

A Real-Time Intrusion Detection Algorithm for Network Security

HAZEM M. EL-BAKRY

Faculty of Computer Science & Information Systems,
Mansoura University, EGYPT

E-mail: helbakry20@yahoo.com

NIKOS MASTORAKIS

Department of Computer Science,
Military Institutions of University Education
(MIUE) -Hellenic Naval Academy, Greece

Abstract — E-government is an important issue which integrates existing local area networks into a global network that provide many
services to the nation citizens. This network requires a strong security infrastructure to guarantee the confidentiality of national data and
the availability of government services. In this paper, a framework for network intrusion detection systems is presented. Such framework
utilizes data mining techniques and is customized for the E-Government Network (EGN). It consists of two phases: an offline phase in
which the intrusion detection system learns the normal usage profiles for each local network domain, and a real time intrusion detection
phase. In the real time phase, known attacks are detected at a global layer at the EGN perimeters while normal behavior is filtered out at a
local layer defined for each LAN domain. Clustering is used to focus the analysis on the remaining suspicious activity and identify
whether it represents new intrusive or normal behavior. This framework is intended to detect intrusions in real-time, achieve low false
alarm rates, and continuously adapt to the environment changes and emergence of new behavior. This research is a development for the
work presented in [22,23]. The main achievement of this paper is the fast attack detection algorithm. Such algorithm based on performing
cross correlation in the frequency domain between data traffic and the input weights of fast time delay neural networks (FTDNNs). It is
proved mathematically and practically that the number of computation steps required for the presented FTDNNs is less than that needed
by conventional time delay neural networks (CTDNNs). Simulation results using MATLAB confirm the theoretical computations.

Keywords— Fast Intrusion Detection, Clustering, Data Mining, E-
Government, Cross correlation, Frequency domain, and Neural
Networks.

1. Introduction
Intrusion detection is the process of monitoring the activities of a
computer or network system and analyzing them for signs of
intrusions or attacks [1]. The intrusion detection system (IDS) is
the software or hardware that automates this monitoring and
analysis. The intrusion detection system depends on two basic
processes to work: monitoring the underlying system activity and
analyzing the resulting event data. The analysis process can be
conducted by means of two main techniques: The first is misuse
detection, in which data is analyzed to find intrusions matching
predefined attack signatures kept by the IDS, and the second is
anomaly detection, in which data is analyzed to spot anomalies
different from a predefined normal profile of the protected system.

The IDS analysis phase is concerned with finding intrusions within
large amounts of activity data. Since data mining techniques can
analyze large data sets and discover interesting patterns hidden in
them, they have been used to discover patterns of intrusions that
may exist among the data monitored by the IDS. However, IDSs
that use data mining techniques suffer from high false alarm rates
because they are used mainly for anomaly detection, and they need
extensive training over attack-free correctly labeled data instances
[2].

In this paper a framework for a fast data mining-based network
intrusion detection system for the E-Government Network (EGN)
is presented. The EGN generally consists of multiple independent
governmental domains that are linked together via a virtual private
network. Communications from outside parties that wish to use the
EGN services are carried out through the Internet and are screened
by a central security system. This architecture suggests that the

functions of the IDS be distributed over two conceptual layers: a
global layer to enhance the security of the EGN domain where it is
connected to the public domain, and a local layer to enhance the
security of the local governmental domains that provide specific
services. The proposed framework adapts this layered approach to
detect intrusions, where the IDS performs known attacks detection
at the global layer and normal profile filtering at the local layer.
Then it uses clustering to analyze unknown activity to find out
whether it is similar to the system profile in the local layer or to
the known attacks detected in the global layer. The gradual
filtering of known behavior (whether known attacks or known
normal profiles) leaves only a small subset of data to be analyzed
for possible new intrusions, which improves the detection rate of
the intrusion detection system [3]. This framework works through
two phases: a phase in which local normal profiles are built for
each domain, and a phase of real time detection that depends on
the layered approach previously outlined. The real time intrusion
detection system utilizes the existing domain knowledge about
intrusion signatures and attempts to help establish new knowledge
about the intrusions. This framework aims at achieving a low false
alarm rate while keeping the suspicion level of the intrusion
detection system high.

2. Data Mining Intrusion Detection Systems
Most of the work in the area of building operational IDSs using
data mining depends on an offline analysis phase to build models
of normal behavior. The Minnesota Intrusion Detection System
(MINDS) proposed in [4] uses a suite of data mining techniques to
automatically detect attacks against computer networks. MINDS
first constructs features that are used in the data mining analysis.
Known attack detection module is then used to detect network
connections that correspond to attacks for which the signatures are
available, and they are removed from further analysis. Next, the
data is fed into the MINDS anomaly detection module that uses an

WSEAS TRANSACTIONS on COMMUNICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2742 1222 Issue 12, Volume 7, December 2008

mailto:helbakry20@yahoo.com

outlier detection algorithm to assign an anomaly score to each
network connection. The architecture thus does not consider the
changes in normal system behavior. On the other hand, the work in
[5] deals with the problem of false positives resulting from new
normal behavior not previously seen by the IDS. The proposed
architecture depends on adaptive IDS using fuzzy association
rules. The architecture continuously measures the similarity
between each day’s activity and a normal profile. When the
similarity goes down below a threshold level this indicates either a
change in behavioral patterns or an attack on the system. It is the
abruptness of change that helps decide which case is true. A real
time data mining-based IDS is proposed in [6] that attempts to
address three issues; accuracy, efficiency, and usability. To
improve accuracy, the system uses data mining programs to
analyze audit data and extract features that can distinguish normal
activities from intrusions, and uses artificial anomalies instead of
attack signatures to produce hybrid misuse and anomaly detection
models. To improve efficiency, the computational costs of features
are analyzed and a multiple-model cost-based approach is used to
produce detection models with low cost and high accuracy. A
distributed architecture is also introduced for evaluating cost-
sensitive models in real time. To improve usability, adaptive
learning algorithms are used to facilitate model construction and
incremental updates, and unsupervised anomaly detection
algorithms are used to reduce the reliance on labeled data. The
proposed architecture consists of sensors, detectors, a data
warehouse, and model generation components. This architecture
facilitates the sharing audit data among detectors and the
distribution of new or updated models and improves the efficiency
and scalability of the IDS. The system is designed to be
independent of the sensor data format and model representation.

Data mining algorithms that were applied to network traffic data
include association rules mining, classification, and clustering.
Association rules mining [5-7] was used to identify interesting
attributes that occur together with a high support in the traffic data,
these associations were used to classify the traffic data online.
Classification techniques such as decision trees [8] and Bayesian
classification [9] were used to build classifiers of normal network
activity data and detect data that do not match the classifiers' rules.
Clustering techniques work by grouping similar data instances into
clusters regardless of the instances' class labels. They were used to
tackle the problem of labeling data before training, which is
inherent in association rule mining and classification techniques.
Clustering is used in [10], where three clustering strategies are
applied on data containing both attack scenarios and normal
traffic, namely, the Self-Organizing Maps, K-means clustering,
and Expected Maximization Clustering. This work shows that
SOM has the same complexity regardless of the data volume or
clusters used. However, SOM can misclassify data inputs that will
correspond to nodes not affected during training. The K-means
clustering algorithm has a predictable performance and
classification; however, it poorly manipulates highly dimensional
data sets. The Expected Maximization algorithm can tolerate
missing and unlabeled data and can offer information about how
close a data point is to each cluster since the data point has a
varying membership to all clusters.

The mixed nature of data is addressed in [11]. A clustering
algorithm (CLAD) is proposed that can identify suspicious clusters
that are distant and of an unusual size. To identify these clusters, a
cluster’s size and its position relative to other clusters are
examined to encompass strong outliers. This work has three main

contributions: a statistically derived cluster width is proposed
instead of user-defined, a novel approach for measuring distance
among discrete values, a global view of outliers through
introduction of notion of strong outliers. To calculate the width,
CLAD randomly draws a sample from the entire dataset and
calculates the pair-wise distances. The average of the smallest
distances is the cluster width. The distance between two discrete
values is based on their frequency rather than their values. To
determine if a cluster is an outlier, CLAD uses cluster density and
distance from the other clusters. Clusters that are distant and sparse
are considered outliers and anomalous. A sparse cluster is a local
outlier, whereas a distant cluster is a global outlier. A strong
outlier is both global and local a outlier.

The algorithm in [12] builds clusters progressively as the data
points are submitted. If the data point does not fit within a fixed
width of any existing cluster, a new cluster is created with this
point as its centroid. To find out which clusters contain normal
instances and which contain attacks, the assumption that normal
instances constitute a very large portion of the training dataset is
used. This means that clusters containing normal data will have a
much larger number of instances associated with them than would
clusters containing anomalies. The problem with this approach is
when there are many sub-types of normal instances in the training
set. This produces a large number of such normal clusters with
relatively small density. Each of these clusters will have a
relatively small number of instances, leading to having these
clusters incorrectly labeled as anomalous.

The work in [13] is based on two concepts: supervised clustering
for learning signature patterns of normal and intrusive activities
during training, and instance-based classification for using those
signature patterns to classify activities during testing. While
incrementally clustering data records during training, the proposed
work uses dummy clusters to prevent consecutive data records
from being clustered together, even though their attribute values
are not similar. The algorithm incrementally groups the data points
in the training dataset into clusters supervised by the target class
information. First, the training data is used to compute the
relevance of each feature to the target the target class. Then, data
points are compared to each cluster using the distance measure. If
the data point and the nearest cluster have the same class, the data
point is assigned to the cluster. Otherwise, a new cluster is created
with this data point as the centroid and the target class of the new
cluster is the class of this data point.

In [14], the fuzzy c-medoids algorithm is used to build models
from data streams. The algorithm takes pair wise distances
between the data-points as input. A data point is a member of a
given cluster if its distance from the medoid of that cluster is less
than a specified threshold distance for that cluster. The threshold
for a given cluster is based on the intra-cluster radius for that
cluster. Two different outlier detection schemes are employed to
test the algorithm. In the Absolute Distance scheme, the distances
of a test data point from all the medoids of a cluster are calculated.
If any of these distances is within the specified radius threshold the
data-point is a member of that cluster. In the Average Distance
scheme the average of the distances of the test data-point from all
the medoids of the cluster is calculated. If this average distance is
within the specified radius threshold of some cluster, the data point
is a member of that cluster and an outlier otherwise.

The authors in [15] propose a clustering heuristic for intrusion
detection called Y-means. It overcomes two shortcomings of K-

WSEAS TRANSACTIONS on COMMUNICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2742 1223 Issue 12, Volume 7, December 2008

means: number of clusters dependency and degeneracy. Y-means
algorithm partitions the normalized data into k clusters. The next
step is to find whether there are any empty clusters. If there are,
new clusters will be created to replace these empty clusters; and
then instances will be re-assigned to existing centers. This iteration
will continue until there is no empty cluster. Subsequently, the
outliers of clusters will be removed to form new clusters, in which
instances are more similar to each other; and overlapped adjacent
clusters will merge into a new cluster. In this way, the value of k
will be determined automatically by splitting or merging clusters.
The last step is to label the clusters according to their populations,
if the population ratio of one cluster is above a given threshold, all
the instances in the cluster will be classified as normal; otherwise,
they are labeled intrusive.

Here, we develop the work presented in [22,23]. We propose a fast
algorithm for an operational data mining-based IDS together with
a clustering algorithm that first compares real-time data points to
predefined attack signatures, then to the normal clusters, then to
the intrusive clusters. This gradually filters out data with
previously known behavior and leaves only a small subset of the
data for comprehensive anomaly analysis. The purpose of the
system is to utilize local normal system profiles together with the
existing domain knowledge about intrusions signatures to build a
real-time IDS that can adapt to the changing EGN environment
and the newly conducted attacks. This architecture also aims at
achieving a low false alarm rate while keeping the suspicion level
of the intrusion detection system high.

3. The Proposed IDS Framework
The proposed IDS is designed to operate through two main phases:
the Normal Profiles Building Phase (NPBP) and the Real-Time
Detection Phase (RTDP). The NPBP is carried out offline and is
concerned with building a system profile for each local site in the
EGN. The RTDP filters out these normal profiles together with the
known-attacks definitions obtained from the industry practices.
Clustering is used to focus the analysis on the remaining
suspicious activity and identify whether it represents new intrusive
or normal behavior. A detailed description of both phases is given
in the following subsections, with an overview of the used
clustering algorithm.

3.1 The Normal Profiles Building Phase
This phase is concerned with constructing the classifiers that can
discriminate and predict the local systems behaviors. These
classifiers are then used to construct the rules that describe normal
systems profiles. This phase, which is depicted in Fig. 1, will be
implemented in each local site in the EGN because the system
behavior is expected to vary among the local sites. The EGN
should be isolated from the external traffic activity for a
predefined period of time to ensure that the data represents normal
local traffic. The operations of this phase are carried out through
the following components:

Sensors and Preprocessing Engines: A sensor collects traffic
data from the local site and dumps this data to a preprocessing and
feature extraction engine. This engine formats the data into
instances or records at a suitable level of granularity (e.g. packet,
connection, or session levels) and applies an attribute relevance
analysis technique in order to extract the attributes that are most
discriminating of the data. These formatted data records are stored
in a traffic database.

Local Profile Classification Engine: This engine takes the
formatted data records and the relevant attributes and applies a
classification algorithm to categorize the data records based on the
values of relevant attributes. The resulting classifier can be
validated over a consecutive period of time during which the
system is still operating in isolation of the external activity.

Profile Rules Building Engine: After the classifier reaches an
acceptable level of accuracy, it is used by the profile rules building
engine to construct the set of rules that represent the local normal
system profile, and these rules are stored in the local system
profiles matching engine (a component in the real time detection
phase). The correctly classified data instances are stored in the
profile database for further usage by the IDS.

3.2 The Real-Time Detection Phase
The detection phase is concerned with discovering the existence of
known and unknown intrusions. A number of components interact
together and exchange information to achieve the real-time
detection of intrusions. These components are distributed over two
conceptual layers: the global layer, in which the IDS filters out the
known intrusions already defined by the intrusion detection
industry, and it operates together with the central security
mechanisms for the EGN as a whole. The local layer includes the
IDS components that will reside in the local sites. The function of
this layer is to filter out the normal traffic previously defined for
each local site, so that only anomalous traffic is subject for
detailed analysis. The organization of these components is
illustrated in Fig. 2, and their functions are detailed as follows:

3.2.1 Sensor and Preprocessing Engine
The sensor collects traffic data at predefined short intervals and
dumps this data to a preprocessing engine , which formats the data
into records at a suitable level of granularity. This preprocessed
data records (instances) are passed to the global known-attacks
detection engine.

3.2.2 Global Known-Attacks Detection Engine
This engine receives preprocessed data instances and matches the
data instances against the known attacks. If an intrusion is
detected, it is reported to the global response engine and the data
instances of that intrusion are labeled accordingly and stored in the
attacks database. Otherwise, the data instances are passed to the
local system profile-matching engine.

3.2.3 Local System Profile-Matching Engine
This engine includes the classification rules of normal profiles that
were produced during the normal profile building phase. It
matches the data instances received from the global known-attacks
detection engine against these rules. If a data instance does not
match the profile, it is passed to the local anomaly detection
engine. Otherwise, data instances that match the profile are labeled
as such and stored in the profiles database.

3.2.4 Local Anomaly Detection Engine
This engine uses a clustering algorithm to build an initial set of
clusters from the normal data instances obtained from the profiles
database. The algorithm then measures the deviation of each
unknown data instance from the clusters of normal instances. If the
deviation is small then the data instance is considered normal,
otherwise the widely deviating instances are considered high
anomalies and reported to the local response engine and the global

WSEAS TRANSACTIONS on COMMUNICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2742 1224 Issue 12, Volume 7, December 2008

anomaly analysis engine. The processes of the local anomaly
detection engine are outlined in Fig. 3.

3.2.5 Global Anomaly Analysis Engine

The global anomaly analysis engine, whose processes are depicted
in Fig. 4, accepts anomalies from the many local sites and applies
a clustering algorithm to determine the existence of new attacks or
new profiles. The clustering algorithm first constructs a set of
clusters based on known-attacks data instances obtained from the
attacks database. The algorithm compares the highly anomalous
instances with the attacks clusters. If anomalous instances are
close to attack clusters or form new dense clusters within a short
time window they are considered intrusions and sent to the global
response engine. Otherwise, if the anomalous instances form new
dense clusters over a long time window they are considered new
profiles. the new cluster are used to construct rules defining the
new attacks and profiles. the rules representing attacks are sent to
the global known-attacks detection engine and the rules defining
normal profiles are sent to the local system-profile matching
engine so that both engines update their rules.

3.2.6 Global and Local Response Engines
These engines receive known attacks and highly ranked anomalies,
raise alarms, and perform any other actions that are dictated by the
security policy of the system under supervision.

4. Clustering Algorithm
The clustering algorithm is deployed in both the local anomaly
detection engine and the global anomaly analysis engine. The
clustering algorithm is incremental in the sense that it updates the
clusters continuously as new instances are processed.

The clustering algorithm in the local anomaly detection engine,
which is outlined in Fig. 5, measures the distance between a data
instance and the clusters representing the normal instances, and
this distance is compared with a similarity threshold. One of the
following situations will occur:

1. Measured distance is greater than or equal to the similarity
threshold of one of the clusters, which indicates that the data
instance fits within that cluster, so it is given the label of those
instances (or the label of the majority of the instances).
2. Measured distance is less than but very close (within a range) to
the similarity threshold of one of the clusters. This may imply a
slight deviation from the cluster behavior. The instance is
considered to belong to the cluster and a counter is incremented
that keeps a record of the reoccurrences of similar instances having
this slight deviation. If this counter reaches a certain maximum,
these instances are considered an update in the cluster behavior.
The cluster's original density is updated with the new instances,
which are labeled normal and added to the profiles database.
3. Measured distance is much less than the similarity thresholds of
any of the clusters, implying a strong anomaly is encountered.
Thus, it is ranked as high anomaly and forwarded to the local
response engine. If after some time the number of that instance's
occurrences exceeds a certain maximum, it is forwarded to the
global anomaly analysis engine.

In the global anomaly analysis engine, the clustering algorithm
constructs a set of clusters that represent attacks obtained from the
attacks database. When the algorithm receives highly-ranked
anomalous instances from the different local sites, it searches the

clustering space to find a cluster to which the anomalous instance
is close. If such a cluster is found, the anomalous instance is
labeled with the class name of that cluster and sent to the global
response engine. If not, the anomalous instance is placed in a new
cluster. One of three scenarios can arise with the placement of
other anomalous instances within a new cluster:
1. Anomalous instances are grouped in that cluster within a short
predetermined time interval and the cluster has a high density.
These instances are considered to represent a new attack and sent
to the global response engine.
2. Anomalous instances are grouped in that cluster over a long
time interval and the cluster has a high density. These instances are
considered normal instances of a new profile.
3. Anomalous instances are grouped in that cluster over a long
time interval but the cluster has a low density. These instances are
considered to represent a stealthy attack, and are forwarded to the
global response engine.

This algorithm is outlined in Fig.6. As new clusters representing
new attacks (both bursty and stealthy) and new profiles are
created, they are passed to a sub-module that uses association rule
mining to construct rules to define these new attacks and profiles.

5. Implementation Plan
MEGNTID will be implemented in an experimental environment
with no real EEGN traffic. Instead, we will use the DARPA 1999
dataset provided by Lincoln Laboratory [16]. The DARPA 1999
dataset was used to evaluate a number of IDSs. This dataset
contains two weeks of attack-free traffic and three weeks of mixed
traffic. Each week contains five days of network traffic collected
both from inside the simulation network and at the outside
perimeter. Only the outside dumps will be used in our experiments
since they represent the traffic entering or leaving the network as a
whole. The first day of the attack-free first week is used to
compute the normal profile, while the first day of the forth week
with mixed traffic will be replayed during the detection phase. The
first day of the fifth week will be used to test the performance of
MEGNTID and tune its operations. In order to demonstrate the
validity of the system, we have chosen to filter the dump files so
they contain only TCP connections. It is relatively easy to add
separate modules to process UPD and ICMP packets.

The experiment is performed on an HP Compaq nx9030 laptop
with 1.60 GHz processor speed and 256 MB RAM, and running
Windows XP Professional with SP2. We have completed the
normal profile building phase, which is very time-consuming since
it involves preprocessing the data in a format suitable for the
mining process. Initially, we could use an off-the-shelf sensor such
as Windump or Ethereal. But they did not satisfy our need to put
the data in a format acceptable for data mining analysis. This
prompted us to extend the functionality of another sensor;
JpcapDumper. The relevant features that were produced using
attribute relevance analysis are: the packet timestamp, the source
and destination addresses, the source and destination ports, the
packet length, the packet flags, the time since last packet, the and
windows size. The application of a simple association rule mining
resulted in producing 37 effective rules that define the normal
profile presented by 1247366 packets of attack-free data from
Monday, week 1.

The real-time detection phase requires that monitoring be
accompanied by real-time formatting of data for the purposes of
analysis. Also, a source of contiguous traffic fed to the IDS is

WSEAS TRANSACTIONS on COMMUNICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2742 1225 Issue 12, Volume 7, December 2008

needed in order to represent the outbound traffic to and from the
EEGN. This is achieved by replaying the DARPA outbound
Monday trace of week 4. The distribution of normal and attack
classes in Monday, week 4 is shown in Fig. 7. since the global
detection layer involves comparing data to known attack
signatures, we have collected 399 attack signatures from the
Internet and formatted then as if-then rules.

6. Fast Intrusion Detection using Neural Networks
Finding a certain intrusion, in the incoming serial data, is a
searching problem. First neural networks are trained to classify
intrusion from non intrusion examples and this is done in time
domain. In intrusion detection phase, each position in the incoming
matrix is tested for presence or absence of an intrusion. At each
position in the input one dimensional matrix, each sub-matrix is
multiplied by a window of weights, which has the same size as the
sub-matrix. The outputs of neurons in the hidden layer are
multiplied by the weights of the output layer. When the final
output is high, this means that the sub-matrix under test contains
an intrusion and vice versa. Thus, we may conclude that this
searching problem is a cross correlation between the incoming
serial data and the weights of neurons in the hidden layer.
The convolution theorem in mathematical analysis says that a
convolution of f with h is identical to the result of the following
steps: let F and H be the results of the Fourier Transformation of f
and h in the frequency domain. Multiply F and H* in the frequency
domain point by point and then transform this product into the
spatial domain via the inverse Fourier Transform. As a result,
these cross correlations can be represented by a product in the
frequency domain. Thus, by using cross correlation in the
frequency domain, speed up in an order of magnitude can be
achieved during the detection process [17]. Assume that the size of
the intrusion code is 1xn. In intrusion detection phase, a sub
matrix I of size 1xn (sliding window) is extracted from the tested
matrix, which has a size of 1xN. Such sub matrix, which may be
an intrusion code, is fed to the neural network. Let Wi be the
matrix of weights between the input sub-matrix and the hidden
layer. This vector has a size of 1xn and can be represented as 1xn
matrix. The output of hidden neurons h(i) can be calculated as
follows:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+∑

=
= ib(k)I(k)

n

1k iWgih (1)

where g is the activation function and b(i) is the bias of each
hidden neuron (i). Equation 1 represents the output of each hidden
neuron for a particular sub-matrix I. It can be obtained to the
whole input matrix Z as follows:

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
∑
−=

++=
n/2

n/2k i bk) Z(uk)(iWg(u)ih (2)

Eq.2 represents a cross correlation operation. Given any two
functions f and d, their cross correlation can be obtained by:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
∞

∞−=
+=⊗

n
n)d(n)f(xf(x)d(x) (3)

Therefore, Eq. 2 may be written as follows [17]:

()ibZiWgih +⊗= (4)

where hi is the output of the hidden neuron (i) and hi (u) is the
activity of the hidden unit (i) when the sliding window is located at
position (u) and (u) ∈ [N-n+1].

Now, the above cross correlation can be expressed in terms of one
dimensional Fast Fourier Transform as follows [19]:

() (()iW*FZF1FZiW •−=⊗) (5)

Hence, by evaluating this cross correlation, a speed up ratio can be
obtained comparable to conventional neural networks. Also, the
final output of the neural network can be evaluated as follows:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
=

+=
q

1i
ob)u(ih (i)oWgO(u) (6)

where q is the number of neurons in the hidden layer. O(u) is the
output of the neural network when the sliding window located at
the position (u) in the input matrix Z. Wo is the weight matrix
between hidden and output layer.
The complexity of cross correlation in the frequency domain can
be analyzed as follows:

1- For a tested matrix of 1xN elements, the 1D-FFT requires a
number equal to Nlog2N of complex computation steps [18]. Also,
the same number of complex computation steps is required for
computing the 1D-FFT of the weight matrix at each neuron in the
hidden layer.

2- At each neuron in the hidden layer, the inverse 1D-FFT is
computed. Therefore, q backward and (1+q) forward transforms
have to be computed. Therefore, for a given matrix under test, the
total number of operations required to compute the 1D-FFT is
(2q+1)Nlog2N.

3- The number of computation steps required by FTDNNs is
complex and must be converted into a real version. It is known
that, the one dimensional Fast Fourier Transform requires
(N/2)log2N complex multiplications and Nlog2N complex
additions [18]. Every complex multiplication is realized by six real
floating point operations and every complex addition is
implemented by two real floating point operations. Therefore, the
total number of computation steps required to obtain the 1D-FFT
of a 1xN matrix is:

ρ=6((N/2)log2N) + 2(Nlog2N) (7)

which may be simplified to:

ρ=5Nlog2N (8)

4- Both the input and the weight matrices should be dot multiplied
in the frequency domain. Thus, a number of complex computation
steps equal to qN should be considered. This means 6qN real
operations will be added to the number of computation steps
required by FTDNNs.

5- In order to perform cross correlation in the frequency domain,
the weight matrix must be extended to have the same size as the
input matrix. So, a number of zeros = (N-n) must be added to the
weight matrix. This requires a total real number of computation
steps = q(N-n) for all neurons. Moreover, after computing the FFT
for the weight matrix, the conjugate of this matrix must be
obtained. As a result, a real number of computation steps = qN
should be added in order to obtain the conjugate of the weight

WSEAS TRANSACTIONS on COMMUNICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2742 1226 Issue 12, Volume 7, December 2008

matrix for all neurons. Also, a number of real computation steps
equal to N is required to create butterflies complex numbers
(e-jk(2Πn/N)), where 0<K<L. These (N/2) complex numbers are
multiplied by the elements of the input matrix or by previous
complex numbers during the computation of FFT. To create a
complex number requires two real floating point operations. Thus,
the total number of computation steps required for FTDNNs
becomes:

σ=(2q+1)(5Nlog2N) +6qN+q(N-n)+qN+N (9)
which can be reformulated as:

 σ=(2q+1)(5Nlog2N)+q(8N-n)+N (10)

6- Using sliding window of size 1xn for the same matrix of 1xN
pixels, q(2n-1)(N-n+1) computation steps are required when using
CTDNNs for certain intrusion detection or processing (n) input
data. The theoretical speed up factor η can be evaluated as
follows:

 N n)-q(8N N) 1)(5Nlog(2q
 1)n-1)(N-q(2n

2 +++
+

=η (11)

Time delay neural networks accept serial input data with fixed size
(n). Therefore, the number of input neurons equals to (n). Instead
of treating (n) inputs, the proposed new approach is to collect all
the incoming data together in a long vector (for example 100xn).
Then the input data is tested by time delay neural networks as a
single pattern with length L (L=100xn). Such a test is performed in
the frequency domain as described in section II. The combined
intrusion in the incoming data may have real or complex values in
a form of one or two dimensional array. Complex-valued neural
networks have many applications in fields dealing with complex
numbers such as telecommunications, speech recognition and
image processing with the Fourier Transform [20,21]. Complex-
valued neural networks mean that the inputs, weights, thresholds
and the activation function have complex values. In this section,
formulas for the speed up ratio with different types of inputs (real
/complex) will be presented. Also, the speed up ratio in case of a
one and two dimensional incoming input matrix will be concluded.
The operation of FTDNNs depends on computing the Fast Fourier
Transform for both the input and weight matrices and obtaining
the resulting two matrices. After performing dot multiplication for
the resulting two matrices in the frequency domain, the Inverse
Fast Fourier Transform is determined for the final matrix. Here,
there is an excellent advantage with FTDNNs that should be
mentioned. The Fast Fourier Transform is already dealing with
complex numbers, so there is no change in the number of
computation steps required for FTDNNs. Therefore, the speed up
ratio in case of complex-valued time delay neural networks can be
evaluated as follows:

1) In case of real inputs

A) For a one dimensional input matrix
Multiplication of (n) complex-valued weights by (n) real inputs
requires (2n) real operations. This produces (n) real numbers and
(n) imaginary numbers. The addition of these numbers requires
(2n-2) real operations. The multiplication and addition operations
are repeated (N-n+1) for all possible sub matrices in the incoming
input matrix. In addition, all of these procedures are repeated at
each neuron in the hidden layer. Therefore, the number of

computation steps required by conventional neural networks can
be calculated as:

θ=2q(2n-1)(N-n+1) (12)

The speed up ratio in this case can be computed as follows:

 N n)-q(8N N) 1)(5Nlog(2q

 1)n-1)(N-2q(2n

2 +++
+

=η (13)

B) For a two dimensional input matrix
Multiplication of (n2) complex-valued weights by (n2) real inputs
requires (2n2) real operations. This produces (n2) real numbers and
(n2) imaginary numbers. The addition of these numbers requires
(2n2-2) real operations. The multiplication and addition operations
are repeated (N-n+1)2 for all possible sub matrices in the incoming
input matrix. In addition, all of these procedures are repeated at
each neuron in the hidden layer. Therefore, the number of
computation steps required by conventional neural networks can
be calculated as:

θ=2q(2n2-1)(N-n+1) 2 (14)

The speed up ratio in this case can be computed as follows:

 N)n-q(8N)N log1)(5N(2q

 1)n-1)(N-2q(2n
222

2
2

22

+++
+

=η (15)

2) In case of complex inputs

A) For a one dimensional input matrix
Multiplication of (n) complex-valued weights by (n) complex
inputs requires (6n) real operations. This produces (n) real
numbers and (n) imaginary numbers. The addition of these
numbers requires (2n-2) real operations. Therefore, the number of
computation steps required by conventional neural networks can
be calculated as:

θ=2q(4n-1)(N-n+1) (16)

The speed up ratio in this case can be computed as follows:

 N n)-q(8N N) 1)(5Nlog(2q

 1)n-1)(N-2q(4n

2 +++
+

=η (17)

B) For a two dimensional input matrix
Multiplication of (n2) complex-valued weights by (n2) real inputs
requires (6n2) real operations. This produces (n2) real numbers and
(n2) imaginary numbers. The addition of these numbers requires
(2n2-2) real operations. Therefore, the number of computation
steps required by conventional neural networks can be calculated
as:

θ=2q(4n2-1)(N-n+1)2 (18)

The speed up ratio in this case can be computed as follows:

 N)n-q(8N)N log1)(5N(2q
 1)n-1)(N-2q(4n

222
2

2

22

+++
+

=η (19)

An interesting point is that the memory capacity is reduced when
using FTDNN. This is because the number of variables is reduced

WSEAS TRANSACTIONS on COMMUNICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2742 1227 Issue 12, Volume 7, December 2008

compared with CTDNN. The neural algorithm presented here can
be inserted very easily in any Anti-Intrusion gateway software.

7. Conclusion
The intrusion detection system is an essential part of the overall
security infrastructure, especially when the system to be protected
is as vital and sensitive as the E-Government Network. This paper
presented a architecture for an intrusion detection system that is
based on data mining techniques. This architecture distributes the
functions of the intrusion detection system (data collection,
analysis, and response) over two layers, a global central layer and
a local layer. The IDS gradually filters out the known traffic
behavior (intrusive and normal) in order to focus the analysis on
data not seen before by the system. This is intended to reduce the
rate of false alarms while preserving the secure state of the system.
The probability of evading the intrusion detection system can be
reduced as the stealthy intrusions are taken into account during the
analysis. Classification is used to build normal profiles offline, and
clustering is used to build clusters of online activity data instances
and discover the existence of new intrusions and normal profiles.
This work will be extended by building a prototype of the global
anomaly analysis engine and the local anomaly detection engine
and implementing the clustering algorithm. A new approach for
fast attack detection has been presented. Such strategy has been
realized by using a new design for time delay neural networks.
Theoretical computations have shown that FTDNNs require fewer
computation steps than conventional ones. This has been achieved
by applying cross correlation in the frequency domain between the
incoming serial data and the input weights of time delay neural
networks. Simulation results have confirmed this proof by using
MATLAB. Furthermore, the memory complexity has been reduced
when using the fast neural algorithm. In addition, this algorithm
can be combined in any Anti-attack gateway software.

References
[1] R. Bace and P. Mell, "Intrusion Detection Systems" NIST Special

Publication, November 2001.
[2] K. Julisch, "Data Mining for Intrusion Detection: A Critical Review",

Applications of Data Mining in Computer Security, Kluwer
Academic Publisher, Boston, 2002.

[3] W. Lee, "Applying Data Mining To Intrusion Detection: The Quest
For Automation, Efficiency, And Credibility", SIGKDD
Explorations, Volume 4, Issue 2, December 2002.

[4] L. Ertöz, E. Eilertson, A. Lazarevic, P. Tan, P. Dokas, V. Kumar, and
J. Srivastava, "Detection and Summarization of Novel Network
Attacks Using Data Mining", Technical Report, 2003.

[5] M. Hossain and S. M. Bridges, "Adaptive Intrusion Detection With
Data Mining", In Proceedings of the 2003 IEEE international
conference on systems, man & cybernetics (SMC'03) Washington,
D.C., October 2003.

[6] W. Lee, S. Stolfo, P. Chan, E. Eskin, W. Fan, M. Miller, S. Hershkop,
and J. Zhang, "Real Time Data Mining-based Intrusion Detection", In
DARPA Information Survivability Conference and Exposition II,
June 2001.

[7] W. Lee, R. A. Nimbalkar, K. K. Yee, S. B. Patil, P. H. Desai, T. T.
Tran, and S. J. Stolfo, "A Data Mining And CIDF Based Approach

For Detecting Novel And Distributed Intrusions", In Proceedings of
the 3rd International Workshop on Recent Advances in Intrusion
Detection, October 2000.

[8] X. Li and N. Ye, "Decision tree classifiers for computer intrusion
detection", Journal of Parallel and Distributed Computing Practices,
Volume 4, No. 2, 2001.

[9] D. Barbara, N. Wu, and S. Jajodia, “Detecting Novel Network
Intrusions Using Bayes Estimators”, Proceedings Of the First SIAM
Int. Conference on Data Mining (SDM 2001), Chicago, 2001.

[10] R. Smith, A. Bivens, M. Embrechts, C. Palagiri, and B. Szymanski,
"Clustering Approaches for Anomaly Based Intrusion Detection", to
be submitted to The First Annual Walter Lincoln Hawkins Graduate
Research Conference, Troy, New York, October 2002.

[11] M. H. Arshad and P. K. Chan, "Identifying Outliers via Clustering for
Anomaly Detection", Technical Report, 2003.

[12] L. Portnoy, E. Eskin, and S. Stolfo, "Intrusion Detection With
Unlabeled Data Using Clustering", In ACM Workshop on Data
Mining Applied to Security (DMSA 2001), November 2001.

[13] X. Li and N. Ye, "Grid and Dummy Cluster Based Learning of
Normal and Intrusive Clusters for Computer Intrusion Detection",
Quality and Reliability Engineering International, Vol. 18, No. 3,
2002.

[14] H. Shah, J. Undercoffer and A. Joshi, "Fuzzy Clustering for Intrusion
Detection", Proceedings of the 12th IEEE International Conference
on Fuzzy Systems, April 2003.

[15] Y. Guan, N. Belacel, and A. A. Ghorbani, "Y-means: a clustering
method for Intrusion detection", Canadian Conference on Electrical
and Computer Engineering, Montreal, Canada, May 2003.

[16] Lincoln Laboratory ID Evaluation Website, MIT,
http://www.ll.mit.edu/IST/ideval/index.html.

[17] H. M. El-Bakry, "New Faster Normalized Neural Networks for Sub-
Matrix Detection using Cross Correlation in the Frequency Domain
and Matrix Decomposition," Applied Soft Computing journal, vol. 8,
issue 2, March 2008, pp. 1131-1149.

[18] J. W. Cooley, and J. W. Tukey, "An algorithm for the machine
calculation of complex Fourier series," Math. Comput. 19, 297–301
(1965).

[19] R. Klette, and Zamperon, "Handbook of image processing operators, "
John Wiley & Sonsltd, 1996.

[20] A. Hirose, “Complex-Valued Neural Networks Theories and
Applications”, Series on innovative Intellegence, vol.5. Nov. 2003.

[21] S. Jankowski, A. Lozowski, M. Zurada, “ Complex-valued Multistate
Neural Associative Memory,” IEEE Trans. on Neural Networks, vol.7,
1996, pp.1491-1496.

[22] A. M. Riad, M. M. Fahmy and M. A. El-Sharkawy, " An
Architecuture for Mining the Egyptian E-Government Network traffic
for Intrusion Detection", International Conference on Information and
Communication Technology (ICICT 2005), pp. 593-603, Information
Technology Institute, Cairo, Egypt, December, 2005.

[23] A. M. Riad and M. M. Fahmy, " Intrusion Detection System Based on
Data Mining techniques", Egyption Informatics Journal, Faculty of
Computers and Information, Vol. 7, No 2, Cairo Univ., December
2006.

WSEAS TRANSACTIONS on COMMUNICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2742 1228 Issue 12, Volume 7, December 2008

http://www.ll.mit.edu/IST/ideval/index.html

Sensor

Fig. 1: The local normal profiles building phase.

Preprocessing and Feature
Extraction Engine

Correctly Classified
Data Instances

Local Profile Classification Engine

Formatted
Traffic Data

Traffic Data

Profile Rules Building Engine

Traffic
Database

Relevant
Attributes

Formatted Traffic Data

Local System Profile Matching
Engine

Profile Rules

WSEAS TRANSACTIONS on COMMUNICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2742 1229 Issue 12, Volume 7, December 2008

Global
Sensor

U n l a b e l e d T r a f f i c D a t a

Formatted Traffic Data

Traffic Data

Known
Attacks

Preprocessing Engine

 Layer of Intrusion Detection System

Global Response Engine

Highly Suspicious
Anomalies

Known
Attacks

New Attacks Rules

Global Known-Attacks Detection
Engine

Global Anomaly Analysis
Engine

Attacks
Database

H
igh-R

anked A
nom

alies

New Normal
Profile Rules

Local Site n

Local Layer of Intrusion Detection System

Normal Data
Records

Local System-Profile
Matching Engine

Local Response Engine

Normal
Records

High-Ranked
 Anomalies

Anomalous Data
Records

Local Anomaly
Detection Engine Normal Profile

Database

Local Site 1

Fig. 2. The architecture of the real-time detection phase.

WSEAS TRANSACTIONS on COMMUNICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2742 1230 Issue 12, Volume 7, December 2008

Fig. 3. The Local Anomaly Detection Engine.

Unlabeled Traffic Data

Global Response Engine

Local Response Engine

Known
Attacks

Measure similarity between each
unlabeled record u and clusters

centers

Local Clustering Algorithm
(build set of normal clusters)

Set of Clusters

Similarity >
Threshold1?

Yes

No

Similarity
close to

Threshold1?

Label as Normal

Increment Counter1 Yes

- Rank as High Anomaly
- Increment Counter2

No
Counter1>

Threshold2?
Yes

Counter2>
Threshold3?

Direct Highly Anomalous
Data to Global Clustering

Algorithm

High-Ranked Anomalies

H
igh-R

anked A
nom

alies

Normal-Data
Records

Yes

L
ocal A

nom
aly D

etection E
ngine

New Normal Profile Rules

Global Anomaly Analysis
Engine

Sensor

Traffic Data

Local Profile Matching
Engine

Global Known-Attacks
Detection Engine

Preprocessing Engine

Known
AttacksAttacks

Database

Normal Profiles
Database

Anomalous Data
Instances

Normal-Data
Instances

Formatted Data Records

No

WSEAS TRANSACTIONS on COMMUNICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2742 1231 Issue 12, Volume 7, December 2008

Fig. 4. The Global Anomaly Analysis Engine.

Global Response Engine

Formatted DataKnown
Attacks

Local Anomaly Detection
Engine

High-Ranked Anomalies

Normal-Data
Records

New Normal Profile Rules

Global Clustering Algorithm
(build set of attack clusters)

Measure similarity between
unlabeled record u and clusters

centers

Similarity >
Threshold1?

- Create new cluster with
center u

- Set short, long intervals

Time <= short
AND Density >

Threshold4?

Density>
Threshold3?

- Label as New_Normal
- Build a profile rule for the

cluster

Set of Clusters

Label as New_Attack

Yes

Yes

Yes

Yes

No

No

No

G
lobal A

nom
aly A

nalysis E
ngine

Sensor

Local Profile Matching
Engine

Global Known-Attacks
Detection Engine

Traffic Data

Preprocessing Engine

Unlabeled Data

Known
AttacksAttacks

Database

Profiles
Database

Anomalous Data
Instances

Normal-Data
Records

Highly Suspicious
Anomalies

Label as Attack

Closest
Cluster is

new?

- Increment Density
Yes

No

Time>short
AND Time

<=long? No

WSEAS TRANSACTIONS on COMMUNICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2742 1232 Issue 12, Volume 7, December 2008

The clustering algorithm in local anomaly detection engine:
• Input: a data instance d, a set of clusters C representing normalcy, a

closeness range r, and a similarity threshold S.
• Algorithm:

– Measure distance (d, Ci) for i = 1, …, n.
– If (distance (d, Ci) ≥ S), d fits within Ci, so it is given the label of Ci (or

its majority label).
– If (distance (d, Ci) < S),

• If (S - distance (d, Ci) < r), d is considered deviation from
normal cluster Ci,

• counter1++
• If (counter1>threshold)

• Ci = Ci + { d }
• Compute new Ci representative

• Else If (S - distance (d, Ci) >> r), d is considered an anomaly,
• A = A + { d }
• Send A to local response engine
• counter2++
• If (counter2>threshold)

• Send A to global anomaly analysis engine

Fig. 5. The clustering algorithm in local anomaly detection engine.

The clustering algorithm in global anomaly analysis engine:
• Input: an anomaly cluster As for site s, a set of clusters CA representing

known attacks, and a similarity threshold S.
• Algorithm:

– Initialize time windows short, long
– For each u ∈ As, Measure distance (u, CA).
– If (distance (u, CA) ≥ S), u fits within CA, so it is given the label of CA

(or its majority label).
• CA = CA + { u }
• Send u to global response engine

– Else If (distance (u, CA) < S),
• Create a new cluster CAnew
• CAnew = CAnew +{ u }
• densityCAnew ++

– For each CAnew
• If (Time ≤ short AND densityCAnew > threshold)

• CAnew is a new attack, CA = CA + { CAnew }
• Else If (Time > short AND Time ≤ long)

• If (densityCAnew > threshold)
• Label CAnew as new normal profile

• Else
• CAnew is a new stealthy attack, CA = CA + { CAnew }

Fig. 6. The clustering algorithm in global anomaly analysis engine.

WSEAS TRANSACTIONS on COMMUNICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2742 1233 Issue 12, Volume 7, December 2008

1155843

8835 36 1092 429 186 183 21 1037
0

150000

300000

450000

600000

750000

900000

1050000

1200000

Norm
al ps

se
nd

mail

ss
htr

oja
n

xs
no

op

gu
es

ste
lne

t

ftp
write

po
rts

weep
se

cre
t

Class

of

 p
ac

ke
ts

Fig.7. Normal vs. attack classes in week 4 of the DARPA 1999 dataset.

WSEAS TRANSACTIONS on COMMUNICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2742 1234 Issue 12, Volume 7, December 2008

