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Abstract :-The geometric polarization in single mode optical fibers is investigated theoretically and 
experimentally and the measurement results are reported. This paper consider the geometrical measurement 
method of weights the own modes of poorly directing optical fiber with strong linear anisotropy. This given 
method is based on definition the geometrical parameters lines with equal intensity in a vicinity of zero 
radiation image from fiber output. The modes weights have been received as a result of computer processing of 
experimental images of intensity distribution at displacement of laser spot concerning the center of fiber input. 
It is found that neglecting the geometrical birefringence, even under the weakly guiding approximation, can lead 
to significant errors in the calculation of PMD and the zero PMD wavelengths. It is also found that one can 
obtain zero PMD in the single-mode region even by applying a suitable differential stress along the major axis. 
This is very attractive since then the geometrical and stress birefringence adds up to give increased total 
birefringence. 
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1 Introduction  
Optical fibers are making ever increasing demand into 
areas traditionally satisfied by older, more 
established technologies. Interest in the utilization 
of polarization effects in fibers is continuing to 
grow. In ordinary single-mode fibers, widely used in 
present optical communication systems, the 
polarization states of the input and the output light 
beams do not match, since the polarization of the 
output light beam is unstable. By contrast, PM fibers 
maintain the state of polarization of a light beam 
passing through them. PM fibers are imperative for 
obtaining a stable output in interferometric fiber 
optical sensors. In optical communication devices 
the use of PM fiber becomes mandatory when 
performing any polarized waves operations; e.g., for 
polarization combining. There are many applications 
where the polarization of the light is required to be 
stable and well defined; such as coupling to the 
integrated optical circuits, interferometric sensors, 
coherent optical communication systems, and certain 
in-line fiber optic components. Nowadays, one of the 
issues of concern is the kind of fiber to use in all 
optical networks and the advantages they can offer 
regarding polarization-mode dispersion, chromatic 
dispersion, and optical fiber  

 
nonlinearities[1].Recently, the single modes optical 
fibers were strongly used in many fields of science 
and techniques. The debugged technology of such 
fibers assumes their application exclusively in 
optical systems were there parameters strictly 
correspond to characteristics of fiber. One of the 
most rigid requirements is concern the lengths of 
light wave, which transmitted through the wave 
guide. and any deviations from the value of bearing 
wave length are entail not only a sharp increasing of 
light losses, but also essential infringements of 
system functional abilities and this is due to the 
change of modal structure of transmitted radiation. 
As example, the optical fiber with wave guide 
parameter 1.2=V and wave length mμλ 33.1=  is 
capable to support only.  
In ordinary circularly cylindrical fibers, there are 
two types of hybrid modes, and modes. νμHE νμEH

The label ν refers to the azimuthal variation of the 
field while the label μ accounts for modes of 
different radial variation. The dominant mode of 
an ordinary optical fiber is designated as the 

11HE mode. However, under weakly guiding 
condition, an approximate modal field description 
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can be obtained by solving the scalar wave 
equation instead of the full set of Maxwell's 
equations. This dominant mode solution is 
designated as mode for which the electric field 01LP
is linearly polarized . In the framework of Cartesian 
coordinates, the electric field of the dominant mode 
has three components, Ex, Ey and Ez. One of the 
two transverse components, Ex or Ey 
predominates, while the Ez component, considered 
in the direction of the fiber axis, is much smaller 
than the transverse. If Ex is the dominant field 
component in an isotropic circularly symmetric 
fiber, the  mode is said to be polarized in the x-01LP
direction, while for if Ey is the dominant 
component, the mode is y-polarized. Thus, single-
mode fibers can, in fact, simultaneously support two 
identical modes which are mutually orthogonally 
polarized. In an ideal dielectric waveguide of 
circular cross section, these two modes are 
degenerate; that is, there is no difference between 
their propagation constants, and thus propagate with 
same phase-velocity. In practical situations, an actual 
optical fiber is not absolutely perfect. It is neither 
completely axially-symmetric nor perfectly straight. 
In addition, the fiber material is often assumed to 
be nominally isotropic, in which the refractive 
index is the same regardless of the direction of the 
polarization of the electric field. This is also not 
strictly true in practical fibers. Small departures 
from perfect circularity and fluctuations of the 
anisotropy of the fiber material, couple the x-
polarized mode to the y-polarized mode since both 
modes are very nearly degenerate. These 
conditions lead to a complete mixing of the two 
polarization states so that the initially linearly 
polarized light field quickly reaches a state of 
arbitrary polarization . Furthermore, environmental 
factors such as twists, bends, anisotropic stress and 
ambient conditions also cause unstable 
fluctuations in the polarization state of the 
propagating light.    In multimode fibers, such 
instability usually causes little trouble except for 
its possible effect on modal noise. The following 
problems arise in a single-mode fiber due to  
the factors mentioned previously: 
1- The two polarization states travel at different 
phase velocities, which causes the state of 
polarization of the output light to change randomly 
with time. Fluctuations in the received 
signal level are not desirable when the receiver is 
sensitive to polarization.    In many 
applications, the output state of polarization 
should be strictly maintained,  such as 
interferometric sensors, coherent transmission 

systems and for coupling to integrated optical 
circuits, i.e., when the heterodyne-type or homodyne-
type optical polarization state 
is required between the received signal and the local 
oscillator. 
2- The polarization instability deteriorates 
measurements accuracy in magneto optic current 
sensors and in laser gyroscope.   In coherent 
systems, polarization instability 
adversely affects the bit-error rate. 
3- A slight geometrical deformation exists in 
single-mode circular fibers.   This residual 
deformation breaks the degeneracy of the two 
orthogonal dominant modes. These modes 
propagate with different group velocities, causing 
polarization-mode dispersion which can 
limit the ultimate bandwidth of a single-mode optical 
communication system[1,2,12]. 
 One basic mode(for simplicity we neglect the 
double-refraction fiber).however on the wave length 

11HE

mμλ 63.0= the wave guide parameter becomes 
4.4=V

12
,and the fiber then is capable to support 

=N  own modes [3].the situation becomes more 
complicated for double-refraction fibers, and at the 
same time in the real case on the fiber input, the 
energy of initial bunch is non-uniformly distributed 
on their own modes and the weights of modes are 
rigidly connected with conditions of optical fiber 
system excitation. and here again we collide with 
the problem of weighing of own modes.  
Forty years ago the scientists try to measure the 
weight size of directed own modes, which radiated 
from fiber output. These methods of measurement 
were based on the using of complex holographic 
masks established after the fiber [4]. The masks 
disseminate a part of a bunch in a certain direction 
which corresponds to own modes. Certainly, 
accuracy of measurements and resolution of used 
method was extremely small, therefore till now they 
limited to the qualitative analysis of field modal 
structure comparing the form bunch intensity 
distribution which radiated from both classical 
optical fibers [4,5]and from fibers which made from 
photon crystal[6]. Recently it was suggested a 
method of geometrical analysis of optical 
core[7,8]that allows to put in pawn the bases of new 
geometrical measurement the weights of own modes 
of optical fiber. 
 
2 Related works. 
Linear polarized light propagating through a 
monomode optical fiber of negligible intrinsic linear 
and circular birefringence and stress-induced 
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effects will also produce the rotation of 
polarization as the geometric path is changed. 

This effect was first studied in[13,14]Their theories 
are based on geometry and the axiom of parallel 
transport of light. When the input and output ends 
of fibers are parallel, the rotation is 

∫
outputend
inputend τ ds. 

where τ  is the torsion of the curve. In a uniform 
helix, this leads to )/1(2 SP−= πφ , where P is the 
pitch and S is the total length of fiber[13].in 
[14]they pointed out another method which was 
derived from Berry's phase factor in the adiabatic 
limit of quantum mechanics. When a system takes 
an adiabatic transport around a closed path in 
parameter space, a nonintegral phase factor will 
result which must multiply the wave function of the 
system. As linear polarized light travels along a 
helically wound optical fiber, a closed path C will 
form in momentum or K space and Berry's 
phase )(cΩ−=)(c σν . here 1±=σ is the helicity 
quantum number of the photon and is the solid )(cΩ
angle subtended by curve C with respect to the origin 
K = 0. The phase factor is just the rotation angle of 
polarization. For a single-turn uniform helix, we have 

)s/1( p−= 2−)(c πσν . 
Then, how about the nonparallel case? It is 

obvious that, when the two ends of fiber are not 
parallel, a closed curve will not exist in K space, as 
shown in Fig. 1. 

 In [15] the treatment using differential geometry is 
purely classical. On the unit K sphere, the initial 
and final wave vectors        Ko, K1 are separated 
because of the nonparallel input and output ends. 
We found a great circle connecting the two vectors, 
as shown in Fig. 1. Then a closed curve appears in K 
space and it spans a solid angle which is equal to the 
rotation angle of polarization. This fact is natural 
because a path lying along the great circle is a plane 
curve which will not raise polarization rotation 
according to the parallel transport of light. So the 
rotation angle is just the shaded area shown in Fig. 
1. The calculation of this area could be done as 
follows (see Fig. 1): 

 
 

 
 

 
Fig.1:Spherical surface in K space: Ko,the K vector 

on the input end and K1, the K vector on the 
output end. 

In [16,17] it was shown that the polarization 
characteristics of an elliptical, core fiber can be ob-
tained to a very good approximation by considering a 
suitably chosen rectangular core waveguide that 
can be analyzed by a perturbation technique . The 
perturbation technique was shown to be applicable 
for analyzing anisotropic rectangular waveguides as 
well in [17]. Since the effect of an applied stress is, 
effectively, to modify the refractive index "seen" by 
the two polarizations, it was intuitive to apply the 
method of [17] to obtain the polarization 
characteristics of stress-birefringent fibers, partic-
ularly, those having an elliptical core. In this paper 
we have shown that the simple rectangular core 
model can be effectively used to study birefringent 
fibers having both geometrical and stress anisotropy. 
Fibers having differential material anisotropy in the 
core and cladding have also been studied, and the 
results are in agreement with those of [18] for 
circular core fibers. However, in the case of 
elliptical core fibers with weak or moderate 
guidance, we show that neglecting the contribution 
due to geometrical anisotropy can lead to significant 
errors in predicting the region of zero- or low-PMD. 
Further, we have found that a suitable differential 
stress anisotropy along the major axis of an elliptical 
core fiber can result in a large birefringence as well 
as zero PMD within the single-mode region.  
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Fig.2:  variation of birefringence (dashed curves) 
and group index (solid curves) fiber.a/b=2. 

                   Fig.3(a) 
 

 
 

 
 
 

 
 

 
 
 
 
 
 

                      
                            Fig.3(b) 
 
 

F = 0 0 

                         Fig.3(c) 
Fig.3: variation of group index difference with V.(a) 
and (b) correspond to the same elliptic core fiber as 
in fig.2 when the differential anisotropy is along the 
x and y directons,(c) corresponds to a fiber with 
a/b=1.5.Dashed curves correspond to calculations 
neglecting geometrical anisotropy and solid curves 
give the combined effect of stress and geometrical 
anisotropy. 
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3  Polarization in single-Mode Fibers. 
The polarization of wave describes the time-varying 
direction of the electric field vector at a fixed point 
in space. Polarization is observed along the 
direction of propagation by tracing out the tip of 
the instantaneous electric field. There are three 
types of wave polarization: linear, circular, and 
elliptical. In general, the tip of the electric field 
vector traces out an ellipse and the wave is said to 
be elliptically polarized. The other two types of 
polarization, linear and circular, are special cases of 
elliptical polarization. The linearly polarized wave is 
characterized by the property that the orientation of 
the electric field vector is the same everywhere in 
space and is independent of time.    In linear 
polarization, the field vector is directed along a line. 
The circularly polarized wave is characterized by a 
constant amplitude field vector, and the field 
vector orientation in space changes continuously 
with time so that the tip of the field vector traces 
out a circular locus in a plane transverse to the 
direction of propagation. 
The polarization of light propagating in a single-
mode fiber is initially determined by the polarization 
of the output light from the laser source. Often the 
polarization of light generated by a laser diode is 
linear and so is the polarization of light in the excited 
mode. However, at some distance away from the 
light source, the polarization of light in regular non-
polarization-preserving fibers becomes random due 
to various perturbing effects. Using appropriate 
techniques, it is possible to generate and maintain any 
of the three types of polarization in a fiber. 
 
3.1 Circular Polarization Fibers. 
It is possible to introduce circular-birefringence in a 
fiber so that the two orthogonally polarized modes 
of the fiber are clockwise and counter-clockwise 
circularly polarized. The most common way to 
achieve circular birefringence in a round (axially 
symmetrical) fiber is to twist it  to produce a 
difference between the propagation constants of the 
clockwise and counter clockwise circularly polarized 
fundamental modes. Thus, these two circular 
polarization modes, i.e., and are +

11HE −
11HE

decoupled. Also, it is possible to conceive 
externally applied stress whose direction varies 
azimuthally along the fiber length causing circular 
birefringence in the fiber. If a fiber is twisted, a 
torsional stress is introduced and leads to optical-
activity in proportion to the twist. It is shown 
theoretically that if φ  represents the twist rate per 
unit length then the plane of polarization of a linearly 
polarized light is rotated in the same direction with a  

 
rate of gφ  where g = 0.07 for silica. The 
birefringence of such a fiber is very small (as g is 
small) and it is difficult to obtain beat lengths less 
than 10 cm, because fiber breaks at high twist rates 
and such fiber is difficult to handle. It is shown that 
the twist rate required to provide immunity from 
external effects such as pressure and bends is 
excessively large. Circular birefringence can also be 
obtained by making the core of a fiber follows a 
helical path inside the cladding as shown in Fig.4. 
This makes the propagating light, constrained to 
move along a helical path, experience an optical 
rotation. The birefringence achieved is only due to 
geometrical effects and a large birefringence value B 
= 2x10~4. Such fibers can operate as a single mode 
up to a very large value of the normalized 
frequency (V ~ 25), and suffer high losses at high 
order modes. 

 

 

 

 

 

 

 

 
 
 
 

 
Fig.4: the structure of helical or spiral fiber. 

the linear polarization fibers are of two types. The 
linear single polarization type is characterized by a 
large transmission loss difference between the two 
polarizations of the fundamental mode. The linearly 
birefringent fiber type is such that the propagation 
constants between the two polarizations of the 
fundamental mode are significantly different. 
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3.2 Polarization Fibers with geometrical 
asymmetry. 
 various kinds of linear polarization-maintaining 
fibers, such as elliptical core fibers, dumbbell core 
fibers, stress-induced (elliptical cladding) fibers 
were proposed and investigated. The early research 
on elliptical-core fibers dealt with the computation of 
the polarization birefringence. In the first stage, 
propagation characteristics of rectangular 
dielectric waveguides were used to estimate 
birefringence of elliptical-core fibers. Computations 
based upon a rigorous analysis showed a better 
accuracy than various approximate analysis 
performed previously . 
3.3 Polarization Mode Dispersion PMD in 
Optical Fiber. 
The polarization-mode dispersion in optical fibers 
has attracted considerable attention over the past 
few years.  Different techniques for polarized –
mode dispersion (PMD) measurements and 
characterization have been reported in many 
references. Two main factors contribute to PMD in 
circular fibers: the deformation of the circular 
Geometry of the fiber and the internal stresses 

which leads to stress anisotropy, both of which 
could happen during manufacturing.  Other factors 
that could contribute to PMD in fibers are bends, 
twists, and cabling process. A circular fiber with 
small core elliptical deformation causes a difference 
between the group velocities in the two orthogonal 
polarizations of the fundamental mode.This 
difference contributes to the overall dispersion and 
the effect is referred to as polarization-mode 
dispersion.  The magnitude of PMD in fibers 
depends on this difference in propagation constants. 
In ordinary step-index single-mode fibers, PMD 
vanishes outside the single-mode wavelength 
region.  To improve fiber performance in long-haul 
high bit rate systems, a zero PMD must be 
within the single-mode wavelength 
region[1,3,19,20,21]. 
 
4  Problem and Solution. 
   Highly birefringent fibers that can maintain a 
stable state of polarization are of considerable 
interest in the field of optical fiber sensors and 
coherent detection systems. Birefringence can be 
induced in fibers by introducing geometrical 
anisotropy in the core [16] and/or by incorporating 
stress producing regions in the cladding.  

When a linearly birefringent fiber is used for 
coherent transmission, only one of the two 
orthogonal modes is excited in the hope that no 
coupling occurs to the other mode. However, there  

 
can be power coupling between the two 

orthogonally polarized modes due to perturbations 
like bends, twists, imperfectjoints, etc. This would 
result in an unstable state of polarization at the 
output, and can severely affect the bandwidth of a 
coherent optical communication system, if the group 
delay difference between the two modes is 
significant. Therefore it is important to have high 
birefringence and low PMD fibers for these ap-
plications. It has been shown that zero PMD with 
high birefringence fibers can be achieved in the 
single mode region by a suitable combination of 
geometrical and stress induced anisotropy in the fiber 
cross section. However, this would require a large 
relative index difference between the core and the 
cladding which makes it difficult in practice to keep 
the fiber loss low. It has also been shown that the 
stress distribution over the fiber cross section has a 
strong influence on the polarization characteristics of 
the fiber. However, no simple analytical method 
exists which can take into account simultaneously 
both geometrical and stress induced 
birefringence[14].  
 The purpose of the given paper is to measure the 
weights of own modes of poorly directional optical 
fiber with strong linear anisotropy on the basis of 
geometrical analysis of intensity distribution. 
As in the investigated sample, we shall choose a 
fiber with strong double-refraction that allows 
reducing the quantity of extending modes with 
excitation by linearly polarized light which focused 
along one of the anisotropy axes [5]. 

The field type of own modes of such fiber are 
possible to present as[5,12]: 

{ }ziRFlxe x
ll

x
tl

,1,1 exp)()cos(ˆ βϕ= , 

{ }ziRFlxe x
ll

x
tl

,2,2 exp)()sin(ˆ βϕ=  

{ }ziRFlye y
ll

y
tl

,1,1 exp)()cos(ˆ βϕ= , 

{ }ziRFlye x
ll

x
tl

,2,2 exp)()sin(ˆ βϕ=  ,                        (1) 
Where -linear polarization along the fiber 

of  anisotropy axes. 
yx ˆ,ˆ

l- mode orbital index, - radial function of 
field distribution, 

)(RFl
rR / zr ,,, ϕρ= -cylindrical 

coordinates, ρ - fiber core radius, β -mode 
distribution constant; the top indexes in designations 
of field (1) and (2) corresponds to an even and odd 
mode accordingly. 
Let’s consider the poorly directional fiber with wave 
guide parameter V < 3.8,in which modes with 

1.0=l  can extend only. we shall consider that the  
structure of refraction index has a parabolic form, 
then { }2/exp)( 2VRRRF l

l −= .and let the fiber is 
raised by linearly polarized light along the axis x ,in 
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this case the fiber wave guide field will be in the 
form: 

{ } { } { } { }2/2exp)2exp21exp10exp0( VRziYaziXaziate −++= βββ , 
(2) 
Where  - modes weights factor,ia ρϕ /)cos(rX = , 

ρϕ /rY = )sin( . 
In the intensity distribution image, there is a zero 
field which surrounded by lines of equal intensity of 
the elliptic form (fig.5, a).the zero intensity can be 
determined by equated the expression (2) to zero. so 
from the given condition it is possible to define the 
coordinates of zero field:

 
00 ,YX

))sin((
))sin((

12

20
ββ1

0
0 za

za
X

ββ
−
−

=   ,   

))sin((
))sin((

122

100
0 za

za
Y

ββ
ββ

−
−

=                                           (3) 

 It is easy to show that the intensity of light bunch 
which is near to the zero fields can be described by 
expression: 

{ }
.)exp(

))cos(())cos((2

))cos((2 2
0

2021010
2
0

1221
22

2
22

1 consVR
zYazXaaa

zXYaaYaXa
I =−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−+−++

−++
=

ββββ

ββ   

(4) 

Where . We can notice that the 
equation where lines of equal 
intensity in a vicinity of zero characterize an 
ellipse which axes are focused under the angle 

2
0

2
0

2
0 YXR +=

),( YXI = .const

ϕ  to the coordinates axes of laboratory system. 
Therefore it is ellipse , where and - 
the half axis ellipse.(fig.5,b). 

ab /Q = a b

Now we shall pass to the system of coordinates 
,which connected with zero intensity and the 

axes are focused along the ellipse axes, then the 
ellipse equation could be written as: 

),( YX ′′

                              (5)  .22222 constCYBXA ==′+′
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5: Scheme of intensity distribution of  the fiber 
(a):calculated  (b):experimental  (c):image of 
fiber propagation with displacement of 

mr μ20 = along the horizontal axes 
(d):dependence of coefficient excitation the own 
modes of anisotropic fiber on radial 
displacement:  ,1- ,2-  ,3- and for 

,4-

0110=α

0a
0a′ 1a′ 2a′

020=α ′ ,5- 1a′ ,6- . 2′a
 
and therefore :  

),2sin())cos((sincos 1221
22

2
22

1
2 ψββψψ zaaaaA −++=  

 
 (6) ),2sin())cos((cossin 1221

22
2

22
1

2 ψββψψ zaaaaB −−+=

))cos((2)2( 122
2

2
1

21 z
aa

aatg ββψ −
−

=                (7) 

and  , .after some transformation 
from (5)-(7) we can find the expression for modes 
amplitudes   

ACa /= BCb /=

2/1222
1 )cos(sin ψψ Qa +=

2/1222
2 )cossin( ψψ += Qa

, 
                                  (8) 

 for cosine differences of these modes phases 

[ ] 2/144222

2

12
)sin(cos4)2(sin)1(

)1)(2sin())cos((
ψψψ

ψ
ββ

+++

−
=−

QQ

Qz       (9) 

 
from figure (5.a)we can find also the expression for 
amplitude and   phase difference in the basic 
mode: 

0a ctg

0
10

1220
0 sin

))sin((
))sin((

ψ
ββ

ββ
z

zaRa
−

−
= ,             (10) 
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).)((
))sin((

))(( 12
12

0

2

1
10 zctg

z
ctg

a
azctg ββ

ββ
ψ

ββ −+
−

=−            (11) 

Parameters ψψ ,,, 00 Qa

)0

 can be measured directly 
on experiment. and now we shall find expressions 
for excitation factors of own modes, so lets the 
optical fiber is raised by Gaussian-bunch, which 
displaced concerning the center on distance 

.then the excitation coefficients 
according to [3,12],can be defined as: 

,( 00 yxr =

dSedSe yxi
l

y )(., /).( ∗Ea
S

x
l

yx
i

,
∫
∞

=
S

yxi
l

2)(.
∫
∞

.            (12) 

 
We can choose the field of falling bunch in 

the form: { })2/(expˆ 22
g

x
t rxE ρ′−=   ,  

Where .and if 
there is a diffraction of light on the fiber output 
then we can neglect the small light losses in the 
fiber and the partial redistribution of modes 
energy, so the weights of own modes could be 
written as: 
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Fig.6: Experimental scheme 
 
Where: S-laser; S Mr-semitransparant mirror; P-
polarizator , MO-micro-object’s;-fiber optic; MS-
microscope;CCD-camera;PC-computer. 

According to formal (13) and (2), the intensity 
distribution in the case of displacement Gaussian 
bunch at the distance mr μ20 = is shown on figure 
(5. b). 
The experimental researches were spent as shown 
on figure.6.where the He-Ne laser (with wave length 
0.63 mμ ) passes through polarizer, and then it is 
entered into optical fiber with waveguide parameter 

8.2=V   
and core radius mμ5.3 ,and cable length of 1m with 
strong linear double refraction indices 

yx nn − ~ . 410 −

The entrance polarizer was established to reach 
the maximum polarization degree on the waveguide 
output, this specified concurrence the direction of 
light polarization to an axis of anisotropy of fiber. in 
our case this condition was carried out for angle  

 which counted from the vertical axis. 
the polarizer output was established on the 
maximum intensity [5]. 

00 11020 and

The own modes weights redistribution was 
measured at displacement of laser spot on the fiber 
input and along vertical and horizontal axes. the 
bunch axes and fiber were exposed coaxially with 
accuracy up to .to control the bunch 
displacement, it was used a microscope with side 
view. 

02

Measurements were spent for turn angle of first 
polarizer ,the characteristic radiation of 
the fiber is shown on figure(5.c)theoretical 
calculations of fiber and radiation were used 
corresponding to the experimental and as we see the 
theoretical calculations will be coordinated with 
experimental results. the intensity distribution 
images of bunch were processed by a program 
written in programming language Delphi at which 
the parameters of elliptic curve equal intensity and 
modes weight were defined according to formulas 
(8),(10). 

00 11020 and

 Figure(5.d)  show the curve dependence of modes 
weights with  displacement  of laser spot on the 
fiber input and the continuous line show the curve 
that calculated by formula(13). 

0r

 
5 Conclusions and Results 
From figures it is visible that by increasing the 
displacement parameter , the weight of basic mode 
decreases while the modes weight with upper 
order

0r

)1( =l increased. It is also noticed a small 
deviation of experimental curves concerning 
theoretical and this is due to non-agreement of 
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bunch and fiber axes. also it was noticed an intensity 
losses in waveguide channel and a partial 
redistribution of energy caused by anisotropic 
diffraction of own modes at the fiber output, the 
axes change of displacement from vertical to 
horizontal leads to symmetric change of curve 
branches for factors  .  ′′

21 , aa
  We can conclude that the given method of 
measurement allows translating the field radiation to 
essentially new level. Also this method enables to 
pass from qualitative comparison of intensity 
distribution to quantities measurement of modes 
weight, moreover when we need to define the 
geometrical parameters of intensity constant, it is 
not necessary to consider the non linear sensitivity 
of photo- detectors to the light intensity and this is 
leads to decrease the measurement tolerance. So this 
method could be used to produce a transmitter on 
the basis of anisotropic fiber. 
Limiting the propagation to one polarization state 
can be achieved by either breaking the degeneracy 
between the mutually orthogonal polarization states 
through deforming the circular geometry of a 
fiber and/or introducing shape, stress regions, 
certain refractive index profiles, or by incorporating 
metal boundaries into the structure of waveguides. 
 It is shown that neglecting the geometrical 
birefringence, even under the weakly guiding 
approximation, can lead to significant errors in the 
calculations of PMD and zero PMD wavelength. It 
is also shown that it is possible to obtain zero PMD 
in the single-mode region by applying a suitable 
differential stress along the major axis. This is a very 
attractive feature since then the geometrical and stress 
birefringences add to give increased total 
birefringence. This method should find use in the 
design of single polarization single-mode fibers for 
applications in coherent optical communication and 
fiber-optic sensors.  
In elliptical fibers, the birefringence is not as high , 
and the required core size becomes impractical 
(extremely small) for the fiber to operate as a single 
mode waveguide. This problem can be solved by 
introducing stress regions in the fiber or azimuthal 
variations of the refractive index. 
Finally, the causes of PMD in optical fibers and its 
effects have been addressed. PMD is considered as a 
residual dispersion due to stress anisotropies, 
geometrical noncircularities, and external effects. 
Polarization-mode dispersion affects the bandwidth 
of digital and the linearity of analog optical 
communication systems. 
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