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Abstract: In the routing process to select the data paths for Hierarchically Aggregation/Disaggregation and Com-
position/Decomposition,(HAD) networks, a fast algorithm for finding optimum paths for dataflow is needed. In
this research we propose an algorithm called the Reverse Shortest Path algorithm to improve the speed in the
calculating procedure for finding the shortest paths. This algorithm performs the reversed calculation in stead of
the forward calculation used in conventional algorithms. The demand in each original destination pair (OD pair)
has been distributed to the sub OD pairs in each relevant subnetwork r(u,v) = r(u,l) = ... = r(l,k) = r(k,v) with
l and k, the gateways and ancestors in the active path. For each different commodities, the parallel processing
is carried out with the shared shortest path processing time of O(log(n)) which less than O(m log(n)) of HAD
algorithm[1] where, n is the number of nodes in the networks, M is the number of commodities in each cluster
and m is a positive integer which is less than M . The proposed algorithms have been developed and tested on a
simulated network of 200 nodes clustered into 20 groups. Each group uses a personal computer as the processor for
the group. Ten data Monte Carlo simulation patterns were generated for the test. The first five patterns represent
typical normal dataflows which largely consist of short distance communications. The other five patterns represent
the worst case data communication scenario. Test results on the proposed Reverse Shortest Path algorithm show
that, for the tested network, the algorithm has improves the speed in finding the shortest paths by 20% as compared
to the conventional shortest path algorithm.
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1 Introduction
Various methods to solve the optimal routing prob-
lems including the methods using linear program-
ming [20],[19],[21] which is suitable for the networks
with small number of nodes, and the methods using
non-linear programming for the network with larger
number of nodes [10][11][4],[7],[8] and [9]. One of
them is called the Projected Newton Method (PNM),
it has been applied and investigated in [10] and [11].
Later on the Gradient Projection Method (GPM) has
been proved to be much more efficient than the PNM
method because in the the GPM method, the H(k)
which is the Hessian matrix of X(k) has been taken
into consideration giving a more converged solution
than the PNM method. The main reason is that the
(ORP) is the non-linear flow space problem in which
the time spent to get the solution depends on three dif-
ferent factors, they are, the number of commodities,
the number of shared links and the number of nodes
in the network. Many researches have been carried on
to speed up the processing time in dealing with these

factors. In [4],[7],[8] and [9], the GPM with parallel
processing according to the commodities giving the
processing time of O(MΦ2) where in [12], it has been
analysed that M is the number of commodities or the
number of the original nodes with the same OD pair
and Φ is the diameter of the network. But, anyhow, for
a large network with larger number of M , this method
takes longer processing time. In [2],[13] and [14], the
HAD network structure has been proposed to give the
processing time of O(M log2(n)) , but this method
is suitable only for the “hierarchically clustered net-
work topology” which does not conform to the gen-
eral practical networks. In [15], a fast shortest path al-
gorithm for the hierarchically clustered networks has
been investigated and gives a better speed to find the
solution for the ORP, but this method works fine for
only the hierarchically clustered networks.

Since the method with parallel processing in ac-
cordance to the commodities is still not suitable for
larger networks, many researchers proposed varieties
of ideas to reduce the shortest path calculation by the

WSEAS TRANSACTIONS on COMMUNICATIONS
 

Prawat Chaiprapa, Kajornasak Kantapanit 

1109-2742 469 Issue 5, Volume 7, May 2008



distributed and parallel processing called the parallel
textured algorithm [5],[6] giving the ORP processing
time of O(((1 + η)n/m)2 with m the number of sub-
networks, n the number of nodes in the network and
η the ratio of the number of nodes in the overlapped
path to the number of the nodes in the network.

Later on, in [1], a technique to combine the de-
composition and composition (D/C) for the hierarchi-
cally structured network which is current internet net-
work has been proposed to speed up the processing
time with the parallel textured algorithm along with
the hypothesis to configure each path to the destina-
tion to pass through a gateway. This method gives the
processing time of O(m log2(n). But in the process
of this method, during the adjust path flow and H(k)
approximation process, the calculation for the shared
parts of the links has to be done separately for each
commodity resulting in the delayed time in the com-
munications between processors.

It can be seen that in [1] as stated earlier, the ORP
is to be solved at an improved speed by using paral-
leling processing for the popular internet which is a
large network of hierarchically structure. The algo-
rithm used was the GPM with two steps of process-
ing. The first step was to find the shortest path for
each OD pair and the second step was to adjust the
path flow for each OD pair. But, in the process of
distribution of parallel shortest path calculations there
were the overlapped parts between processors and the
processors had to spend the extra time of O(m log(n))
to update the overlapped parts. We, then, propose an
algorithm to reduce the update overlapped parts calcu-
lations by distributing the demand of each OD pair to
be spread along the subpaths between many original
nodes to the gateway with the same destination node
and we use the reversed shortest path to eliminate the
overlapped parts updating. This helps speed up to find
the solutions for the ORP problems.

The next section give the details of the ORP for-
mulation, the definitions and assumptions of the net-
work are explained in section 3, the optimal routing
algorithm is discussed in section 4, the test results are
presented next and the conclusion is given in the last
section.

2 ORP formulation of hierarchically
structure networks

2.1 ORP Formulation
In this section, we begin with the standard ORP for-
mulation [7][8] and formulation [1] which are differ-
ent from [7][8] by the consideration of the flow of all
the commodities at one instant. We are given a net-

work G = (V, L),where V is set of nodes,|V | = N
and L is a set of links and W is set of ordered pairs w
of distinct nodes referred to as the origin and the des-
tination of w. For each w, (|W | = M). We are given
a scalar rw referred to as the flow demand of w. The
ORP is formulated with the objective of dividing each
rw among the paths from the origin to the destination
in such a way that the resulting total link flow pattern
minimizes a cost function of interest. Let Pw denote a
given set of paths that have the same origin and desti-
nation as w. And Let xw,p denote the flow of path p.
The constraints follow:

xx,p ≥ 0, ∀p ∈ Pw, ∀w ∈ W (1)

∑

p∈Pw

xx,p = rw,∀w ∈ W (2)

Now we define a vector xw that has compo-
nents xw,p, p ∈ Pw. Then the total flow pattern
of the network can be described by a vector X =
(x1, x2, ..., xM ). Obviously, X is subject to the con-
strain X ∈ G where G = G1 × G2 × ...Gw... × Gm

and Gw is simplex defined by Equ.(1) and (2). The
total flow F(u,v) through a link l(u,v) in the network is
related to X as follows,

F(u,v) =
∑

w∈W

∑
p∈Pw

(u,v)∈L

xw,p (3)

The cost function, which is assumed to be separa-
ble, can be expressed as

D =
∑

(u,v)∈L

D(u,v)(F(u,v)) (4)

As in most literature, including [7],[8], we as-
sume that for each link l(u,v) ∈ L, the function Du,v,
which is defined on [0,∞), is real valued, convex and
twice continuously differentiable. The proposed opti-
mal routing problem is to find a set of the path {xw,p}
that minimizes the cost function D subjected to the
constraints of Equ.(1) and (2). By expressing the to-
tal flows Fu,v in terms of the path flows using (3), the
problem can be formulated in the path flows space:

minimize D̄(X)

subject to
∑

p∈Pw

xw,p = rw, ∀w ∈ W

xw,p ≥ 0, ∀p ∈ Pw, ∀w ∈ W, (5)

where X is the vector of path flow xw,p. A fre-
quently used method [7],[8] to solve Equ.(5) is used to
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convert the simplex constraints of the ORP into non-
negative constraints: In each iteration, for each com-
modity w ∈ W a path p̄w of minimum first derivative
length. The path with minimum first derivative length
is called the shortest path.

For each link l(u,v) and OD pair w , D′
(u,v) is inter-

preted as the length of the pathflow for the link l(u,v)

when the pathflow vector is x . In data communication
routing and traffic assignment problem, the merit of
the system is dependent on the values of marginal de-
lay and travel time which are mainly the results from
the selected algorithms used to solve the ORP prob-
lems. For all X and all w ∈ W , let

T(u,v)(x,w) = D′
(u,v)(F(u,v)), (6)

T(u,v)(x,w) ≥ 0,∀l(u,v) ∈ L. (7)

The length of the pathflow for p ∈ P when the
pathflow vector is X is defined by

Lp =
∑

l(u,v)∈Pw

T(u,v)(x,w) (8)

and the length of the pathflow for set Pw when the
pathflow vector is X is defined by

Lw =
∑

p∈P

Lp(x,w) (9)

We then express the flow of p̄w in terms of the
other path flows while eliminating the equality con-
straints of Equ.(2):

xx,p̄w ≈ rw−
∑

p∈Pw

(u,v)∈L

xw,p, w = 1, 2, ...,M (10)

Plugging Equ.(10) into Equ.(5), we have the re-
duced dimension problem

min
X̃∈G̃

D̃(X̃) (11)

where X̃ = (X̃1, X̃2, ..., X̃w, ..., X̃M ) and X̃w is
a vector with component xw,p, p ∈ Pw, w ∈ W,p 6=
P̄w; G̃ is defined to be G̃1 × G̃2 × ...G̃w... × G̃M ,
with G̃w being a simplex defined by xx,p ≥ 0, ∀p ∈
Pw, p 6= p̄w,∀w ∈ W . To solve the ORP represented
by Equ.(11), the general algorithm takes the following
iteration equation:

X̃w(k+1)=[X̃w(k)−γkH−1
w (k)(Lw(k)−Lw(k))]+, (12)

where [•]+ denotes the projection on G̃w , X̃w(k)
denotes the path flow vector of xw,p , γk is a fixed

relaxation parameter, H−1
w (k) denotes a positive and

symmetric matrix of active pathflow which can be
approximated by the use of the Hessian matrix of
D̃w(X) , Lw(k) denotes the length of active path set
Pw , the OD pair and L̄w(k) denotes the length of the
shortest path of the OD pair w . Also, the set W of OD
pairs is divided into m commodities. Equ.(12) shows
that general algorithm performs the computation for
each commodity, w, sequentially. To parallelize the
computation, [1] apply the following iteration equa-
tion using the global vector, X̃

X̃(k + 1) =
[
X̃(k)− γkH−1(k)(L(k)− L̄(k))

]+
, (13)

where [•]+ denotes the projection on G̃. H−1(k)
is a positive and symmetric matrix,its can be cho-
sen to be an approximation of the Hessian matrix of
D̃(X̃(k)). We used Equ.(13) to solve ORP problem
by parallel.

At the beginning of the k-th iteration, a set of ac-
tive path P k

w consisting of at most (k-1) paths has been
generated for the generic OD pair w ∈ W . The fol-
lowing calculation is executed sequentially from com-
modity no. 1 up to the last commodity, i.e. commodity
number m. The OD pairs that have the same original
can be found in same time by the shortest path algo-
rithm. The GPM procedure can be given as follows:

Step 1: A shortest path that joins the original node
for commodity with all other nodes in the same com-
modity is calculated. The length of path for each link
l(i,j) used for this calculation is T(i,j)(x,w) , where
x is the current pathflow vector. These shortest paths
are added to the corresponding list of active paths of
each OD pair of the commodity if they are not already
there, so the number of active paths for each OD pair
of the commodity is at most k paths.

Step 2: Each OD pair w of the commodity is taken
up sequentially. For each active path p of w, the length
Lp as defined in Equ.(8) is calculated together with an
additional number H−1

p called the ”step size”. Both
Lp and H−1

p are calculated on the basis of the current
total link flow vector. Let p be the shortest path ob-
tained in Step 1 for the OD pair. The pathflows of all
paths p 6= p are updated according to,

xp(k+1)=





max{0,xp(k)−
γkH−1

p (Lp(k)−Lp(k))},if Lp>Lp

xp,Otherwise.

(14)

The pathflow of the shortest path p is then ad-
justed by Equ.(10). In other words, an amount xp or
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H−1
p (Lp − Lp) is shifted from each non shortest path

to the shortest path p which is smaller. The total link
flows Fu,v are adjusted to reflect the changes in xp

and xp. The GPM is adjusting path flow xp until the
condition in Equ.(15) is satisfied:

Lp − Lp ≥ ε,∀p with xp > 0, (15)

where ε is the error condition, ε ≈ 0.

2.2 Step size approximation
In this section, the second algorithm for adjusting the
pathflows is explained. To adjust all the pathflows in
parallel, the consideration of the interaction of differ-
ent commodities is necessary because the algorithm
processes different commodities concurrently. Since
the shortest paths of different commodities may share
some communication links, parallel flow adjustments
without considering the interactions among different
commodities may cause the cost of the shared links
to increase too much or even to be infinite and the
process becomes unstable or divergent. This problem
is recognized as the congestion problem. It should be
pointed out that the congestion problem is not an issue
for the general algorithms because they process differ-
ent commodities one by one. This is a form of block
Gauss-Seidel method that considers implicitly the in-
teractions among different commodities. Iteration of
Equ.(13) takes into account the interactions among
different commodities. In the solution procedure of
the general sequential ORP, only one processor with
one global variable X is used. But in the solution
method of the parallel ORP, m processors are used
for m commodities and the global variable X is also
expressed in m parts as X = {x1, x2, x3, ..., xm}.
As the pathflows have been separated, each processor
does not have to consider the pathflows belonging to
other processors. This leads to the use of the Hessian
matrix in the solution of the ORP as in Equ.(13). The
equation of the Hessian matrix is as follows:




·
·

·
∂2D̃(X̃(k))
∂xpw1∂xpw2

∂2D̃(X̃(k))
∂xpw∂xpw

·
·

·




(16)

The off-diagonal terms within the small boxes
are corresponding to the interactions among different
pathflows of the same commodity . The general algo-
rithm [18] also ignores the off-diagonal terms within
the small diagonal boxes since the interactions among
the paths of the same commodity are not significant.
The off-diagonal terms outside the small boxes re-
flect the interactions among the pathflows of differ-
ent commodities. Even though the general algorithm
does not explicitly use these off-diagonal terms, the
block Gauss-Seidel iteration method applied by the
general algorithm implicitly adapts the pathflows of
different commodities since the pathflows of differ-
ent commodities are adjusted sequentially during the
outer iteration. However, since adjustment pathflow
step done in parallel, the effect of the off-diagonal
terms outside the small boxes needs to be considered.
These off-diagonal terms can be calculated by:

∂2D̃(X̃(k))
∂xpw1∂xpw2

=
∂2D̄(X(k))
∂xpw1∂xpw2

− ∂2D̄(X(k))
∂xp̄w1∂xpw2

(17)

(Note that(17) can be derived by differentiation of
following relation,

∂D̃(X̃(k))
∂xpw1

=
∂D̄(X(k))

∂xpw1

− ∂D̄(X(k))
∂xp̄w1

, (18)

where p̄w1 is the shortest path of commodity w1

found at the k-th iteration. If the shortest path p̄w2 of
commodity w2 share some common link, L̄, with pw1,
from Equ.(17), it can be proved that:

∂2D̃(X̃(k))
∂xpw1∂xpw2

=
∂2D̄(X(k))
∂xpw1∂xpw2

+
∑

(u,v)∈L̄

D′′
(u,v)(F (k)),

∑

(u,v)∈L̄

D′′
(u,v)(F (k)) > 0. (19)

For every xpw2

∂D̃(X(k))
∂xpw1∂xpw2

> 0, pw2 ∈ Pw2. (20)

If many commodities, Wshare, have shortest path
sharing a common link l(u,v)share

with commodity
p̄w1, there will be a large number of such off-diagonal
positive entries. It is not hard to show that ignor-
ing these nonzero entries may cause too big flow ad-
justments calculated from (13) (a flow adjustment is
define by x̃w,p(k) − x̃w,p(k + 1)) corresponding to
path pw1, pw1 6= p̄w1, and it also causes all such ad-
justments to be nonnegative for all pw, w ∈ Wshare,
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pw 6= p̄w. When Equ.(10) is executed, all of these
adjustments will be added to link l(u,v)share

causing
potential congestion problems.

There are two ways to solve the congestion prob-
lem: the first one is to choose a very small step size
parameter, but this method resultes in more iterations.
In general the bigger the network, the smaller the step
size parameter needs to be chosen[8]. So, this method
causes significantly longer computation time. The
second method is properly adjust the associated diag-
onal term of H(k) according to the congestion situa-
tion. It can effectively solve the congestion problems
while still using the similar step size parameter (≈ 1)
used in most general algorithms and thus, is much bet-
ter. The second method is implemented by using a
diagonal matrix

nl(k)=diag(nl1(k)I1,··,nlw(k)Iw,··,nlM (k)IM ), (21)

where nlw(k)Iw is again a diagonal matrix with
nlw(k) being positive number (≥ 1) and Iw being a
(|Pw| − 1)× |Pw| − 1) identity matrix. Here, nlw(k)
is called compensation matrix that is used to compen-
sate the effect of ignoring the off-diagonal terms of
the Hessian matrix.

Let H(k) = nl(k) × DH , where DH is a diag-
onal matrix with the same dimension of the Hessian
matrix of D̃(k) but only keeps the diagonal terms of
the Hessian matrix. nlw(k) is found as follows:

For commodity w, at kth iteration, after all short-
est paths are found, all the links of the shortest path
p̄w are counted for the number of all sharing shortest
path and nlw(k) is the largest of all these numbers; the
associated link(s) are named as the critical link(s) of
commodity w at kth iteration. Accordingly, the num-
ber of shortest paths sharing the critical link of w is
nlw(k).

A simple example is illustrated in Fig. 1. In This
case, commodity 1,2 and 3 have shortest path p1, p2

and p3 found, respectively. For commodity 1, the
critical links,(5,6) and nl1(k) is 3 ;commodity 2 the
critical link is (5,6)and (6,ancestor), and nl2(k) is 3,
and so on. With our scheme, the flow adjustment at
the current iteration for every path of commodity 1 is
1/nl1(k) = (1/3) of the original flow adjustment and
same for commodities 2 and 3. As a result, the total
flow adjustment at critical link(s) is less than or equal
to 1/nlw(k) of the original total flow adjustment.

Extened

Local area 

Basic
 network

Dst of OD 1

Org of OD 12

Ancestor

   Org of OD

Dst of OD
2

Critical link

   Org of OD

3

2

p 
3

1

Dst of OD3

n5

n6

p 

p 

Figure 1: Overlapped parts

3 Definitions Assumptions for Opti-
mal routing algorithm

3.1 Definitions
Definition 1 A path p is a finite sequence of link p =
(l(u1,u2), l(u2,u3), ..., l(uk−1,uk)). The path of deriva-
tive length Lp is define to be Lp = T(u1,u2)+T(u2,u3)+
...+T(uk−1,uk) where T(ui−1,ui) is the result of the first
derivative of the objective function D(ui−1,ui) with re-
spect to the flow on link l(ui−1,ui) .

The hop length H(P ) of a path is defined as the
number of link in the path. The minimum hop distance
(MHD) between two nodes, u, and v is represented
by MHD(u, v) and is defined by MHD(u, v) =
minp{H(P ) for all P starting at u and ending at v}.

Definition 2 Diameter Φ of a network G, where G =
(V, L), is defined to be Φ = maxu,v∈V MHD(u, v)

Definition 3 Time complexity of an algorithm or a
procedure is defined to be the sum of the computation
time complexity and communication time complexity
that are needed to execute the algorithm or the proce-
dure in distributed computation environment

In the following section, the definitions related
to the hierarchically structure network topology are
described. For an extremely large data network,
the topology often possesses some hierarchical struc-
ture which can be characterized conceptually with a
balance-tree hierarchy (BTH) [3],[16].

A complete tree means a rooted tree in which all
leaves are of the same depth. A network can be rep-
resented by a BTH with the same number of leaves as
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the number of nodes in that network. All the levels of
a BTH are numbered in such a way that the root has
the highest level number and the leaves have the level
number of 1.

In the following section, the hierarchically struc-
ture network topology is defined. Firstly, the concept
of network super-set S is introduced. Each element s
in S is a bounded node set of network and the subnet-
work composed of the nodes in each node set should
be connected. A special case is that a node set in-
cludes only one node. Such a set is called a single
node set. The union of single node set in a network
super-set must include all the network nodes.

Definition 4 A connected network is said to be hi-
erarchically structure if there exists a mapping, P :
T → S, from a BTH, T , to a super-set, S, of the net-
work, such that:

1. P map every leaf in T to every single node set in
S;

2. If sl
m1, s

l
m2, ..., s

l
ml are the images of the el-

ements tlm1, t
l
m2, ..., t

l
ml ,which are the entire

nodes at lth level in the BTH, the subnetwork
composed of all the nodes of sl

m1

⋃
sl
m2...

⋃
sl
ml

must be connected;

3. If tl−1
n1 , tl−1

n2 , ..., tl−1
nj are the complete child nodes

of tlj and tl−1
n1 , tl−1

n2 , ..., tl−1
nj and sl

j are the
images of tl−1

n1 , tl−1
n2 , ..., tl−1

nj and tlj , respec-
tively, then sl

j ⊂ sl−1
n2

⋃
sl−1
n2

⋃
...

⋃
sl−1
nj and

the subnetwork composed of all the nodes in
sl−1
n2

⋃
sl−1
n2

⋃
...

⋃
sl−1
nj must be connected.

Fig. 2 shows an example of mapping from a BTH
to a network. We will refer to the node in a node set, s,
as a group. Since we have created a mapping between
a BTH and a network, we can adopt all the relational
terms of BTH, such as, parent and child in describing
the relation ship of subnetworks or groups.

Definition 5 The subnetwork composed of all the
groups (and the associated links) having a common
parent group (we also refer to a parent group as a
gateway group) is defined as basic subnetwork. The
nodes in the gateway groups are call gateways.

Definition 6 Let Vl be the union of all the node set
that are the images of all the lth level nodes of the
associated BTH and let Ll be all the links associated
with Vl. Similarly, Let Vl+1 denote the union of all
node sets that are the images of all the l + 1th level
nodes of the BTH and let Ll+1 denote the links associ-
ated with Vl+1 Then, the layer of a network is defined
to be Gl = (Vl, Ll − Ll+1).

Figure 2: An example of a mapping from a BTH (T =
{t11, t12, ..., t116, t

2
1, t

2
2, t

3
1}) to a super-set of a network

(S = {s1, s2, ..., s16} = {{v1}, {v2}, ..., {v16}})

3.2 Network Assumptions
In this section, the hypotheses of the network for our
algorithm are as below:

Assumption 1 The network is hierarchically struc-
tured

Assumption 2 Each node has a unique ID taken from
{1, 2, ...n}.

Assumption 3 For a network G = (V, L), if a link
l(u,v) ∈ L, we also have l(v,u) ∈ L. This means if
node u has a link to node v, node v also has a link to
node u.

Assumption 4 The maximum ratio of the first deriva-
tives of the link cost functions

max
(u,v),(k,l)∈L

D′
(u,v)/D′

(k,l)

is bounded. We let

B = max
(u,v),(k,l)∈L

D′
(u,v)/D′

(k,l)

And call B as the link upper bound.

Assumption 5 Each gateway group of the network
has at least one processor. For convenience, we as-
sume that each gateway group has exactly one pro-
cessor. More general cases that each gateway group
has more than on processor can be easily extended.
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Assumption 6 The maximum degree of the network is
bounded by a constant. Here, the degree is the number
of outgoing links from a node.

Assumption 7 Finite (or bounded) step1s of compu-
tations or transmissions associated with O(1) length
of data can be completed in O(1) time units.

Assumption 2, 3 and 5-7 are quite standard for
most data networks. Assumption 4 is also reasonable
since if D′

(u,v)/D′
(k,l) is unbounded, based on the gen-

eral premise of the link cost function, it implies some
link cost goes to infinity (since D′

(k,l) cannot be zero.)
The network is then in an abnormal condition, which
is beyond the scope of the thesis. However, a smaller
bound B will result in better performance of general
hierarchically data structure ORP algorithm.

4 Optimal routing algorithm
4.1 Reverse shortest path
In the process of finding the solution for the ORP,
there are two important steps of calculation, they are,
a) to find for the shortest path in each iteration , and
b) to adjust the path flow. We can compare the con-
ventional algorithms to our algorithm as shown in Fig.
3.

General algorithm for ORP [2],[13],[14] is shown
in Fig. 3.(A), the new HAD algorithm is shown in Fig.
3.(B) and in Fig. 3.(C) is our proposed algorithm.

The demand r(u,v) is to be distributed to smaller
parts such as r(u,v) = r(u,j) = r(j,k) = r(k,v) where
j is ancestor and k is gateway. As the consequence of
this distribution, the demand outside the local area is
taken into considerations in each iteration of the short-
est path calculation. This leads us to find the reverse
shortest path to locate the paths between commodities
outside the local area and the gateway or ancestor in-
side the local area which is a direct proportion to the
number of destination nodes outside the local area as
shown in Fig. 4(A). This enables us to find the shortest
path to the common destination via only a single cal-
culation for the reverse shortest path within the time
of O log(n) as shown in Fig. 4(B).

The process to find the reverse shortest path is
almost similar to the process for the shortest path as
shown in algorithm:

1: Initial: Let N = {dst}, for each j 6∈ N set
C(j) = d(j,i)

2: repeat
3: Choose j 6∈ N with minC(j)
4: Set N = N ∪ {j}
5: Update C(j): For all j ∈ N

set C(j) = min(C(j), C(i) + d(j,i))

Find the shortest path 
for each commodity

All commodity
Finish ?

Convergence ?

Start

End

Update the path flows

Find the SHORTEST 
for all the commoditys

Start

End

Update the path flows

Start

End

Update the path flows

comm.= 1

comm. = 1comm. = 1

comm. = 1

comm. = 1

comm.= 1

comm ++

Convergence ?

Convergence ?

Find the SHORTEST 

Find W        using

the Reverse Shortest 
share

share
Find W        using

sending shortest paths 

( B ) A New HAD Algorithm( A ) General Algorithm

( C )  Our Algorithm

Figure 3: A Comparison of general algorithm proce-
dure, A new HAD algorithm and our algorithm proce-
dure.

Destination
of all orgs

Org  1

Org  2

Org  3

Org  4

(A) Use time 4 log(n) 
for shortest path

Destination
of all orgs

Org  1

Org  2

Org  3

Org  4

(B) Use time log(n) for 

reverse shortest path

Figure 4: complexity revers shortest

WSEAS TRANSACTIONS on COMMUNICATIONS Prawat Chaiprapa, Sermsak Uatrongjit

1109-2742 475 Issue 5, Volume 7, May 2008



3

5

6

4

2

1
4

2

8

5

1
13

322

6

3

3

1

7
1

1

2

5

8

N={1}

3

5

6

4

2

1
4

2

8

5

1
13

322

6

3

3

1

7
1

1

2

5

8

N={1,2}

3

54

2

1
4

2

8

5

1
13

322

6

3

3

1

7
1

1

2

5

8

6

3

54

2

1
4

2

8

5

1
13

322

6

3

3

1

7
1

1

2

5

8

N={1,2,4,5}

6

3

5

6

4

2

0
4

2

8

5

1
13

322

6

3

3

1

7
1

1

2

5

8

N={1,2,4}

3

54

2

1
4

2

8

5

1
13

322

6

3

3

1

7
1

1

2

5

8

6

N={1,2,3,4,5} N={1,2,3,4,5,6}

C(6)=

C(2)=3 C(3)=8

C(5)=C(4)=7

C(1)=0

C(6)= 8

C(2)=2 C(3)=8

C(5)=C(4)=5

C(1)=0

C(6)=

C(2)=2 C(3)=8

C(5)=6C(4)=5

C(1)=0

C(6)=10

C(2)=2 C(3)=7

C(5)=6C(4)=5

C(1)=0

C(6)=10

C(2)=2 C(3)=7

C(5)=6C(4)=5

C(1)=0

C(6)=10

C(2)=2 C(3)=7

C(5)=6C(4)=5

C(1)=0

8

8
8

8

Figure 5: The Reverse Shortest Path Algorithm

6: until (all starting node ∈ N )
At the start of the process, let N = {dst} denote

the set of nodes in the network. The shortest paths are
then reversely calculated from the destination nodes
back to the original nodes as shown in Fig. 5.

Fig. 5 Example results from the application of the
Reverse Shortest Path algorithm.

Starting from the destination node 1, the method
finds the end nodes of the incoming links and then
calculates the cost of node 2, C(2) = 3 ,the cost of
node 3, C(3) = 8 and the cost of node 4, C(4) = 7.
Then the node with C(j) is selected, that is node 2.
Let i = 2 and place node 2 into the set of scan nodes,
N = {1, 2}. Starting from node 2, one updates the
cost of node 4, C(4) = 5. The operating process of
the Reverse Shortest Path algorithm stops when all the
considered nodes has been placed in N .

To understand the Reverse Shortest Path algo-
rithm, consider the following claims.

Proposition 7 Proposition 1: At the beginning of it-
eration,

1. C(i) ≤ C(j) for all i ∈ N and j 6∈ N

2. C(j) is, for all j , the shortest path from dst to
j using paths with all nodes in N . C(j) is, for
all j , the shortest path from dst to j using paths
with all nodes in N

If this proposition can be proved, then it can be
assumed that, when contains every node in then all are
shortest paths by the second part of this proposition.

Therefore proving the above proposition is equivalent
to prove the Reverse Shortest Path algorithm.

Proof: The proposition is trivially true at the first
step since N consists only of the single destination
node (node dest) and C(dst) = 0 for j = dst
,d(j,i) ≥ 0 for nodes reachable directly from node dst,
and ∞ otherwise. The first condition is simply shown
to be satisfied since it is preserved by the formula,

C(j) = min
[
C(j), C(i) + d(j,i)

]
(22)

which is applied to all j 6∈ N when node i is
added to set N . We show the second condition by
induction. We have established already that it is true
at the very start of the algorithm. Next, let assume
that it is true for the beginning of some iteration of the
algorithm. It will be shown that the proposition must
be true at the beginning of next iteration. Let node i
be the node added to set N and let Ck be the label of
node k at the beginning of the step. The second con-
dition must, therefore, hold for node j = i (the new
added node) by the hypothesis. It must also hold for
all nodes j ∈ N by part one of the proposition which
is already proven. It remains to prove that the second
condition of proposition is met for j 6∈ N ∪ {i} .

Consider a path from dst to j which is the short-
est amongst those with all nodes except j in N ∪ {i}
and let C ′

j be the corresponding shortest cost. Such
a path must contain a path from dst to some node
r ∈ N ∪ {i} and l(r,j) . We have already established
that the length of the path form dst to r must be Cr

and therefore:

C ′(j) = min
[
C(r), C(i) + d(j,r)

]
,

= min
[
min
r∈N

[C(r) + d(r,j)], C(i) + d(j,i)

]
.

However, since C(j) = min[C(r), C(i)+d(j,r)],
therefore,

C ′(j) = min
[
C(j), C(i) + d(j,i)

]
. (23)

which is exactly what is set by the third step of the
algorithm. Thus, after any iteration of the algorithm,
the second part of the proposition is true if it is true
at the beginning of the iteration. Thus the proof by
induction is completed.

The comparison between the Reverse Shortest
Path algorithm and other shortest path algorithms has
been carried on by comparing the operation results
from using each algorithm to find the shortest paths
from the source nodes 3, 5, 6 to the destination node
1 in Fig. 6(A,B,C). For the operations using the Dijk-
stra’s algorithm or the Bellman-Ford’s algorithm, the
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Figure 6: comparison of general shortest path and Re-
verse Shortest Path

shortest path calculation has to be done three times to
find the shortest path from 3 to 1, from 5 to 1, and from
6 to 1, with the consumed time of |V ||L|when V is set
of node and L is the set of links l(i,j). But, for the op-
eration using the Reverse Shortest Path algorithm, the
task can be accomplished within only one calculation
with the time complexity of O(log(n)). The results
from Reverse Shortest Path algorithm in Fig. 6(D).

In [1], a scheme of the SHORTEST PATH algo-
rithm was proposed by carrying on the shortest path
calculations in parallel along the local area. Each lo-
cal area has m(`, i) commodities with ` the layer of
subnetwork, i the sequence of b` local area. The par-
allel shortest path was carried on local area with the
number of commodities of

m = max
1`l≤L;1≤i≤bi

m(`, i) (24)

In this research, we proposed Reverse Shortest
Path algorithm in order to find the shortest path from
all destinations to origin gateway of local area, the
number of gateway per local area is 1, time spent in
calculation of the shortest path becomes (O log(n))
as shown in the flowchart in Fig. 3(C).

In our algorithm, the reactions from demands of
commodities outside the local area for using in reverse
shortest path procedure, this algorithm decrees inter-
change message among processor.

Step 1. Initialization: find a feasible solution for the
routing problem

Step 2. while (termination condition is not satisfied)

Step 2.1 call SHORTESTPATH

Step 2.2 call rev shortest by origin is ances-
tor/gateway, destination is origin from re-
actions, then find nlw(k).

Step 2.3 Adjust path flow for each path.
Step 2.4 check the termination condition

End of while.

In the initialization of step 2, a feasible solution
can be obtained from the SHORTEST PATH with dis-
tributed flow demand through the calculation of the
minimum hop distance for each commodity together
with the resulting commodities from the flow demand
distribution. The path flow for each shortest path
should not exceed the link capacity. In case of larger
path flow, the flow demand has to be divided and then
run the SHORTES TPATH with distribute demand to
find the shortest path for flow demand. This step can
be finished within O((m) log(n)) time units. Substep
2.1 takes the time of O(m) log(n) Substep 2.2 takes
the time of O(log(n)) time. Substep 2.3 takes the time
of O(m log(n)) units. Step 2.4, the terminal condition
is tested for every process takes the time of O(log(n)).

5 Test results
The test run on the proposed algorithm has been per-
formed by simulating the network using 20 Personal
computer with 2.4 GHz processor 256 MB SDRAM .
Each PC was programmed to solve the ORP for each
local area with the network structure as shown in Fig.
7 with 200 nodes structured into 3 layers. The simu-
lation was carried on using the Monte Carlo simula-
tion scheme . Test results ware then compared to the
test-run results for the New HAD algorithm [1] on the
same network simulation and the same link of 10K
packets/sec with the packet average of 64 bytes. K
packets/sec giving the cost function for the linkl(u,v)

as in Equ.(25)

D(u,v)(F(u,v)) =
F(u,v)

C(u,v) − F(u,v)
(25)

The queuing model used in the test is the M/M/1
queuing model with C(u,v) and F(u,v) as the link ca-
pacity and link flow of the same unit of link from node
u to node v. The test on the proposed algorithm was
carried on using the Monte Carlo pattern as concluded
[1] in Table 1 and Table 2.

The 200 nodes in the test networks are divided
into 20 clusters of basic networks. For each basic net-
work, one processor is programmed to solve the ORP
for the commodities in each basic network The whole
test system needs 20 processors . Each basic network
has the ancestor to work as the gateway of layer 0 ,
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Figure 7: Network example

the basic networks with the same gateway are then
grouped together called the local area so that each lo-
cal area has one gateway. The test network has three
local areas and three gateways, where all the gateways
are in layer 2 with the fixed relaxation parameter of
1. Test algorithm has been developed using C on the
operating system Linux with the fixed relaxation pa-
rameter of γk = γk

w = 1 and the error condition of
ε = 0.1. Test results as shown in Table 3 and Ta-
ble 4 show that our proposed algorithm give a better
speed than the compared algorithm. Our algorithm
also helps to reduce the communication time between
processors.

6 Conclusion

In this paper, we present a new algorithm to reduce the
steps in New HAD optimal routing algorithm for large
networks by the distribution of demands and solve
the shortest path problems with the Reversed Short-
est Path method which enables the ORP processes for
large hierarchically structured networks calculations
of a large Hessian matrix. This proposed algorithm
gives a better speed than other algorithms that use the
multi-commodity hierarchically structured networks
technique. The proposed algorithm has been tested
with an example hierarchically structured network
with 200 nodes.
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Pat #comm. Dist of # of comm. against diff MHD
tern gen. tmhdi

1 2 3 4 5 6 7 8 9 >10
1 101 30 15 14 10 7 6 7 5 5 2
2 99 #of 28 15 13 10 8 7 5 6 3 4
3 100 com 31 14 13 11 9 9 5 4 3 1
4 102 OD 31 20 10 12 10 5 4 5 4 3
5 104 32 18 14 10 10 10 4 3 2 1

Table 1: The Statistics of five patterns of the com-
modities generated by Scheme 1.

Pat # comm. Dist of # of comm. against diff MHD
tern gen. tmhdi 1 2 3 4 5 6 7 8 9 >10

6 101 8 9 11 16 15 11 11 7 7 7
7 99 #of 7 11 12 12 12 8 11 12 8 7
8 100 com 5 12 15 14 15 7 7 11 12 9
9 102 OD 5 6 13 12 12 10 10 11 11 5

10 104 7 15 18 14 10 15 5 5 9 5

Table 2: The Statistics of five patterns of the com-
modities generated by Scheme 2.

New HAD algorithm Our algorithm Speedup Cost
Parallel Parallel New HADerror
Runtime Cost Runtime Cost vs OUR %

9.50 73.2 8.01 73.2 1.19 0
8.30 74.5 6.80 74.5 1.22 0
8.61 73.2 7.40 73.2 1.16 0

10.82 79.7 8.8 79.7 1.30 0
10.24 72.5 8.67 72.5 1.18 0

Table 3: The test results of pattern 1∼5.

New HAD algorithm Our algorithm Speedup Cost
Parallel Parallel New HADerror
Runtime Cost Runtime Cost vs OUR %

19.1 83.2 15.60 83.2 1.22 0
19.5 82.2 16.38 82.2 1.19 0

20.15 84.5 17.63 84.5 1.14 0
20.0 80.7 17.0 80.7 1.18 0
24.6 80.0 20.17 80 1.22 0

Table 4: The test results of pattern 6∼10.
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