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Abstract — E-government is an important issue which integrates existing local area networks into a global network that provide many 
services to the nation citizens. This network requires a strong security infrastructure to guarantee the confidentiality of national data and 
the availability of government services. In this paper, a framework for network intrusion detection systems is presented. Such framework 
utilizes data mining techniques and is customized for the E-Government Network (EGN). It consists of two phases: an offline phase in 
which the intrusion detection system learns the normal usage profiles for each local network domain, and a real time intrusion detection 
phase. In the real time phase, known attacks are detected at a global layer at the EGN perimeters while normal behavior is filtered out at a 
local layer defined for each LAN domain. Clustering is used to focus the analysis on the remaining suspicious activity and identify 
whether it represents new intrusive or normal behavior. This framework is intended to detect intrusions in real-time, achieve low false 
alarm rates, and continuously adapt to the environment changes and emergence of new behavior. This research is a development for the 
work presented in [22,23]. The main achievement of this paper is the fast attack detection algorithm. Such algorithm based on performing 
cross correlation in the frequency domain between data traffic and the input weights of fast time delay neural networks (FTDNNs). It is 
proved mathematically and practically that the number of computation steps required for the presented FTDNNs is less than that needed 
by conventional time delay neural networks (CTDNNs). Simulation results using MATLAB confirm the theoretical computations. 

Keywords— Fast Intrusion Detection, Clustering, Data Mining, E-
Government, Cross correlation, Frequency domain, and Neural 
Networks. 

1. Introduction 
Intrusion detection is the process of monitoring the activities of a 
computer or network system and analyzing them for signs of 
intrusions or attacks [1]. The intrusion detection system (IDS) is 
the software or hardware that automates this monitoring and 
analysis. The intrusion detection system depends on two basic 
processes to work: monitoring the underlying system activity and 
analyzing the resulting event data. The analysis process can be 
conducted by means of two main techniques: The first is misuse 
detection, in which data is analyzed to find intrusions matching 
predefined attack signatures kept by the IDS, and the second is 
anomaly detection, in which data is analyzed to spot anomalies 
different from a predefined normal profile of the protected system. 

The IDS analysis phase is concerned with finding intrusions within 
large amounts of activity data. Since data mining techniques can 
analyze large data sets and discover interesting patterns hidden in 
them, they have been used to discover patterns of intrusions that 
may exist among the data monitored by the IDS. However, IDSs 
that use data mining techniques suffer from high false alarm rates 
because they are used mainly for anomaly detection, and they need 
extensive training over attack-free correctly labeled data instances 
[2]. 

In this paper a framework for a fast data mining-based network 
intrusion detection system for the E-Government Network (EGN) 
is presented. The EGN generally consists of multiple independent 
governmental domains that are linked together via a virtual private 
network. Communications from outside parties that wish to use the 
EGN services are carried out through the Internet and are screened 
by a central security system. This architecture suggests that the 

functions of the IDS be distributed over two conceptual layers: a 
global layer to enhance the security of the EGN domain where it is 
connected to the public domain, and a local layer to enhance the 
security of the local governmental domains that provide specific 
services. The proposed framework adapts this layered approach to 
detect intrusions, where the IDS performs known attacks detection 
at the global layer and normal profile filtering at the local layer. 
Then it uses clustering to analyze unknown activity to find out 
whether it is similar to the system profile in the local layer or to 
the known attacks detected in the global layer. The gradual 
filtering of known behavior (whether known attacks or known 
normal profiles) leaves only a small subset of data to be analyzed 
for possible new intrusions, which improves the detection rate of 
the intrusion detection system [3]. This framework works through 
two phases: a phase in which local normal profiles are built for 
each domain, and a phase of real time detection that depends on 
the layered approach previously outlined. The real time intrusion 
detection system utilizes the existing domain knowledge about 
intrusion signatures and attempts to help establish new knowledge 
about the intrusions. This framework aims at achieving a low false 
alarm rate while keeping the suspicion level of the intrusion 
detection system high. 

2. Data Mining Intrusion Detection Systems 
Most of the work in the area of building operational IDSs using 
data mining depends on an offline analysis phase to build models 
of normal behavior. The Minnesota Intrusion Detection System 
(MINDS) proposed in [4] uses a suite of data mining techniques to 
automatically detect attacks against computer networks. MINDS 
first constructs features that are used in the data mining analysis. 
Known attack detection module is then used to detect network 
connections that correspond to attacks for which the signatures are 
available, and they are removed from further analysis. Next, the 
data is fed into the MINDS anomaly detection module that uses an 
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outlier detection algorithm to assign an anomaly score to each 
network connection. The architecture thus does not consider the 
changes in normal system behavior. On the other hand, the work in 
[5] deals with the problem of false positives resulting from new 
normal behavior not previously seen by the IDS. The proposed 
architecture depends on adaptive IDS using fuzzy association 
rules. The architecture continuously measures the similarity 
between each day’s activity and a normal profile. When the 
similarity goes down below a threshold level this indicates either a 
change in behavioral patterns or an attack on the system. It is the 
abruptness of change that helps decide which case is true. A real 
time data mining-based IDS is proposed in [6] that attempts to 
address three issues; accuracy, efficiency, and usability. To 
improve accuracy, the system uses data mining programs to 
analyze audit data and extract features that can distinguish normal 
activities from intrusions, and uses artificial anomalies instead of 
attack signatures to produce hybrid misuse and anomaly detection 
models. To improve efficiency, the computational costs of features 
are analyzed and a multiple-model cost-based approach is used to 
produce detection models with low cost and high accuracy. A 
distributed architecture is also introduced for evaluating cost-
sensitive models in real time. To improve usability, adaptive 
learning algorithms are used to facilitate model construction and 
incremental updates, and unsupervised anomaly detection 
algorithms are used to reduce the reliance on labeled data. The 
proposed architecture consists of sensors, detectors, a data 
warehouse, and model generation components. This architecture 
facilitates the sharing audit data among detectors and the 
distribution of new or updated models and improves the efficiency 
and scalability of the IDS. The system is designed to be 
independent of the sensor data format and model representation. 

Data mining algorithms that were applied to network traffic data 
include association rules mining, classification, and clustering. 
Association rules mining [5-7] was used to identify interesting 
attributes that occur together with a high support in the traffic data, 
these associations were used to classify the traffic data online. 
Classification techniques such as decision trees [8] and Bayesian 
classification [9] were used to build classifiers of normal network 
activity data and detect data that do not match the classifiers' rules. 
Clustering techniques work by grouping similar data instances into 
clusters regardless of the instances' class labels. They were used to 
tackle the problem of labeling data before training, which is 
inherent in association rule mining and classification techniques. 
Clustering is used in [10], where three clustering strategies are 
applied on data containing both attack scenarios and normal 
traffic, namely, the Self-Organizing Maps, K-means clustering, 
and Expected Maximization Clustering. This work shows that 
SOM has the same complexity regardless of the data volume or 
clusters used. However, SOM can misclassify data inputs that will 
correspond to nodes not affected during training. The K-means 
clustering algorithm has a predictable performance and 
classification; however, it poorly manipulates highly dimensional 
data sets. The Expected Maximization algorithm can tolerate 
missing and unlabeled data and can offer information about how 
close a data point is to each cluster since the data point has a 
varying membership to all clusters. 

The mixed nature of data is addressed in [11]. A clustering 
algorithm (CLAD) is proposed that can identify suspicious clusters 
that are distant and of an unusual size. To identify these clusters, a 
cluster’s size and its position relative to other clusters are 
examined to encompass strong outliers. This work has three main 

contributions: a statistically derived cluster width is proposed 
instead of user-defined, a novel approach for measuring distance 
among discrete values, a global view of outliers through 
introduction of notion of strong outliers. To calculate the width, 
CLAD randomly draws a sample from the entire dataset and 
calculates the pair-wise distances. The average of the smallest 
distances is the cluster width. The distance between two discrete 
values is based on their frequency rather than their values. To 
determine if a cluster is an outlier, CLAD uses cluster density and 
distance from the other clusters. Clusters that are distant and sparse 
are considered outliers and anomalous. A sparse cluster is a local 
outlier, whereas a distant cluster is a global outlier. A strong 
outlier is both global and local a outlier. 

The algorithm in [12] builds clusters progressively as the data 
points are submitted. If the data point does not fit within a fixed 
width of any existing cluster, a new cluster is created with this 
point as its centroid. To find out which clusters contain normal 
instances and which contain attacks, the assumption that normal 
instances constitute a very large portion of the training dataset is 
used. This means that clusters containing normal data will have a 
much larger number of instances associated with them than would 
clusters containing anomalies. The problem with this approach is 
when there are many sub-types of normal instances in the training 
set. This produces a large number of such normal clusters with 
relatively small density. Each of these clusters will have a 
relatively small number of instances, leading to having these 
clusters incorrectly labeled as anomalous. 

The work in [13] is based on two concepts: supervised clustering 
for learning signature patterns of normal and intrusive activities 
during training, and instance-based classification for using those 
signature patterns to classify activities during testing. While 
incrementally clustering data records during training, the proposed 
work uses dummy clusters to prevent consecutive data records 
from being clustered together, even though their attribute values 
are not similar. The algorithm incrementally groups the data points 
in the training dataset into clusters supervised by the target class 
information. First, the training data is used to compute the 
relevance of each feature to the target the target class. Then, data 
points are compared to each cluster using the distance measure. If 
the data point and the nearest cluster have the same class, the data 
point is assigned to the cluster. Otherwise, a new cluster is created 
with this data point as the centroid and the target class of the new 
cluster is the class of this data point. 

In [14], the fuzzy c-medoids algorithm is used to build models 
from data streams. The algorithm takes pair wise distances 
between the data-points as input. A data point is a member of a 
given cluster if its distance from the medoid of that cluster is less 
than a specified threshold distance for that cluster. The threshold 
for a given cluster is based on the intra-cluster radius for that 
cluster. Two different outlier detection schemes are employed to 
test the algorithm. In the Absolute Distance scheme, the distances 
of a test data point from all the medoids of a cluster are calculated. 
If any of these distances is within the specified radius threshold the 
data-point is a member of that cluster. In the Average Distance 
scheme the average of the distances of the test data-point from all 
the medoids of the cluster is calculated. If this average distance is 
within the specified radius threshold of some cluster, the data point 
is a member of that cluster and an outlier otherwise. 

The authors in [15] propose a clustering heuristic for intrusion 
detection called Y-means. It overcomes two shortcomings of K-
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means: number of clusters dependency and degeneracy. Y-means 
algorithm partitions the normalized data into k clusters. The next 
step is to find whether there are any empty clusters. If there are, 
new clusters will be created to replace these empty clusters; and 
then instances will be re-assigned to existing centers. This iteration 
will continue until there is no empty cluster. Subsequently, the 
outliers of clusters will be removed to form new clusters, in which 
instances are more similar to each other; and overlapped adjacent 
clusters will merge into a new cluster. In this way, the value of k 
will be determined automatically by splitting or merging clusters. 
The last step is to label the clusters according to their populations, 
if the population ratio of one cluster is above a given threshold, all 
the instances in the cluster will be classified as normal; otherwise, 
they are labeled intrusive. 

Here, we develop the work presented in [22,23]. We propose a fast 
algorithm for an operational data mining-based IDS together with 
a clustering algorithm that first compares real-time data points to 
predefined attack signatures, then to the normal clusters, then to 
the intrusive clusters. This gradually filters out data with 
previously known behavior and leaves only a small subset of the 
data for comprehensive anomaly analysis. The purpose of the 
system is to utilize local normal system profiles together with the 
existing domain knowledge about intrusions signatures to build a 
real-time IDS that can adapt to the changing EGN environment 
and the newly conducted attacks. This architecture also aims at 
achieving a low false alarm rate while keeping the suspicion level 
of the intrusion detection system high. 

3. The Proposed IDS Framework 
The proposed IDS is designed to operate through two main phases: 
the Normal Profiles Building Phase (NPBP) and the Real-Time 
Detection Phase (RTDP). The NPBP is carried out offline and is 
concerned with building a system profile for each local site in the 
EGN. The RTDP filters out these normal profiles together with the 
known-attacks definitions obtained from the industry practices. 
Clustering is used to focus the analysis on the remaining 
suspicious activity and identify whether it represents new intrusive 
or normal behavior. A detailed description of both phases is given 
in the following subsections, with an overview of the used 
clustering algorithm. 

3.1 The Normal Profiles Building Phase 
This phase is concerned with constructing the classifiers that can 
discriminate and predict the local systems behaviors. These 
classifiers are then used to construct the rules that describe normal 
systems profiles. This phase, which is depicted in Fig. 1, will be 
implemented in each local site in the EGN because the system 
behavior is expected to vary among the local sites. The EGN 
should be isolated from the external traffic activity for a 
predefined period of time to ensure that the data represents normal 
local traffic. The operations of this phase are carried out through 
the following components: 

Sensors and Preprocessing Engines: A sensor collects traffic 
data from the local site and dumps this data to a preprocessing and 
feature extraction engine. This engine formats the data into 
instances or records at a suitable level of granularity (e.g. packet, 
connection, or session levels) and applies an attribute relevance 
analysis technique in order to extract the attributes that are most 
discriminating of the data. These formatted data records are stored 
in a traffic database.  

Local Profile Classification Engine: This engine takes the 
formatted data records and the relevant attributes and applies a 
classification algorithm to categorize the data records based on the 
values of relevant attributes. The resulting classifier can be 
validated over a consecutive period of time during which the 
system is still operating in isolation of the external activity.  

Profile Rules Building Engine: After the classifier reaches an 
acceptable level of accuracy, it is used by the profile rules building 
engine to construct the set of rules that represent the local normal 
system profile, and these rules are stored in the local system 
profiles matching engine (a component in the real time detection 
phase). The correctly classified data instances are stored in the 
profile database for further usage by the IDS. 

3.2 The Real-Time Detection Phase 
The detection phase is concerned with discovering the existence of 
known and unknown intrusions. A number of components interact 
together and exchange information to achieve the real-time 
detection of intrusions. These components are distributed over two 
conceptual layers: the global layer, in which the IDS filters out the 
known intrusions already defined by the intrusion detection 
industry, and it operates together with the central security 
mechanisms for the EGN as a whole. The local layer includes the 
IDS components that will reside in the local sites. The function of 
this layer is to filter out the normal traffic previously defined for 
each local site, so that only anomalous traffic is subject for 
detailed analysis. The organization of these components is 
illustrated in Fig. 2, and their functions are detailed as follows: 

3.2.1 Sensor and Preprocessing Engine 
The sensor collects traffic data at predefined short intervals and 
dumps this data to a preprocessing engine , which formats the data 
into records at a suitable level of granularity. This preprocessed 
data records (instances) are passed to the global known-attacks 
detection engine. 

3.2.2 Global Known-Attacks Detection Engine 
This engine receives preprocessed data instances and matches the 
data instances against the known attacks. If an intrusion is 
detected, it is reported to the global response engine and the data 
instances of that intrusion are labeled accordingly and stored in the 
attacks database. Otherwise, the data instances are passed to the 
local system profile-matching engine. 

3.2.3 Local System Profile-Matching Engine 
This engine includes the classification rules of normal profiles that 
were produced during the normal profile building phase. It 
matches the data instances received from the global known-attacks 
detection engine against these rules. If a data instance does not 
match the profile, it is passed to the local anomaly detection 
engine. Otherwise, data instances that match the profile are labeled 
as such and stored in the profiles database. 

3.2.4 Local Anomaly Detection Engine 
This engine uses a clustering algorithm to build an initial set of 
clusters from the normal data instances obtained from the profiles 
database. The algorithm then measures the deviation of each 
unknown data instance from the clusters of normal instances. If the 
deviation is small then the data instance is considered normal, 
otherwise the widely deviating instances are considered high 
anomalies and reported to the local response engine and the global 
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anomaly analysis engine. The processes of the local anomaly 
detection engine are outlined in Fig. 3.   

 

3.2.5 Global Anomaly Analysis Engine 

The global anomaly analysis engine, whose processes are depicted 
in Fig. 4, accepts anomalies from the many local sites and applies 
a clustering algorithm to determine the existence of new attacks or 
new profiles. The clustering algorithm first constructs a set of 
clusters based on known-attacks data instances obtained from the 
attacks database. The algorithm compares the highly anomalous 
instances with the attacks clusters. If anomalous instances are 
close to attack clusters or form new dense clusters within a short 
time window they are considered intrusions and sent to the global 
response engine. Otherwise, if the anomalous instances form new 
dense clusters over a long time window they are considered new 
profiles. the new cluster are used to construct rules defining the 
new attacks and profiles. the rules representing attacks are sent to 
the global known-attacks detection engine and the rules defining 
normal profiles are sent to the local system-profile matching 
engine so that both engines update their rules. 

3.2.6 Global and Local Response Engines 
These engines receive known attacks and highly ranked anomalies, 
raise alarms, and perform any other actions that are dictated by the 
security policy of the system under supervision. 

4. Clustering Algorithm 
The clustering algorithm is deployed in both the local anomaly 
detection engine and the global anomaly analysis engine. The 
clustering algorithm is incremental in the sense that it updates the 
clusters continuously as new instances are processed.  

The clustering algorithm in the local anomaly detection engine, 
which is outlined in Fig. 5, measures the distance between a data 
instance and the clusters representing the normal instances, and 
this distance is compared with a similarity threshold. One of the 
following situations will occur: 

1. Measured distance is greater than or equal to the similarity 
threshold of one of the clusters, which indicates that the data 
instance fits within that cluster, so it is given the label of those 
instances (or the label of the majority of the instances).  
2. Measured distance is less than but very close (within a range) to 
the similarity threshold of one of the clusters. This may imply a 
slight deviation from the cluster behavior. The instance is 
considered to belong to the cluster and a counter is incremented 
that keeps a record of the reoccurrences of similar instances having 
this slight deviation. If this counter reaches a certain maximum, 
these instances are considered an update in the cluster behavior. 
The cluster's original density is updated with the new instances, 
which are labeled normal and added to the profiles database. 
3. Measured distance is much less than the similarity thresholds of 
any of the clusters, implying a strong anomaly is encountered. 
Thus, it is ranked as high anomaly and forwarded to the local 
response engine. If after some time the number of that instance's 
occurrences exceeds a certain maximum, it is forwarded to the 
global anomaly analysis engine. 

In the global anomaly analysis engine, the clustering algorithm 
constructs a set of clusters that represent attacks obtained from the 
attacks database. When the algorithm receives highly-ranked 
anomalous instances from the different local sites, it searches the 

clustering space to find a cluster to which the anomalous instance 
is close. If such a cluster is found, the anomalous instance is 
labeled with the class name of that cluster and sent to the global 
response engine. If not, the anomalous instance is placed in a new 
cluster. One of three scenarios can arise with the placement of 
other anomalous instances within a new cluster: 
1. Anomalous instances are grouped in that cluster within a short 
predetermined time interval and the cluster has a high density. 
These instances are considered to represent a new attack and sent 
to the global response engine.  
2. Anomalous instances are grouped in that cluster over a long 
time interval and the cluster has a high density. These instances are 
considered normal instances of a new profile.  
3. Anomalous instances are grouped in that cluster over a long 
time interval but the cluster has a low density. These instances are 
considered to represent a stealthy attack, and are forwarded to the 
global response engine.  

This algorithm is outlined in Fig.6. As new clusters representing 
new attacks (both bursty and stealthy) and new profiles are 
created, they are passed to a sub-module that uses association rule 
mining to construct rules to define these new attacks and profiles. 

5. Implementation Plan 
MEGNTID will be implemented in an experimental environment 
with no real EEGN traffic. Instead, we will use the DARPA 1999 
dataset provided by Lincoln Laboratory [16]. The DARPA 1999 
dataset was used to evaluate a number of IDSs. This dataset 
contains two weeks of attack-free traffic and three weeks of mixed 
traffic. Each week contains five days of network traffic collected 
both from inside the simulation network and at the outside 
perimeter. Only the outside dumps will be used in our experiments 
since they represent the traffic entering or leaving the network as a 
whole. The first day of the attack-free first week is used to 
compute the normal profile, while the first day of the forth week 
with mixed traffic will be replayed during the detection phase. The 
first day of the fifth week will be used to test the performance of 
MEGNTID and tune its operations. In order to demonstrate the 
validity of the system, we have chosen to filter the dump files so 
they contain only TCP connections. It is relatively easy to add 
separate modules to process UPD and ICMP packets.  

The experiment is performed on an HP Compaq nx9030 laptop 
with 1.60 GHz processor speed and 256 MB RAM, and running 
Windows XP Professional with SP2. We have completed the 
normal profile building phase, which is very time-consuming since 
it involves preprocessing the data in a format suitable for the 
mining process. Initially, we could use an off-the-shelf sensor such 
as Windump or Ethereal. But they did not satisfy our need to put 
the data in a format acceptable for data mining analysis. This 
prompted us to extend the functionality of another sensor; 
JpcapDumper. The relevant features that were produced using 
attribute relevance analysis are: the packet timestamp, the source 
and destination addresses, the source and destination ports, the 
packet length, the packet flags, the time since last packet, the and 
windows size. The application of a simple association rule mining 
resulted in producing 37 effective rules that define the normal 
profile presented by 1247366 packets of attack-free data from 
Monday, week 1.  

The real-time detection phase requires that monitoring be 
accompanied by real-time formatting of data for the purposes of 
analysis. Also, a source of contiguous traffic fed to the IDS is 
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needed in order to represent the outbound traffic to and from the 
EEGN. This is achieved by replaying the DARPA outbound 
Monday trace of week 4. The distribution of normal and attack 
classes in Monday, week 4 is shown in Fig. 7. since the global 
detection layer involves comparing data to known attack 
signatures, we have collected 399 attack signatures from the 
Internet and formatted then as if-then rules.  

6. Fast Intrusion Detection using Neural Networks 
Finding a certain intrusion, in the incoming serial data, is a 
searching problem. First neural networks are trained to classify 
intrusion from non intrusion examples and this is done in time 
domain. In intrusion detection phase, each position in the incoming 
matrix is tested for presence or absence of an intrusion. At each 
position in the input one dimensional matrix, each sub-matrix is 
multiplied by a window of weights, which has the same size as the 
sub-matrix. The outputs of neurons in the hidden layer are 
multiplied by the weights of the output layer. When the final 
output is high, this means that the sub-matrix under test contains 
an intrusion and vice versa. Thus, we may conclude that this 
searching problem is a cross correlation between the incoming 
serial data and the weights of neurons in the hidden layer.   
The convolution theorem in mathematical analysis says that a 
convolution of f with h is identical to the result of the following 
steps: let F and H be the results of the Fourier Transformation of f 
and h in the frequency domain. Multiply F and H* in the frequency 
domain point by point and then transform this product into the 
spatial domain via the inverse Fourier Transform. As a result, 
these cross correlations can be represented by a product in the 
frequency domain. Thus, by using cross correlation in the 
frequency domain, speed up in an order of magnitude can be 
achieved during the detection process [17]. Assume that the size of 
the intrusion code is 1xn.  In intrusion detection phase, a sub 
matrix I of size 1xn (sliding window) is extracted from the tested 
matrix, which has a size of 1xN. Such sub matrix, which may be 
an intrusion code, is fed to the neural network. Let Wi be the 
matrix of weights between the input sub-matrix and the hidden 
layer. This vector has a size of 1xn and can be represented as 1xn 
matrix. The output of hidden neurons h(i) can be calculated as 
follows:  

⎟
⎟
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⎞
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⎝
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=
= ib(k)I(k)

n

1k iWgih               (1) 

where g is the activation function and b(i) is the bias of each 
hidden neuron (i). Equation 1 represents the output of each hidden 
neuron for a particular sub-matrix I. It can be obtained to the 
whole input matrix Z as follows: 
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Eq.2 represents a cross correlation operation. Given any two 
functions f and d, their cross correlation can be obtained by: 
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Therefore, Eq. 2 may be written as follows [17]: 

( )ibZiWgih +⊗=                    (4) 

where hi is the output of the hidden neuron (i) and hi (u) is the 
activity of the hidden unit (i) when the sliding window is located at 
position (u) and (u) ∈ [N-n+1].  

Now, the above cross correlation can be expressed in terms of one 
dimensional Fast Fourier Transform as follows [19]: 

( ) (( )iW*FZF1FZiW •−=⊗ )               (5) 

Hence, by evaluating this cross correlation, a speed up ratio can be 
obtained comparable to conventional neural networks. Also, the 
final output of the neural network can be evaluated as follows:  

⎟
⎟
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⎞
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⎝

⎛
∑
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where q is the number of neurons in the hidden layer. O(u) is the 
output of the neural network when the sliding window located at 
the position (u) in the input matrix Z. Wo is the weight matrix 
between hidden and output layer. 
The complexity of cross correlation in the frequency domain can 
be analyzed as follows: 

1-  For a tested matrix of 1xN elements, the 1D-FFT requires a 
number equal to Nlog2N of complex computation steps [18]. Also, 
the same number of complex computation steps is required for 
computing the 1D-FFT of the weight matrix at each neuron in the 
hidden layer.  

2-  At each neuron in the hidden layer, the inverse 1D-FFT is 
computed. Therefore, q backward and (1+q) forward transforms 
have to be computed. Therefore, for a given matrix under test, the 
total number of operations required to compute the 1D-FFT is 
(2q+1)Nlog2N. 

3- The number of computation steps required by FTDNNs is 
complex and must be converted into a real version. It is known 
that, the one dimensional Fast Fourier Transform requires 
(N/2)log2N complex multiplications and Nlog2N complex 
additions [18]. Every complex multiplication is realized by six real 
floating point operations and every complex addition is 
implemented by two real floating point operations. Therefore, the 
total number of computation steps required to obtain the 1D-FFT 
of a 1xN matrix is: 

ρ=6((N/2)log2N) + 2(Nlog2N)                  (7) 

which may be simplified to: 

ρ=5Nlog2N                              (8) 

4- Both the input and the weight matrices should be dot multiplied 
in the frequency domain. Thus, a number of complex computation 
steps equal to qN should be considered. This means 6qN real 
operations will be added to the number of computation steps 
required by FTDNNs.  

5- In order to perform cross correlation in the frequency domain, 
the weight matrix must be extended to have the same size as the 
input matrix. So, a number of zeros = (N-n) must be added to the 
weight matrix. This requires a total real number of computation 
steps = q(N-n) for all neurons. Moreover, after computing the FFT 
for the weight matrix, the conjugate of this matrix must be 
obtained. As a result, a real number of computation steps = qN 
should be added in order to obtain the conjugate of the weight 
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matrix for all neurons.  Also, a number of real computation steps 
equal to N is required to create butterflies complex numbers       
(e-jk(2Πn/N)), where 0<K<L. These (N/2) complex numbers are 
multiplied by the elements of the input matrix or by previous 
complex numbers during the computation of FFT. To create a 
complex number requires two real floating point operations. Thus, 
the total number of computation steps required for FTDNNs 
becomes: 

  

σ=(2q+1)(5Nlog2N) +6qN+q(N-n)+qN+N        (9) 
which can be reformulated as: 

           σ=(2q+1)(5Nlog2N)+q(8N-n)+N          (10) 

6- Using sliding window of size 1xn for the same matrix of 1xN 
pixels, q(2n-1)(N-n+1) computation steps are required when using 
CTDNNs for certain intrusion detection or processing (n) input 
data. The theoretical speed up factor η can be evaluated as 
follows: 

   N n)-q(8N N) 1)(5Nlog(2q
 1)n-1)(N-q(2n

2 +++
+

=η         (11) 

Time delay neural networks accept serial input data with fixed size 
(n). Therefore, the number of input neurons equals to (n). Instead 
of treating (n) inputs, the proposed new approach is to collect all 
the incoming data together in a long vector (for example 100xn). 
Then the input data is tested by time delay neural networks as a 
single pattern with length L (L=100xn). Such a test is performed in 
the frequency domain as described in section II. The combined 
intrusion in the incoming data may have real or complex values in 
a form of one or two dimensional array. Complex-valued neural 
networks have many applications in fields dealing with complex 
numbers such as telecommunications, speech recognition and 
image processing with the Fourier Transform [20,21]. Complex-
valued neural networks mean that the inputs, weights, thresholds 
and the activation function have complex values. In this section, 
formulas for the speed up ratio with different types of inputs (real 
/complex) will be presented. Also, the speed up ratio in case of a 
one and two dimensional incoming input matrix will be concluded. 
The operation of FTDNNs depends on computing the Fast Fourier 
Transform for both the input and weight matrices and obtaining 
the resulting two matrices. After performing dot multiplication for 
the resulting two matrices in the frequency domain, the Inverse 
Fast Fourier Transform is determined for the final matrix. Here, 
there is an excellent advantage with FTDNNs that should be 
mentioned. The Fast Fourier Transform is already dealing with 
complex numbers, so there is no change in the number of 
computation steps required for FTDNNs. Therefore, the speed up 
ratio in case of complex-valued time delay neural networks can be 
evaluated as follows: 

1) In case of real inputs  

A) For a one dimensional input matrix 
Multiplication of (n) complex-valued weights by (n) real inputs 
requires (2n) real operations. This produces (n) real numbers and 
(n) imaginary numbers. The addition of these numbers requires 
(2n-2) real operations. The multiplication and addition operations 
are repeated (N-n+1) for all possible sub matrices in the incoming 
input matrix. In addition, all of these procedures are repeated at 
each neuron in the hidden layer. Therefore, the number of 

computation steps required by conventional neural networks can 
be calculated as: 

θ=2q(2n-1)(N-n+1)                    (12) 

The speed up ratio in this case can be computed as follows: 

 
   N n)-q(8N N) 1)(5Nlog(2q

 1)n-1)(N-2q(2n

2 +++
+

=η          (13) 

B) For a two dimensional input matrix 
Multiplication of (n2) complex-valued weights by (n2) real inputs 
requires (2n2) real operations. This produces (n2) real numbers and 
(n2) imaginary numbers. The addition of these numbers requires 
(2n2-2) real operations. The multiplication and addition operations 
are repeated (N-n+1)2 for all possible sub matrices in the incoming 
input matrix. In addition, all of these procedures are repeated at 
each neuron in the hidden layer. Therefore, the number of 
computation steps required by conventional neural networks can 
be calculated as: 

θ=2q(2n2-1)(N-n+1) 2                 (14)  

The speed up ratio in this case can be computed as follows: 

 
   N )n-q(8N )N log1)(5N(2q

 1)n-1)(N-2q(2n
222

2
2

22

+++
+

=η      (15) 

2) In case of complex inputs  

A) For a one dimensional input matrix 
Multiplication of (n) complex-valued weights by (n) complex 
inputs requires (6n) real operations. This produces (n) real 
numbers and (n) imaginary numbers. The addition of these 
numbers requires (2n-2) real operations. Therefore, the number of 
computation steps required by conventional neural networks can 
be calculated as: 

θ=2q(4n-1)(N-n+1)                    (16)  

The speed up ratio in this case can be computed as follows: 

 
   N n)-q(8N N) 1)(5Nlog(2q

 1)n-1)(N-2q(4n

2 +++
+

=η         (17) 

B) For a two dimensional input matrix 
Multiplication of (n2) complex-valued weights by (n2) real inputs 
requires (6n2) real operations. This produces (n2) real numbers and 
(n2) imaginary numbers. The addition of these numbers requires 
(2n2-2) real operations. Therefore, the number of computation 
steps required by conventional neural networks can be calculated 
as: 

θ=2q(4n2-1)(N-n+1)2                     (18)  

The speed up ratio in this case can be computed as follows: 

   N )n-q(8N )N log1)(5N(2q
 1)n-1)(N-2q(4n

222
2

2

22

+++
+

=η       (19) 

An interesting point is that the memory capacity is reduced when 
using FTDNN. This is because the number of variables is reduced 
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compared with CTDNN. The neural algorithm presented here can 
be inserted very easily in any Anti-Intrusion gateway software.  

7. Conclusion 
The intrusion detection system is an essential part of the overall 
security infrastructure, especially when the system to be protected 
is as vital and sensitive as the E-Government Network. This paper 
presented a architecture for an intrusion detection system that is 
based on data mining techniques. This architecture distributes the 
functions of the intrusion detection system (data collection, 
analysis, and response) over two layers, a global central layer and 
a local layer. The IDS gradually filters out the known traffic 
behavior (intrusive and normal) in order to focus the analysis on 
data not seen before by the system. This is intended to reduce the 
rate of false alarms while preserving the secure state of the system. 
The probability of evading the intrusion detection system can be 
reduced as the stealthy intrusions are taken into account during the 
analysis. Classification is used to build normal profiles offline, and 
clustering is used to build clusters of online activity data instances 
and discover the existence of new intrusions and normal profiles. 
This work will be extended by building a prototype of the global 
anomaly analysis engine and the local anomaly detection engine 
and implementing the clustering algorithm. A new approach for 
fast attack detection has been presented. Such strategy has been 
realized by using a new design for time delay neural networks. 
Theoretical computations have shown that FTDNNs require fewer 
computation steps than conventional ones. This has been achieved 
by applying cross correlation in the frequency domain between the 
incoming serial data and the input weights of time delay neural 
networks. Simulation results have confirmed this proof by using 
MATLAB. Furthermore, the memory complexity has been reduced 
when using the fast neural algorithm. In addition, this algorithm 
can be combined in any Anti-attack gateway software. 
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Fig. 1: The local normal profiles building phase. 
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Fig. 2. The architecture of the real-time detection phase. 
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Fig. 3. The Local Anomaly Detection Engine. 
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Fig. 4. The Global Anomaly Analysis Engine. 
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The clustering algorithm in local anomaly detection engine: 
• Input: a data instance d, a set of clusters C representing normalcy, a 

closeness range r, and a similarity threshold S. 
• Algorithm: 

– Measure distance (d, Ci) for i = 1, …, n. 
– If (distance (d, Ci) ≥ S), d fits within Ci, so it is given the label of  Ci (or 

its majority label). 
– If (distance (d, Ci) < S),  

• If (S - distance (d, Ci) < r), d is considered deviation from 
normal cluster Ci, 

• counter1++ 
• If (counter1>threshold) 

• Ci = Ci + { d } 
• Compute new Ci representative 

• Else If (S - distance (d, Ci) >> r), d is considered an anomaly, 
• A = A + { d } 
• Send A to local response engine 
• counter2++ 
• If (counter2>threshold) 

• Send A to global anomaly analysis engine 

Fig. 5. The clustering algorithm in local anomaly detection engine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The clustering algorithm in global anomaly analysis engine:
• Input: an anomaly cluster As for site s, a set of clusters CA representing 

known attacks, and a similarity threshold S. 
• Algorithm: 

– Initialize time windows short, long 
– For each u ∈ As, Measure distance (u, CA). 
– If (distance (u, CA) ≥ S), u fits within CA, so it is given the label of  CA 

(or its majority label). 
• CA = CA + { u } 
• Send u to global response engine 

– Else If (distance (u, CA) < S),  
• Create a new cluster CAnew  
• CAnew = CAnew +{ u } 
• densityCAnew ++ 

– For each CAnew  
• If (Time ≤ short AND densityCAnew > threshold) 

• CAnew is a new attack, CA = CA + { CAnew } 
• Else If (Time > short AND Time ≤ long) 

• If (densityCAnew > threshold) 
• Label CAnew as new normal profile 

• Else  
• CAnew is a new stealthy attack, CA = CA + { CAnew } 

 

Fig. 6. The clustering algorithm in global anomaly analysis engine. 
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Fig.7. Normal vs. attack classes in week 4 of the DARPA 1999 dataset. 
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