
A Perfect QoS Routing Algorithm for Finding the Best Path for
Dynamic Networks

Hazem M. El-Bakry

Faculty of Computer Science & Information
Systems,

Mansoura University, EGYPT
helbakry20@yahoo.com

Nikos Mastorakis

Dept. of Computer Science
Military Institutions of University Education

(MIUE) - Hellenic Academy, Greece

Abstract :- It is highly desirable to protect data traffic from unexpected changes as well as provide
effective network utilization in the internetworking era. In this paper the QoS management issue that
utilizing the active network technology is discussed. Such algorithm is based on the proposed work
presented in [15]. Active networks seem to be particularly useful in the context of QoS support. The
Active QoS Routing (AQR) algorithm which is based on On-demand routing is implemented
incorporating the product of available bit rate and delay for finding the best path for dynamic networks
using the active network test bed ANTS. It is inferred that with background traffic, the AQR finds
alternative paths very quickly and the delay and subsequently the jitter involved are reduced
significantly. In this paper the variant of AQR implemented is demonstrated to be more useful in
reducing the jitter when the overall traffic in the network is heavy and has useful application in finding
effective QoS routing in ad-hoc networks as well as defending DDoS attacks by identifying the attack
traffic path using QoS regulations. The main achievement of this paper is the fast attack detection
algorithm. Such algorithm based on performing cross correlation in the frequency domain between
data traffic and the input weights of fast time delay neural networks (FTDNNs). It is proved
mathematically and practically that the number of computation steps required for the presented
FTDNNs is less than that needed by conventional time delay neural networks (CTDNNs). Simulation
results using MATLAB confirm the theoretical computations.

Keywords:- Routing Algorithm, Data Protection, Best Path, Dynamic Networks, Fast Attack
Detection, Neural Networks

1 Introduction
The widespread growth of the Internet and the
development of streaming applications directed
the Internet society to focus on the design and
development of architectures and protocols that
would provide the requested level of Quality of
Service (QoS) [15-26]. QoS is an intuitive concept
defined as “the collective effect of the service
performance which determines the degree of
satisfaction of a user of the service” or “a measure
of how good a service is, as presented to the user.
It is expressed in user understandable language
and manifests itself in a number of parameters, all
of which have either subjective or objective
values”.

The goal of AN is to support customized protocol
mechanisms that can be introduced in a network.
Differences in known AN approaches concern,

e.g., the question of whether remote applications
should be able to download protocol mechanisms
to a node (router) or whether this right should be
reserved to the operators of nodes, and the
question of whether the code for these
mechanisms should be carried as an additional
payload by the data packets in transit or whether
shipping and installing such code should be
separated from the issue of data transfer.
Simulation results of this paper are compared with
the results presented in [15] and high
improvement in the QoS parameter jitter is
appreciated when applied on active network with
slight modifications in the application of the
proposed algorithm.

In addition, the main objective of this paper is to
improve the speed of time delay neural networks
for fast attack detection. The purpose is to

WSEAS TRANSACTIONS on COMMUNICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2742 1123 Issue 12, Volume 7, December 2008

perform the testing process in the frequency
domain instead of the time domain. This approach
was successfully applied for sub-image detection
using fast neural networks (FNNs) as proposed in
[1,2,3]. Furthermore, it was used for fast face
detection [7,9], and fast iris detection [8]. Another
idea to further increase the speed of FNNs through
image decomposition was suggested in [7]. FNNs
for detecting a certain code in one dimensional
serial stream of sequential data were described in
[4,5]. Compared with conventional neural
networks, FNNs based on cross correlation
between the tested data and the input weights of
neural networks in the frequency domain showed
a significant reduction in the number of
computation steps required for certain data
detection [1,2,3,4,5,7,8,9,11,12]. Here, we make
use of the previous theory on FNNs implemented
in the frequency domain to increase the speed of
time delay neural networks for fast attack
detection.

2 QoS Routing
Active Networks (AN) is a framework where
network elements, essentially routers and switches
are programmable. Programs that are injected into
the network are executed by the network elements
to achieve higher flexibility and to present new
capabilities. With the help of AN programs can be
injected in to the network and executed with in the
network itself without involving the end systems.
QoS routing is a term used for routing
mechanisms which consider QoS. It suffers from
the static nature of networking today. QoS routing
is bound to the use of common metrics and
procedures which usually rely on distributed
network performance data (increasing network
traffic) and sophisticated algorithms (increasing
the processor load on routers) but usually yield
considerable improvements only for certain
classes of applications. In [16], the authors used
randomness at the link level to achieve balance
between the safety rate and delay of the routing
path.

A) QOS SUPPORT IN ACTIVE NETWORKS

Possible utilizations of AN to support QoS
roughly fall into the following categories [15]:
1. Mechanisms which transfer application layer
functionality into the network:

2. Mechanisms which are usually associated with
layers 3 or 4: AQR mechanism falls in this
category.
3. Mechanisms which rely on non-active QoS
provisioning mechanisms: Here, AN are merely
used to add greater flexibility to the specification
of a QoS request.

B) AQR OPERATION
AQR is an on demand based QoS routing
algorithm. The AQR algorithm can be described
as follows as in [15].
1. The AQR sender calculates all non-cyclic paths
to the destination from the link state routing table.
2. A probing packet carrying the QoS
requirements, code for QoS calculation, the sender
and receiver’s addresses and a list of visited nodes
is sent to each first hop of these paths.
3. Upon receiving an AQR probing packet, an
AQR compliant transit node executes the AA
code (contained in the packet or cached), which
· checks if the minimum QoS requirements found
in the packet can be met (if a threshold say a
maximum delay is exceeded, the packet is
dropped),
· compares and updates the QoS data,
adds itself to the list of already visited nodes,
· Executes the code of the AQR sender, starting at
step 2 — except that no probing packets are sent
to the source or to any other already visited node
(packets are multicast in the proper direction at
each AQR-compliant transit node).
4. Only packets which conform to the minimum
QoS requirements reach the AQR receiver, where
a list of valid paths is generated. After a
predefined period, the best path is chosen and
communicated to the sender. If there is more than
one best path, the traffic is split among the best
paths.

C) DESIGN CONSIDERATIONS

The resources used are network bandwidth and
CPU cycles to load the network. The system
assumes overlay mode of deploying active code in
network. The security issues are taken care of by
the ANTS system itself For AQR, these
parameters are delay and available bandwidth. For
each of these parameters, a channel is given the
properties of the underlying network .The overall
flow is depicted as follows.

WSEAS TRANSACTIONS on COMMUNICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2742 1124 Issue 12, Volume 7, December 2008

There are three important modules in the system.
They are Application, Protocol and capsule
modules. The application module consists of
Router, Sender, Receiver sub modules. The
capsule module consists of DataCapsule,
Probecapsule and Replycapsule sub modules.

3 Implementation Details
The proposed AQR algorithm is implemented for
the sample network topology shown below. In
ANTS, the network topology is configured. The
topology used is shown below. The routing
protocol is implemented using the ANTS toolkit.
ANTS is an EE running over the node OS Janos.
The protocol is implemented as an active
application that runs on each of the nodes of the
network. In ANTS, there are three special classes
to create capsules, protocols and active
applications. The detailed information about
ANTS is provided in [8].A new protocol is
developed by sub classing the virtual class
Protocol. This requires identifying all of the
different types of packet that will enter the
network by their different forwarding routines.
Each type of packet and its forwarding routine is
specified by sub classing the virtual class Capsule.
· A new application is developed by sub classing
the virtual class Application.
· An instance of the class Node represents the
local ants runtime.
· A new protocol and application are used by
creating instances of their classes and attaching
them to node. The application is connected to the
node in order to send and receive capsules from
the network.
· The protocol is registered with the node in order
for the network to be able to obtain its code when
it is needed.

This model allows customization by the network
users assuming that a network of active nodes
already exists and is up and running. The active
nodes, however, will often be part of the system
under study, particularly for experimentation with
different topologies, application workloads, and
node services. For these purposes, ANTS provides
two facilities:

· Configuration tools allow a network topology

complete with applications to be managed. This
includes the calculation of routes and the
initialization of local node configurations.

· A node extension architecture allows different
nodes to support different service components,
e.g., multicast, caching, trans coding, etc., as
appropriate. Extensions are developed by sub
classing the virtual class Extension.

The Protocol class is extended to form the AQR
Protocol class. There are three capsules – Probe
Capsule, Reply Capsule and AQR Data Capsule.
These capsules form the protocol itself.

A) Capsule Types

A capsule is a combination of a packet and its
forwarding routine; the forwarding routine is
executed at every active node the capsule visits
while in the network. New types of capsule, with
different forwarding routines, are developed by
sub classing the virtual class Capsule. The capsule
starts with the sequence id of the data capsule.
Then the timestamp of when the capsule is sent is
stored. Then some flags and index values are
stored. The path index is the pointer to the next
node to reach. The path valid is a flag that is set
true when the capsule carries a path to travel.
Otherwise default shortest path is used to reach
the destination. There is another flag, aqrFlag
which is set to differentiate between capsules sent
using AQR and capsules sent using SPR. Finally
the path to travel is stored.

The active code of this capsule is the forwarding
routine to guide the capsule to the destination. It
checks for the pathValid flag and if set uses the
path in the capsule to travel. Otherwise shortest
path is used to forward the capsule to the
destination. For valid path, the next node is
obtained from the path stored using the path index
pointer. The data capsule is then forwarded to this
node. Once the nodes in the path stored get over,
it indicates that the capsule has reached the
destination. The capsule is then delivered to the
receiver application.

B) Application

WSEAS TRANSACTIONS on COMMUNICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2742 1125 Issue 12, Volume 7, December 2008

Applications are the entities that make use of the
network to send and receive capsules as well as
run independent activities. New applications are
developed by sub classing the virtual class
Application. It provides access to the node and its
services.

C) Other modules

The data traffic is generated by a thread AQR
Data Sender. It is run on the sender node. This
data traffic is received by another application on
the receiver node, AQR Data Receiver. There are
also other utility classes.

4 Configuration
Experimenting with an active network requires
that a network topology and ANTS provides some
tools and infrastructure conventions to automate
this process. First, entire network configurations,
node addresses, applications and all initialization
parameters are specified text files that are read by
Configuration Manager Class to start one of its
nodes locally. This includes creating the node
runtime, applications, and extensions, connecting
them to each other, and starting their operation.

A) Performance Analysis
The algorithm is run under various test scenarios
and the test results are presented in this section.
The QoS performance is analyzed for data traffic
with and without background traffic .TG is a
packet Traffic Generator (TG) tool that can be
used to characterize the performance of packet-
switched network communication protocols. The
TG program generates and receives one-way
packet traffic streams transmitted from the UNIX
user level process between traffic source and
traffic sink nodes in a network. TG is used for
generating the background traffic. The TG serving
as the traffic source always logs datagram
transmit times. This mode of operation may be
useful for analyzing network blocking
characteristics or for loading a network. The TG
serving as a traffic sink logs all received data
grams. The behavior of the protocol is analyzed
after the intermediate routers are loaded to make
the default shortest path congested. For the same
topology the shortest path routing is tested. Two
applications are run on the source and destination
nodes. The active code in the capsule is used to

route the capsule through the shortest path. The
delay changes and the routes taken are recorded
and analyzed.

B) Performance analysis without background
traffic
In this test run, the data capsules of length 100
bytes are used to test the protocol. No background
traffic is used to load the shortest path. Instead the
routers along the shortest path are loaded to
increase the delay along the shortest path. In this
scenario the test is run and the results shown
below. The delay values are relative and are not
exact with respect to the sender in all the data
presented.

C) Performance analysis with background
traffic type 1
In this test run, the data capsules of length 100
bytes are used to test the protocol. Also
background traffic is introduced along the shortest
path to increase the delay along the shortest path.
The traffic is introduced using the tool TG. The
background traffic is udp. Packets of length 500
bytes at a rate of 100Mbps are used for the traffic.

5 Fast Attack Detection using Neural
Networks

Finding a certain attack, in the incoming serial
data, is a searching problem. First neural networks
are trained to classify attack from non attack
examples and this is done in time domain. In
attack detection phase, each position in the
incoming matrix is tested for presence or absence
of an attack. At each position in the input one
dimensional matrix, each sub-matrix is multiplied
by a window of weights, which has the same size
as the sub-matrix. The outputs of neurons in the
hidden layer are multiplied by the weights of the
output layer. When the final output is high, this
means that the sub-matrix under test contains an
attack and vice versa. Thus, we may conclude that
this searching problem is a cross correlation
between the incoming serial data and the weights
of neurons in the hidden layer.

The convolution theorem in mathematical analysis
says that a convolution of f with h is identical to
the result of the following steps: let F and H be

WSEAS TRANSACTIONS on COMMUNICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2742 1126 Issue 12, Volume 7, December 2008

the results of the Fourier Transformation of f and
h in the frequency domain. Multiply F and H* in
the frequency domain point by point and then
transform this product into the spatial domain via
the inverse Fourier Transform. As a result, these
cross correlations can be represented by a product
in the frequency domain. Thus, by using cross
correlation in the frequency domain, speed up in
an order of magnitude can be achieved during the
detection process [1,2,3,4,5,7,8,9,14]. Assume
that the size of the attack code is 1xn. In attack
detection phase, a sub matrix I of size 1xn (sliding
window) is extracted from the tested matrix,
which has a size of 1xN. Such sub matrix, which
may be an attack code, is fed to the neural
network. Let Wi be the matrix of weights between
the input sub-matrix and the hidden layer. This
vector has a size of 1xn and can be represented as
1xn matrix. The output of hidden neurons h(i) can
be calculated as follows:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+∑

=
= ib(k)I(k)

n

1k iWgih (1)

where g is the activation function and b(i) is the
bias of each hidden neuron (i). Equation 1
represents the output of each hidden neuron for a
particular sub-matrix I. It can be obtained to the
whole input matrix Z as follows:

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
∑
−=

++=
n/2

n/2k i bk) Z(uk)(iWg(u)ih (2)

Eq.2 represents a cross correlation operation.
Given any two functions f and d, their cross
correlation can be obtained by:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
∞

∞−=
+=⊗

n
n)d(n)f(xf(x)d(x) (3)

Therefore, Eq. 2 may be written as follows [1]:
()ibZiWgih +⊗= (4)

where hi is the output of the hidden neuron (i) and
hi (u) is the activity of the hidden unit (i) when the
sliding window is located at position (u) and (u) ∈
[N-n+1].

Now, the above cross correlation can be expressed
in terms of one dimensional Fast Fourier
Transform as follows [1]:

() ((iW*FZF1FZiW •−=⊗

Hence, by evaluating this cross correlation, a
speed up ratio can be obtained comparable to
conventional neural networks. Also, the final
output of the neural network can be evaluated as
follows:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
=

+=
q

1i
ob)u(ih (i)oWgO(u) (6)

where q is the number of neurons in the hidden
layer. O(u) is the output of the neural network
when the sliding window located at the position
(u) in the input matrix Z. Wo is the weight matrix
between hidden and output layer.
The complexity of cross correlation in the
frequency domain can be analyzed as follows:
1- For a tested matrix of 1xN elements, the 1D-
FFT requires a number equal to Nlog2N of
complex computation steps [13]. Also, the same
number of complex computation steps is required
for computing the 1D-FFT of the weight matrix at
each neuron in the hidden layer.
2- At each neuron in the hidden layer, the inverse
1D-FFT is computed. Therefore, q backward and
(1+q) forward transforms have to be computed.
Therefore, for a given matrix under test, the total
number of operations required to compute the 1D-
FFT is (2q+1)Nlog2N.

3- The number of computation steps required by
FTDNNs is complex and must be converted into a
real version. It is known that, the one dimensional
Fast Fourier Transform requires (N/2)log2N

complex multiplications and Nlog2N complex
additions [13]. Every complex multiplication is
realized by six real floating point operations and
every complex addition is implemented by two
real floating point operations. Therefore, the total
number of computation steps required to obtain
the 1D-FFT of a 1xN matrix is:

ρ=6((N/2)log2N) + 2(Nlog2N) (7)

which may be simplified to:

ρ=5Nlog2N (8)

)) (5)

4- Both the input and the weight matrices should
be dot multiplied in the frequency domain. Thus, a
number of complex computation steps equal to qN
should be considered. This means 6qN real
operations will be added to the number of
computation steps required by FTDNNs.

WSEAS TRANSACTIONS on COMMUNICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2742 1127 Issue 12, Volume 7, December 2008

5- In order to perform cross correlation in the
frequency domain, the weight matrix must be
extended to have the same size as the input
matrix. So, a number of zeros = (N-n) must be
added to the weight matrix. This requires a total
real number of computation steps = q(N-n) for all
neurons. Moreover, after computing the FFT for
the weight matrix, the conjugate of this matrix
must be obtained. As a result, a real number of
computation steps = qN should be added in order
to obtain the conjugate of the weight matrix for all
neurons. Also, a number of real computation
steps equal to N is required to create butterflies
complex numbers (e-jk(2Πn/N)), where 0<K<L.
These (N/2) complex numbers are multiplied by
the elements of the input matrix or by previous
complex numbers during the computation of FFT.
To create a complex number requires two real
floating point operations. Thus, the total number
of computation steps required for FTDNNs
becomes:

σ=(2q+1)(5Nlog2N) +6qN+q(N-n)+qN+N (9)
which can be reformulated as:
 σ=(2q+1)(5Nlog2N)+q(8N-n)+N (10)

6- Using sliding window of size 1xn for the same
matrix of 1xN pixels, q(2n-1)(N-n+1)
computation steps are required when using
CTDNNs for certain attack detection or
processing (n) input data. The theoretical speed up
factor η can be evaluated as follows:

 N n)-q(8N N) 1)(5Nlog(2q
 1)n-1)(N-q(2n

2 +++
+

=η (11)

CTDNNs and FTDNNs are shown in Figures 6
and 7 respectively.

Time delay neural networks accept serial input
data with fixed size (n). Therefore, the number of
input neurons equals to (n). Instead of treating (n)
inputs, the proposed new approach is to collect all
the incoming data together in a long vector (for
example 100xn). Then the input data is tested by
time delay neural networks as a single pattern
with length L (L=100xn). Such a test is performed
in the frequency domain as described in section II.
The combined attack in the incoming data may
have real or complex values in a form of one or
two dimensional array. Complex-valued neural
networks have many applications in fields dealing

with complex numbers such as
telecommunications, speech recognition and
image processing with the Fourier Transform
[6,10]. Complex-valued neural networks mean
that the inputs, weights, thresholds and the
activation function have complex values. In this
section, formulas for the speed up ratio with
different types of inputs (real /complex) will be
presented. Also, the speed up ratio in case of a one
and two dimensional incoming input matrix will
be concluded. The operation of FTDNNs depends
on computing the Fast Fourier Transform for both
the input and weight matrices and obtaining the
resulting two matrices. After performing dot
multiplication for the resulting two matrices in the
frequency domain, the Inverse Fast Fourier
Transform is determined for the final matrix.
Here, there is an excellent advantage with
FTDNNs that should be mentioned. The Fast
Fourier Transform is already dealing with
complex numbers, so there is no change in the
number of computation steps required for
FTDNNs. Therefore, the speed up ratio in case of
complex-valued time delay neural networks can
be evaluated as follows:

1) In case of real inputs

A) For a one dimensional input matrix
Multiplication of (n) complex-valued weights by
(n) real inputs requires (2n) real operations. This
produces (n) real numbers and (n) imaginary
numbers. The addition of these numbers requires
(2n-2) real operations. The multiplication and
addition operations are repeated (N-n+1) for all
possible sub matrices in the incoming input
matrix. In addition, all of these procedures are
repeated at each neuron in the hidden layer.
Therefore, the number of computation steps
required by conventional neural networks can be
calculated as:

θ=2q(2n-1)(N-n+1) (12)
The speed up ratio in this case can be computed as
follows:

 N n)-q(8N N) 1)(5Nlog(2q

 1)n-1)(N-2q(2n

2 +++
+

=η (13)

Practical speed up ratio for searching short
successive (n) data in a long input vector (L)
using complex-valued time delay neural networks

WSEAS TRANSACTIONS on COMMUNICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2742 1128 Issue 12, Volume 7, December 2008

is shown in Figure 8. This has beed performed by
using a 700 MHz processor and MATLAB.

B) For a two dimensional input matrix
Multiplication of (n2) complex-valued weights by
(n2) real inputs requires (2n2) real operations. This
produces (n2) real numbers and (n2) imaginary
numbers. The addition of these numbers requires
(2n2-2) real operations. The multiplication and
addition operations are repeated (N-n+1)2 for all
possible sub matrices in the incoming input
matrix. In addition, all of these procedures are
repeated at each neuron in the hidden layer.
Therefore, the number of computation steps
required by conventional neural networks can be
calculated as:

θ=2q(2n2-1)(N-n+1) 2 (14)

The speed up ratio in this case can be computed as
follows:

 N)n-q(8N)N log1)(5N(2q

 1)n-1)(N-2q(2n
222

2
2

22

+++
+

=η (15)

Practical speed up ratio for detecting (nxn) real
valued submatrix in a large real valued matrix
(NxN) using complex-valued time delay neural
networks is shown in Fig. 9. This has beed
performed by using a 700 MHz processor and
MATLAB.

2) In case of complex inputs

A) For a one dimensional input matrix
Multiplication of (n) complex-valued weights by
(n) complex inputs requires (6n) real operations.
This produces (n) real numbers and (n) imaginary
numbers. The addition of these numbers requires
(2n-2) real operations. Therefore, the number of
computation steps required by conventional neural
networks can be calculated as:

θ=2q(4n-1)(N-n+1) (16)

The speed up ratio in this case can be computed as
follows:

 N n)-q(8N N) 1)(5Nlog(2q

 1)n-1)(N-2q(4n

2 +++
+

=η (17)

Practical speed up ratio for searching short
complex successive (n) data in a long complex-
valued input vector (L) using complex-valued
time delay neural networks is shown in Fig. 10.

This has beed performed by using a 700 MHz
processor and MATLAB.

B) For a two dimensional input matrix
Multiplication of (n2) complex-valued weights by
(n2) real inputs requires (6n2) real operations. This
produces (n2) real numbers and (n2) imaginary
numbers. The addition of these numbers requires
(2n2-2) real operations. Therefore, the number of
computation steps required by conventional neural
networks can be calculated as:

θ=2q(4n2-1)(N-n+1)2 (18)

The speed up ratio in this case can be computed as
follows:

 N)n-q(8N)N log1)(5N(2q
 1)n-1)(N-2q(4n

222
2

2

22

+++
+

=η (19)

Practical speed up ratio for detecting (nxn)
complex-valued submatrix in a large complex-
valued matrix (NxN) using complex-valued neural
networks is shown in Fig. 11. This has beed
performed by using a 700 MHz processor and
MATLAB.

An interesting point is that the memory capacity is
reduced when using FTDNN. This is because the
number of variables is reduced compared with
CTDNN. The neural algorithm presented here can
be inserted very easily in any Anti-Attack
gateway software.

6. Conclusion
The AQR protocol is implemented using ANTS
and the performance of the AQR algorithm is
analyzed. It is inferred that with background
traffic, the AQR finds alternative paths quickly. It
reduces the delay and subsequently reduces the
jitter involved. The variant of AQR using the
product of available bit rate and delay for finding
the best path is useful in reducing the jitter where
the overall traffic in the network is heavy. It helps
to maintain the jitter in networks with more bursty
traffic. It is also inferred that the performance of
AQR is better than that of SPR in both cases.
Performance is analyzed for various traffic
classes. The probe capsules are sent along each
path from the source to the destination to find the
best path. By tuning the probing frequency to an
optimal value, the traffic caused by the probe

WSEAS TRANSACTIONS on COMMUNICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2742 1129 Issue 12, Volume 7, December 2008

capsules can be reduced. Comparing with the data
traffic, probe capsules are small in number. The
topology should be known by all nodes to find the
best path. In this paper dynamic topology is
considered and flooding is used to find the best
path. This finds application in finding effective
QoS routing in ad-hoc networks as well as
defending DDoS attacks by identifying the attack
traffic path using QoS regulations. The flooding
overhead involved is unavoidable and some pay
off measures need to be identified. It is also
proposed to choose the best path based on error
rate so that the loss of probe capsules can also be
taken into consideration. A new approach for fast
attack detection has been presented. Such strategy
has been realized by using a new design for time
delay neural networks. Theoretical computations
have shown that FTDNNs require fewer
computation steps than conventional ones. This
has been achieved by applying cross correlation in
the frequency domain between the incoming serial
data and the input weights of time delay neural
networks. Simulation results have confirmed this
proof by using MATLAB. Furthermore, the
memory complexity has been reduced when using
the fast neural algorithm. In addition, this
algorithm can be combined in any Anti-attack
gateway software.

References:
[1] H. M. El-Bakry, and Q. Zhao, “A Modified

Cross Correlation in the Frequency Domain for
Fast Pattern Detection Using Neural
Networks,” International Journal of Signal
Processing, vol.1, no.3, pp. 188-194, 2004.

[2] H. M. El-Bakry, and Q. Zhao, “Fast
Object/Face Detection Using Neural Networks
and Fast Fourier Transform,” International
Journal of Signal Processing, vol.1, no.3, pp.
182-187, 2004.

[3] H. M. El-Bakry, and Q. Zhao, “Fast Pattern
Detection Using Normalized Neural Networks
and Cross Correlation in the Frequency
Domain,” EURASIP Journal on Applied
Signal Processing, Special Issue on Advances
in Intelligent Vision Systems: Methods and
Applications—Part I, vol. 2005, no. 13, 1
August 2005, pp. 2054-2060.

 [4] H. M. El-Bakry, and Q. Zhao, “A Fast Neural
Algorithm for Serial Code Detection in a
Stream of Sequential Data,” International

Journal of Information Technology, vol.2,
no.1, pp. 71-90, 2005.

[5] H. M. El-Bakry, and H. Stoyan, “FNNs for
Code Detection in Sequential Data Using
Neural Networks for Communication
Applications, ” Proc. of the First International
Conference on Cybernetics and Information
Technologies, Systems and Applications:
CITSA 2004, 21-25 July, 2004. Orlando,
Florida, USA, Vol. IV, pp. 150-153.

[6] A. Hirose, “Complex-Valued Neural Networks
Theories and Applications”, Series on
innovative Intellegence, vol.5. Nov. 2003.

[7] H. M. El-Bakry, “Face detection using fast
neural networks and image decomposition,”
Neurocomputing Journal, vol. 48, 2002, pp.
1039-1046.

[8] H. M. El-Bakry, “Human Iris Detection Using
Fast Cooperative Modular Neural Nets and
Image Decomposition,” Machine Graphics &
Vision Journal (MG&V), vol. 11, no. 4, 2002,
pp. 498-512.

[9] H. M. El-Bakry, “Automatic Human Face
Recognition Using Modular Neural
Networks,” Machine Graphics & Vision
Journal (MG&V), vol. 10, no. 1, 2001, pp. 47-
73.

[10] S. Jankowski, A. Lozowski, M. Zurada, “
Complex-valued Multistate Neural Associative
Memory,” IEEE Trans. on Neural Networks,
vol.7, 1996, pp.1491-1496.

[11] H. M. El-Bakry, and Q. Zhao, “Fast Pattern
Detection Using Neural Networks Realized in
Frequency Domain,” Proc. of the International
Conference on Pattern Recognition and
Computer Vision, The Second World
Enformatika Congress WEC'05, Istanbul,
Turkey, 25-27 Feb., 2005, pp. 89-92.

[12] H. M. El-Bakry, and Q. Zhao, “Sub-Image
Detection Using Fast Neural Processors and
Image Decomposition,” Proc. of the
International Conference on Pattern
Recognition and Computer Vision, The
Second World Enformatika Congress WEC'05,
Istanbul, Turkey, 25-27 Feb., 2005, pp. 85-88.

[13] J. W. Cooley, and J. W. Tukey, "An
algorithm for the machine calculation of
complex Fourier series," Math. Comput. 19,
297–301 (1965).

WSEAS TRANSACTIONS on COMMUNICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2742 1130 Issue 12, Volume 7, December 2008

[14] R. Klette, and Zamperon, "Handbook of
image processing operators, " John Wiley &
Sonsltd, 1996.

[15] Michael Welzl, Alfred Cihal, Max
Mühlhäuser, “An Approach to Flexible QoS
Routing with Active Networks”, Proceedings
of the Fourth Annual International Workshop
on Active Middleware Services (AMS’02),
2002.

[16] Wang Jianxin, Wang Weiping, Chen
Jian'er, Chen Songqiao.” A randomized QoS
routing algorithm on networks with inaccurate
link-state information”, Proc. the 16th World
Computer Conference, International
Conference of Communication Technology,
Beijing, Aug., 2000, pp.1617-1622.

[17] Stavros Vrontis, Irene Sygkouna, Maria
Chantzara and Eystathios Sykas, “Enabling
Distributed QoS Management utilizing Active
Network technology”, National Technical
University of Athens.

[18] David J. Wetherall, John V. Guttag and
David L. Tennenhouse, “ANTS: A Toolkit for
Building and Dynamically Deploying
Networks Protocols”, Software Devices and
Systems Group, Laboratory for Computer
Science, Massachusetts Institute of
Technology, April 1998.

[19] Juraj Sucík, Ing. František Jakab,
“Measurement and Evaluation of Quality of
Service Parameters in Computer Networks”,
Department of Computers and Informatics,
Technical University of Košice, Letná 9, 041
20 Košice, Slovak Republic.

[20] Roche A. Guérin , Ariel Orda, “QoS routing
in networks with inaccurate information:
Theory and algorithms”, IEEE/ACM
Transactions on Networking (TON), v.7 n.3,
p.350-364, June 1999

[21] Dean H. Lorenz , Ariel Orda, “QoS routing in
networks with uncertain parameters”,
IEEE/ACM Transactions on Networking
(TON), v.6 n.6, p.768-778, Dec. 1998

[22] Rajagopalan B, Saadick H, “A Framework
for QoS-based Routing in the Internet”, RFC
2386, IETF, Aug., 1998.

[23] M. Reisslein, K. W. Ross, and S. Rajagopal,
”Guaranteeing statistical QoS to regulated
traffic: The single node case”, Proceedings of
IEEE INFOCOM’99, pages 1061–1062, New
York, March 1999.

[24] M. Reisslein, K. W. Ross, and S. Rajagopal.
Guaranteeing statistical QoS to regulated
traffic: The multiple node case”, Proceedings
of 37th IEEE Conference on Decision and
Control (CDC), pages 531–531, Tampa,
December 1998.

[25] David Wetherall, Ulana Legedza, and John
Guttag, “Introducing New Internet Services:
Why and How”, Software Devices and
Systems Group, Laboratory for Computer
Science, Massachusetts Institute of
Technology, July 1998.

[26] P. Hurley, J.-Y. Le Boudec, P. Thiran, and
M. Kara.ABE,” Providing a Low-Delay
Service within Best Effort”, IEEE Network
Magazine, v 15, no 3,May/June 2001.

Table 1. Performance data without background traffic.
 SPR AQR
Max. delay (ms) 8364 7006
Min. delay (ms) 5554 5554
Avg. delay (ms) 5760 5584
Max. jitter (ms) 2810 1452

Table 2. Performance data with background traffic type 1

 SPR AQR
Max. delay (ms) 1825 1827
Min. delay (ms) 1806 1806
Avg. delay (ms) 1808 1806
Max. jitter (ms) 19 21

WSEAS TRANSACTIONS on COMMUNICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2742 1131 Issue 12, Volume 7, December 2008

https://portal.acm.org/poplogin.cfm?dl=GUIDE&coll=GUIDE&comp_id=COMPONENT030&want_href=citation%2Ecfm%3Fid%3D312247&CFID=59876275&CFTOKEN=88409783
https://portal.acm.org/poplogin.cfm?dl=GUIDE&coll=GUIDE&comp_id=COMPONENT030&want_href=citation%2Ecfm%3Fid%3D312247&CFID=59876275&CFTOKEN=88409783
https://portal.acm.org/poplogin.cfm?dl=GUIDE&coll=GUIDE&comp_id=COMPONENT030&want_href=citation%2Ecfm%3Fid%3D312247&CFID=59876275&CFTOKEN=88409783
https://portal.acm.org/poplogin.cfm?dl=GUIDE&coll=GUIDE&comp_id=COMPONENT030&want_href=citation%2Ecfm%3Fid%3D312247&CFID=59876275&CFTOKEN=88409783
https://portal.acm.org/poplogin.cfm?dl=GUIDE&coll=GUIDE&comp_id=COMPONENT030&want_href=citation%2Ecfm%3Fid%3D312247&CFID=59876275&CFTOKEN=88409783
https://portal.acm.org/poplogin.cfm?dl=GUIDE&coll=GUIDE&comp_id=COMPONENT030&want_href=citation%2Ecfm%3Fid%3D300403&CFID=59876275&CFTOKEN=88409783
https://portal.acm.org/poplogin.cfm?dl=GUIDE&coll=GUIDE&comp_id=COMPONENT030&want_href=citation%2Ecfm%3Fid%3D300403&CFID=59876275&CFTOKEN=88409783
https://portal.acm.org/poplogin.cfm?dl=GUIDE&coll=GUIDE&comp_id=COMPONENT030&want_href=citation%2Ecfm%3Fid%3D300403&CFID=59876275&CFTOKEN=88409783
https://portal.acm.org/poplogin.cfm?dl=GUIDE&coll=GUIDE&comp_id=COMPONENT030&want_href=citation%2Ecfm%3Fid%3D300403&CFID=59876275&CFTOKEN=88409783

Active QoS
routing

QoS
improvement

Behavior in
split Traffic

Comparison
with shortest
path routing

Behavior under
 Tolerance

parameter

Fig. 1. Data flow diagram.

Fig. 2. Sample network topology.

Fig. 3. Structure of AQR protocol.

WSEAS TRANSACTIONS on COMMUNICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2742 1132 Issue 12, Volume 7, December 2008

Fig. 4 Delay response without background traffic.

Fig.5. Delay response with background traffic type 1.

WSEAS TRANSACTIONS on COMMUNICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2742 1133 Issue 12, Volume 7, December 2008

Fig.6. Classical time delay neural networks.

Fig.7. Fast time delay neural networks.

I1

Output

Hidden
 Layer

IN

IN-1

I2

Cross correlation in the frequency
domain between the total (N) input data
and the weights of the hidden layer.

Output
 Layer

IN

I1

Input
Layer

Output

Hidden
 Layer

In-1

I2

Dot multiplication in time domain
between the (n) input data and
weights of the hidden layer.

Output
 Layer

In

Serial input
shifted by

data 1:N in groups of (n) elements
 a step of one element each time.

WSEAS TRANSACTIONS on COMMUNICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2742 1134 Issue 12, Volume 7, December 2008

0
5

10
15
20
25
30
35
40

10000 2E+05 5E+05 1E+06 2E+06 3E+06 4E+06
Length of one dimensional input matrix

Sp
ee

d
up

 R
at

io

Practical Speed up ratio (n=400)
Practical Speed up ratio (n=625)
Practical Speed up ratio (n=900)

Fig. 8. Practical speed up ratio for time delay neural networks in case of one dimensional real-valued input matrix and

complex-valued weights.

0

5

10

15

20

25

30

35

40

100 300 500 700 900 1100 1300 1500 1700 1900

Size of two dimensional input matrix

Sp
ee

d
up

 R
at

io

Speed up Ratio (n=20)
Speed up Ratio (n=25)
Speed up Ratio (n=30)

Fig. 9. Practical speed up ratio when using FTDNNs in case of two dimensional real-valued input matrix and complex-valued

weights.

WSEAS TRANSACTIONS on COMMUNICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2742 1135 Issue 12, Volume 7, December 2008

0
10
20
30
40
50
60
70
80

10000 2E+05 5E+05 1E+06 2E+06 3E+06 4E+06
Length of one dimensional input matrix

Sp
ee

d
up

 R
at

io

Practical Speed up ratio (n=400)
Practical Speed up ratio (n=625)
Practical Speed up ratio (n=900)

Fig. 10. Practical speed up ratio when using FTDNNs in case of one dimensional complex-valued input matrix and complex-

valued weights.

0

10

20

30

40

50

60

70

100 300 500 700 900 1100 1300 1500 1700 1900

Size of two dimensional input matrix

Sp
ee

d
up

 R
at

io

Speed up Ratio (n=20)
Speed up Ratio (n=25)
Speed up Ratio (n=30)

Fig. 11. Practical speed up ratio when using FTDNNs in case of two dimensional complex-valued input matrix and complex-

valued weights.

WSEAS TRANSACTIONS on COMMUNICATIONS Hazem M. El-Bakry, Nikos Mastorakis

ISSN: 1109-2742 1136 Issue 12, Volume 7, December 2008

