orthogonal 
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polarizations of the fundamental mode.This 
difference contributes to the overall dispersion and 
the effect is referred to as polarization-mode 
dispersion.  The magnitude of PMD in fibers 
depends on this difference in propagation constants.  
In ordinary step-index single-mode fibers, PMD 
vanishes outside the single-mode wavelength 
region.  To improve fiber performance in long-haul 
high bit rate systems, a zero PMD must be 
within the single-mode wavelength region. 

Anisotropic waveguides are proposed for 
the use in long-range communication optical 
communication systems and for integrated 
optical devices where conservation of a given 
state of polarization of the transmitted radiation 
is an essential requirement. Calculations of the 
parameters of modes in such waveguides are 
usually carried out by approximate methods 
based on perturbation theory; the underlying 
assumption in these methods is that the mode fields 
in anisotropic waveguides differ little from the fields 
in an isotropic waveguide. Approximate methods 
make it possible to calculate, with a precision 
sufficient for practical purposes, the characteristics 
of modes in dielectric waveguides with a relatively 
weak shape or permittivity anisotropy. However, 
these methods are unsuitable for determination of 
the characteristics of modes and fields in 
waveguides with an arbitrary anisotropy [2]. 
Anisotropic optical fiber waveguides capable of 
conserving the polarization of the transmitted signal 
are currently the subject of intensive investigations. 
This property is very important for various fiber-
optic devices and for long distance optical 
communication systems [3, 15,17,18]. Anisotropic 
waveguides are understood to be those with a 
departure of the transverse cross section from the 
circular symmetry (which is known as the shape 
anisotropy) and with an anisotropy of the 
permittivity (refractive index) induced by 
mechanical stresses. In practice, the parameters of 
anisotropic waveguides can be calculated 
conveniently by approximate methods which are 
sufficiently accurate for the purpose [2-4]. One of 
these methods, which belong to the class of  
perturbation theory techniques, is the method of 
shift formulas [2]. 

This method was described in [5-8] to calculate 
the propagation constants and critical wavelengths 
of all the modes in anisotropic dielectric 
waveguides. We shall use this method to calculate 
the dispersion of modes in such waveguides. 

Chromatic dispersion is an important characteristic 
of a medium and can significantly degrade the 
integrity of wave packets. In practice, chromatic 
dispersion is not uniformly distributed and often 
exhibits random variations in space and time. On the 
other hand, wave propagation through the medium 
is much faster than temporal variations of the 
chromatic dispersion.therefore; these random 
variations can be treated as multiplicative noise that 
does not change in time. the overall chromatic 
dispersion in an optical fiber comes from two 
sourses.The first source is the medium itself. The 
second source is the specific geometry of the 
waveguide profile. Material dispersion in the optical 
fiber is a relatively stable parameter uniformly 
distributed along the fiber. However waveguide 
dispersion is not nearly as stable. Existing 
technology does not yet provide accurate control of 
the waveguide geometry of modern fibers where 
dependence of dispersion on wavelength is 
complex. As a result, the magnitudes of random 
variations of fiber chromatic dispersion are typically 
the same as, or in some cases even greater than, that 
of the mean dispersion [4].The chromatic dispersion 
is the most important factor that determines the 
width of a pass band of single-mode waveguides. It 
can be separated into the material dispersion and the 
waveguide (mode) dispersion [9].    
 
2 Procedures  

According to general waveguide theory, guided 
modes, and also radiation modes, in a circularly 
symmetric waveguide can be labeled according to 
their azimuthally or angular symmetry order . We 
have taken advantage of this fact to solve the 
different angular orders, v, separately. In practical 
terms, the use of rotational symmetry reduces the 
original 2D problem (fields depending on the two 
transverse coordinates) into a ID one (fields 
depending on the radial coordinate only). This 
provides not only a higher accuracy for a given 
number of auxiliary modes, but also the different 
band structures for every angular order. Figure 1 
shows the two different band-gap structures and the 
modal dispersion curves for the guided modes in 
fiber for v = 1 and v = 0, , including in the latter 
case the spectrum of TE modes and omitting TM 
modes as they are very similar. guided modes 
appear in the forbidden band gaps at their 
corresponding angular order v. In particular, the 
single guided mode shown in the upper forbidden 
band for v = 1 is the fundamental mode of the fiber, 
which, due to the rotational symmetry of the index 
profile, corresponds to a polarization doublet 11 , HE
as denoted in standard waveguide theory. No other 
higher-order modes of any angular sector appear in 
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this band for the selection of the geometric 
parameters fixed in Fig.2 . The transverse intensity 
distribution for any of the two polarizations of the 
fundamental mode, 11 , and the first intraband HE
guided mode, 01TE , in Fig.2  are visualized in Figs. 
2(a) and 2(b), respectively, for mμλ 8.0= . 

 

 

 

 

 

 

Fig. 1. Band-gap structure and modal dispersion 
relation curves for two angular sectors: (a) V = 1 
(HE modes), and (b) V = 0 (only TE modes). In both 
cases, mμ190.1=Λ  and ma μ248.0= .  

 

             dimensionless coordinate: . Λ/x
Fig. 2. Transverse intensity distribution for: (a) the 
fundamental guided mode  in Fig. 1, and (b) 11HE
the first intraband guided mode  in Fig. 1. In 01TE
both cases, mμλ 8.0= . 

 We have extensively studied the dispersion 
properties of different high-index-core Bragg-
fiber designs We expect to tailor the chromatic 
dispersion of such fibers by manipulating the 
geometry of the multilayered cladding. The total 
dispersion, D, can be given, as a first 
approximation, in terms of the material 
dispersion, Dm, and the geometric waveguide 
dispersion, Dg, using the approximate expression 

     (D=  Dm + Dg ) . The material dispersion  is an 
input of the problem. The geometric dispersion of 
the fiber is given in terms of the geometric modal 
effective refractive index, ng, as                  Dg(A) = -
(A/c)d2n/dA2. and, then, starting from the 
approximate values for  and a, we can fine Λ
tune these parameters to obtain the expected 
dispersion behaviour. Using this procedure, we 
have studied the dispersion properties of different 
fiber designs in two different wavelength windows, 
the first one located around 0.8 mμ  and the second 
one in the vicinity of the optical communication 
window (around 1.55 mμ ),we would like to 
emphasize that all results refer to the fundamental 
mode of a single-mode structure in the upper 
forbidden band that corresponds to a polarization 
doublet . It should be stressed as well that the 11HE
high accuracy required to calculate D is fully 
provided by our modal method. In Fig. 3 we present 
some examples of positive, nearly-zero, and 
negative flattened dispersion designs at 0.8 mμ   
All of them show a zero third-ordered dispersion 
point. Note that the geometric parameters of the 
blue curve in Fig. 3 just correspond to that of the 
plots in Figs. 1 and 2. It is pretty clear the tunability 
of the structure, even in the region well below the 
critical silica zero-dispersion wavelength (1.3 mμ ). 
It is specially remarkable the possibility of 
obtaining a flattened positive dispersion profile 
centered around 0.8 mμ  (red curve) that can 
facilitate the stabilization of ultrashort soliton 
pulses generated at this wavelength by a more 
effective suppression of higher-order dispersion 
terms. 

 
 
 
 
 
 
 
 
 

 

Fig. 3. Positive (Λ = 1.170 mμ  and a = 0.266 mμ ), 
nearly-zero (Λ = 1.190 mμ  and a = 0.248 mμ ), and 
negative (Λ = 1.210 mμ  and a = 0.232 mμ ) flattened 
dispersion curves near 0.8 mμ . 
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           1.0                    1.5                   2.0 )( mμλ  
Fig. 4. Positive (Λ = 4.900 mμ  and a = 
0.115 mμ , nearly-zero ( = 4.210Λ mμ  and a = 
0.094 mμ ), and negative ( = 3.600 mΛ μ  and a = 
0.082 mμ ) ultraflattened dispersion curves near 
1.55 mμ . 

High-index-core fibers can also be designed to 
achieve ultra flattened dispersion behaviour around 
1.55 mμ  Figure 4 shows the curves for the 
dispersion coefficient D corresponding to three 
different Bragg configurations. Note that this ultra 
flattened behaviour is preserved in a large 
wavelength window that extends over several 
hundreds of nanometres and, unlike flattened 
dispersion, permits to obtain a point with zero 
fourth-order dispersion. The tunability of the 
structure is also clearly demonstrated by the fact 
that these designs own positive, negative, and zero 
D. 

If we go one step further, we can also recognize 
diverse intermediate situations in which D has a low 
value and at the same time the four-ordered 
dispersion coefficient is null at 1.55 mμ . Some 
solutions for such a challenging task are plotted in 
Fig. 5. In particular, we would like to point out that 
the examination of the blue curves in Fig. 6 reveals a 
fiber design with an ultra flattened dispersion regime 
and a low dispersion value around 1.55 mμ  
presenting a point of zero third- and fourth-ordered 
dispersion at this wavelength simultaneously. This 
is a fascinating result. However, one has to take 
into account that in our approach light is guided in 
silica, not in air, and consequently, in principle, it 
suffers from residual absorption loss and nonlinear 
effects as four-wave mixing. The performances of 
our optical proposal finally depend on the 
particular application[16]. 

 
 

 
 

 
 
 
 

Fig.5. Dispersion (solid curves) and relative 
dispersion slope (broken curves), defined as RDS = 
(dD/dA)/D, corresponding to three different 
selections of the structural parameters to achieve zero 
four-ordered dispersion at 1.55 mμ : red curve (Λ = 
4.710 mμ  and a = 0.090 mμ , blue curve (Λ = 4.570 

and a = 0.094m mμ , and green curve (μ Λ =4.465 
mμ  and a = 0.096 mμ . 

 
Anisotropic waveguides are proposed for the use in 
long-range communication optical communication 
systems and for integrated optical devices where 
conservation of a given state of polarization of the 
transmitted radiation is an essential requirement. 
Calculations of the parameters of modes in such 
waveguides are usually carried out by approximate 
methods based on perturbation theory. The 
underlying assumption in these methods is that the 
mode fields in anisotropic waveguides differ little 
from the fields in an isotropic waveguide. Ap-
proximate methods make it possible to calculate, 
with a precision sufficient for practical purposes, the 
characteristics of modes in dielectric waveguides 
with a relatively weak shape or permittivity 
anisotropy. However, these methods are unsuitable 
for determination of the characteristics of modes 
and fields in waveguides with an arbitrary 
anisotropy. A relatively simple but quite effective 
method for calculation of the parameters of modes 
(propagation constants, critical frequencies, etc.) in 
complex dielectric waveguides is the method of shift 
formula. we will use this method to calculate the 
parameters of guided waves in anisotropic di- 
electric waveguides and to determine the 
distributions of the fields of such waves. 
We shall consider the waveguide dispersion 
associated with the guiding properties of 
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waveguides. Wave-guide dispersion, another type, is 
very similar to material dispersion in that they both 
cause signals of different wavelengths and 
frequencies to separate from the light pulse. 
however, wave-guide dispersion depends on the 
shape,design,and chemical composition of the fiber 
core. Only 80% of the power from a light source is 
confined to the core in a standard single-mode fiber, 
while the other 20% actually propagates through the 
inner layer of the cladding. This 20% travels at a 
faster velocity because the refractive index of the 
cladding is lower than that of the 
core.Consequently,signals of differing frequencies 
and wavelengths are dispersed and the pulse 
becomes indistinguishable. An increase in the 
waveguide dispersion in an optical fiber can be used 
in order to counterbalance material dispersion 
[2].The parameters of modes in anisotropic 
dielectric waveguides can be determined by the 
a method of shift formulas which is used to find 
the normalized field frequency cak /)( ω=  where 
ω  is the angular frequency, C is the velocity of light 
in free space, and the starting point in the calcula-
tions is the transverse wave number a for the 
field of a guided mode outside the waveguide, 
which is the same for waves in the investigated 
waveguide and in a comparison or reference 
waveguide ( a  = a). Here and later the 
quantities identified by a tilde refer to an 
investigated anisotropic dielectric waveguide, 
whereas those without a tilde represent a 
comparison waveguide[3].The waveguide 
dispersion of any mode in a dielectric waveguide is 
defined as the produce the propagation constant of 
this mode and its frequency. The propagation 
constant of a mode in an anisotropic waveguide 
obtained by the method of shift formulas can be 
written as follows[2,7,8]: 
  slt hhhhh Δ+Δ+Δ+=

~
,                            (1) 

where h~ and h are the propagation constants of a 
mode in the investigated anisotropic waveguide and 
of the corresponding mode in a circular isotropic 
comparison waveguide; ,and , are the 
correction describing the influence of the transverse 
and longitudinal (axial) anisotropies of the refractive 
index, respectively; is the influence of the shape 
anisotropy on the propagation constants of modes in 
a dielectric waveguide. Anisotropic waveguides are 
used mainly in the single-mode regime. We shall 
therefore consider only the dominant modes in such 

waveguides. Bearing in mind that the difference 
between the refractive indices of the core and 
cladding in fiber waveguides is small, we can 
describe as follows the corrections to the 
propagation constant of the dominant , mode 
in a fiber waveguide, due to the influence of the 
transverse and longitudinal anisotropies of the 
refractive index and due to the ellipticity of the 
shape of the transverse cross section: 

thΔ

11HE

0=Δ x
th

)](/)(1[ 2
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2
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0 uJu +
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                                                            (2) 
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 where 221 /)( nnn −=Δ  ; 2(nyt = /) nnx−δ   

2)nnn xz(l −=δ  ; )b/() ab +−(as =δ  ; 

yx nn ,

2υ=B

and are the components of the refractive 
index tensor of the core of the investigated 
anisotropic fiber waveguide; is the 
refractive index of the core of the comparison 
waveguide;  is the refractive index of the cladding 
which is the same for both waveguides; a and b are 
the major and minor semi axes of the ellipse 
representing the transverse cross section of the core 
of the investigated waveguide; 

 ; u and 

z

2n

2 ;V

n

xn=n1

222/ υ+= uV υ  are the 
internal and external normalized transverse wave 
numbers of the modes. Equation (2) describes the 
dominant mode in a waveguide with a transverse 
anisotropy of the dielectric in which the electric 
field vector is polarized along the X axis, whereas 
Eq. (3) applies to a mode polarized along the Y axis. 
In Eq. (5) the upper sign applies to the odd (o) and 
the lower sign to the even (e) dominant modes in an 
elliptic fiber waveguide.  

In dielectric waveguides the longitudinal (axial) 
anisotropy created in the process of their drawing 
from a blank is fairly weak: [10]. 
Moreover, the longitudinal component of the mode 
field in fiber waveguides is very small compared 
with the transverse components. Therefore, the 
influence of the longitudinal anisotropy of the 
refractive index on the propagation constants of 
modes is less than the influence of the transverse 
anisotropy of the refractive index or of the shape 
anisotropy, so that we shall ignore the effects of the 
longitudinal anisotropy. This also follows from a 

510−≤lδ
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comparison of Eqs. (2)- (5) bearing in mind that we 
typically have . 310~ −Δ
By definition the waveguide dispersion in 
anisotropic fiber waveguides, subject to Eq. (1), can 
be written in the form: 

)(1(
~

h
h

dk
d

hdk
dh ΔΔ

+= ) h
dk
dhh

+  ,                         (6) 

where applies to an elliptic 
waveguide with a transverse anisotropy of the 
dielectric; in particular, we have for a 
circular waveguide with a transverse anisotropy of 
the dielectric and 

st hhh Δ+Δ=Δ

h

thh Δ=Δ

shΔ=Δ for an elliptic 
waveguide with an isotropic dielectric. 

The propagation constant of the dominant mode 
in a circular isotropic comparison waveguide can be 
represented by: 
                                           2/12

2
2
1

2
2 ])([ Bnnnkh −+=

or, within terms of the order of , by       2Δ
                        (7) ]2/)1(1[ 2

2 BBBknh −Δ+Δ+=

Then, the waveguide dispersion of this waveguide 
can be written as follows: 

+−Δ+Δ+= )1(21[ 02 BxBn
dk
dh  

 ]22
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000
2 ⎟

⎠
⎞

⎜
⎝
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  where  2
100 )](/)([ υυ KKx =

Substituting in Eq. (6) the expressions (2), (3), and 
(5) we obtain a formula for the calculation of the 
waveguide dispersion of an anisotropic fiber 
waveguide: 

    st DD
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dh
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where dh /dk is defined by Eq. (8), whereas 
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describe the influence of the transverse anisotropy 
of the dielectric on the mode dispersion of the 
dominant modes polarized along the X and Y axes, 
respectively, and 
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 describes the influence of the shape anisotropy of 
the transverse cross section on the waveguide 
dispersion of the dominant odd (upper sign) and 
even (lower sign) modes. 

These expressions can also be used to calculate 
the polarization dispersion in an anisotropic fiber 
waveguide: 

y
t

yxt D
dk
dh

dk
dh

dk
d

−=−=

~~
β

                                (13) 

in the case of waveguides with a transverse 
anisotropy of the dielectric, 

s

oe
s D

dk
dh

dk
dh

dk
d

2

~~

=−=
β

                                 (14) 

In the case of waveguides with an elliptic transverse 
cross section, and 

s
y

t DD
dk
d 2+−=
β

                                          (15) 

In the case of elliptic waveguides with a transverse 
anisotropy of the dielectric. Here, 

st βββ += , , ;  

and , and are the propagation constants 
of, respectively, the dominant mode polarized along 
the X and Y axes, and of the even and odd dominant 
modes in an elliptic waveguide. 

yxt hh
~~

−=β
~
oh

~~
oe

s hh −=β
~

xh
~

yh
~
eh

    The expression for the polarization dispersion in 
an isotropic waveguide with an elliptic transverse 
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cross section, similar to Eq. (14), had been obtained 
earlier by other authors (see, for example, Ref. 11). 
Moreover, experimental values of the polarization 
dispersion in an optical waveguide with a transverse 
anisotropy of the refractive index and an elliptic 
waveguide were obtained in Ref. 12. Therefore, it is 
possible to compare the values of the polarization 
dispersion calculated using Eqs. (13)-(15) with these 
experimental values.  

The anisotropy of the refractive index in the 
transverse cross section of a waveguide tδ , can be 
calculated fromEq. (7) of Ref. 1 if we know the 
external pressure on the waveguide core. The 
continuous lines in Fig. 6 represent the polarization 
dispersion 

p

λβ dd t /
Δ

 for a circular anisotropic fiber 

waveguide with calculated from (13). 310. −2=
For various values of (2−λ λ  is the 

wavelength). The dashed lines are drawn through 
the experimental points taken from Ref. 12. The 
experimental values themselves are represented by 
circles in Fig. 6.  
 

 

 
  

 

 

  

 

 

          

         Fig.6: calculated and experimental values. 

We can see from Fig. 6 that the difference 
between the calculated and experimental values of 
the polarization dispersion does not exceed 7% of 
waveguide parameters indicated in Fig. 6. 
In an investigation [12] of an elliptic waveguide 
with sδ =0.21 and = at Δ 310.9.2 − λ = 1.1 μ  it 
was found that 

610.541.1=

It is thus clear that the expressions derived above are 
sufficiently accurate for practical calculations of the 
waveguide and polarization dispersions of the 
dominant orthogonally polarized modes in an 
anisotropic fiber waveguide.  

A waveguide can conserve stably a given 
polarization state of the transmitted signal if a 
transverse anisotropy of the permittivity and 

is established in the waveguide[13]. 410−≥tδ
Figure 7 shows the values of the waveguide 
dispersion for anisotropic fiber waveguides with 

. Curves 2-5 denote the waveguide 
dispersion of modes polarized along the Y axis 
traveling in waveguides with anisotropy 

and 5. Curve 1 
represents. 

310.3 −=Δ

10.5−oftδ ,10,10, 444 −−− − 410 −

  
3 Results and Discussions  

The waveguide dispersion of modes polarized 
along the X axis in the same waveguides. Moreover, 
this curve represents also the waveguide dispersion 
of the dominant mode in an isotropic waveguide. 
The abscissa in Fig. 7 gives the values of the 
normalized frequency λπ /22 2 Δ= RnV , where R 
is the waveguide radius. It is clear from Fig. 7 that 
the anisotropy of the dielectric increases strongly (or  
reduces, depending on the sign of tδ ) the waveguide 
dispersion of optical fiber waveguides. The 
maximum waveguide dispersion for waveguides 
with different values of the transverse anisotropy of 
the insulator tδ , is attained at different frequencies.  
 

  
 

 

 

 

 

 

−

dk
d sβ whereas 610..1 −=

dk
d sβ 702 is the 

value obtained from Eq. (14) for a waveguide with 
the same parameters. It therefore follows that 
if 21s .0≤δ , then calculations based on Eq. (14) are 
subject to an error not exceeding 9.4%. 

 

Fig.7:Values of normalized frequencies. 
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      Fig.8:- maximum values of dispersion.  
   
Moreover, the maximum waveguide dispersion of 
orthogonally polarized modes traveling in 
anisotropic fiber waveguides also occurs at different 
frequencies. Continuous curves in Fig. 8 are the 
normalized frequencies V at which the waveguide 
dispersion has its maximum value, plotted for 
waveguides with 0≥tδ (curve 1) and 

0≤tδ (curve 2). 
The deviation from the circular transverse cross 

section of a waveguide (shape anisotropy) also 
alters the waveguide dispersion. In this case the 
waveguide dispersion of even orthogonally 
polarized modes of elliptic waveguides with 
different degrees of ellipticity sδ has its maximum 

value at the same frequency λπ2= /22

~
ΔnRV   

where is the radius of a comparison 
waveguide (dashed line in Fig.8). At this frequency 
the waveguide dispersion of the dominant mode of 
the circular comparison waveguide also has its 
maximum value. The waveguide dispersions of an 
elliptic waveguide agree, with the accuracy of the 
scatter in the graphs, with the value of the 
waveguide dispersion for a circular waveguide 
(curve 1 in Fig. 7). Figure 9 makes it possible to 
determine the order of the waveguide dispersion of 
an elliptic waveguide.     The continuous and dashed 
curves in Fig. 9(a) represent the values of the 
waveguide dispersion for even and odd modes of an 
elliptic waveguide with and with 
different values of the ratio of the minor and major 
semi axes of the transverse-cross section ellipse b /a 
calculated for V= 2.010, whereas the corresponding 
curves in Fig. 9(b) give the results of calculations 
for V= 3.072. 

2/)(
~

baR +=

310.3 −=Δ

In this paper we have discussed the dispersion 
properties of fibers. We have numerically 
demonstrated the ability of these structures to 
show, for some specific designs, a flattened 
dispersion behavior (one point of zero third-order 
dispersion) around 0.8 mμ  and even an 
ultraflattened behavior (one point of zero fourth-
order dispersion) around 1.55 mμ  Moreover, we 
have recognized some configurations exhibiting 
positive, negative, or nearly-zero constant 
dispersion in both wavelength windows. Finally, a 
noteworthy fiber design that combines low and 
nearly-constant chromatic dispersion about 1.55 

mμ with zero third- and fourth-order dispersion at 
1.55 mμ has been identified. 

 

Also the single-mode fibers provide a solution 
to the problems of polarization and dispersion. we 
thus derived expressions for the calculation of the 
waveguide and polarization dispersions of dominant 
orthogonally polarized modes in anisotropic fiber 
waveguides. The anisotropy of the dielectric in the 
transverse cross section as well as the shape 
anisotropy alters the waveguide dispersion of these 
modes compared with that in an isotropic 
waveguide. In the case of waveguides capable of 
conserving the Polarization of the transmitted signal 
( ).also in this work, the polarization and 
polarization-mode dispersion in fibers have been 
discussed. Analysis of optical fibers that maintain 
polarization over long lengths, provide zero 
polarization-mode dispersion. the zero polarization-
mode dispersion single-mode design is a dispersion-
shifted fiber that provides large effective area and 
hence reduces signal distortions due to nonlinearity 
in fibers.a comprehensive analysis of polarization-
mode dispersion in multiple-clad fibers due to 
ellipticity of fiber cross-section was carried out using 
a perturbation technique. The design of large 
effective area single-mode dispersion-shifted fiber 
that provides zero polarization-mode dispersion at 
the wavelength 1.55

410−≥tδ

mμ was accomplished using the 
analysis developed. 
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Fig.9 :-( a) values of the waveguide dispersion 

for   even and odd modes. 
                 (b) Results of calculations for V= 3.072. 

 
4 Conclusion 
  The changes due to the anisotropy of the dielectric 
are much greater than the changes in the waveguide 
dispersion due to the shape anisotropy. The 
transverse anisotropy of the refractive index is the 
reason why the waveguide dispersions of the modes 
polarized along mutually perpendicular directions 
have maxima at different frequencies. The proposed 
method can be used to calculate the main parameters 
of guided waves in anisotropic (in a wide sense) 
dielectric waveguide which can conserve a given 
state of polarization of the transmitted signal. This 
method has been used to calculate the propagation 
constants and the waveguide dispersion of the 
fundamental modes in an anisotropic dielectric 
waveguide and the distributions of the fields of 
these modes. . The results show that under the 
influence of the anisotropy of the dielectric an 
energy spot describing the distribution of the fields 
of the fundamental modes in dielectric waveguides 
loses its circular symmetry and becomes an ellipse 
elongated along the coordinate axes which coincide 
with the principal axes of the permittivity tensor. 

The influence of changes in the anisotropy on the 
waveguide dispersion of the fundamental modes in 
an anisotropic dielectric-waveguide is different from 
the effects of the permittivity anisotropy. The 
proposed method can be used to calculate the main 
parameters of guided waves in anisotropic (in a 
wide sense) dielectric waveguide which can 
conserve a given state of polarization of the 
transmitted signal. This method has been used to 
calculate the propagation constants and the wave-
guide dispersion of the fundamental modes in an 
anisotropic dielectric waveguide and the 
distributions of the fields of these modes. The 
results show that under the influence of the 
anisotropy of the dielectric an energy spot 
describing the distribution of the fields of the 
fundamental modes in dielectric waveguides loses 
its circular symmetry and becomes an ellipse 
elongated along the coordinate axes which coincide 
with the principal axes of the permittivity tensor. the 
influence of changes in the anisotropy on the 
waveguide dispersion of the fundamental modes in 
an anisotropic dielectric-waveguide is different from 
the effects of the permittivity anisotropy. 
 
 
5 Suggestions For Further 

Investigations  The analysis of polarization-mode dispersion 
presented here accounts for fiber cross-section 
elliptical deformations. However, in addition to core 
ellipticity, random residual stress also contributes to 
polarization-mode dispersion. Thus, the analysis of 
polarization-mode dispersion should be extended to 
random anisotropy in the fiber. 
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