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Abstract :- It is highly desirable to protect data traffic from unexpected changes as well as provide 
effective network utilization in the internetworking era. In this paper the QoS management issue that 
utilizing the active network technology is discussed. Such algorithm is based on the proposed work 
presented in [15]. Active networks seem to be particularly useful in the context of QoS support. The 
Active QoS Routing (AQR) algorithm which is based on On-demand routing is implemented 
incorporating the product of available bit rate and delay for finding the best path for dynamic networks 
using the active network test bed ANTS. It is inferred that with background traffic, the AQR finds 
alternative paths very quickly and the delay and subsequently the jitter involved are reduced 
significantly. In this paper the variant of AQR implemented is demonstrated  to be more useful in 
reducing the jitter when the overall traffic in the network is heavy and has useful application in finding 
effective QoS routing in ad-hoc networks as well as defending DDoS attacks by identifying the attack 
traffic path using QoS regulations. The main achievement of this paper is the fast attack detection 
algorithm. Such algorithm based on performing cross correlation in the frequency domain between 
data traffic and the input weights of fast time delay neural networks (FTDNNs). It is proved 
mathematically and practically that the number of computation steps required for the presented 
FTDNNs is less than that needed by conventional time delay neural networks (CTDNNs). Simulation 
results using MATLAB confirm the theoretical computations. 

Keywords:-  Routing Algorithm, Data Protection, Best Path, Dynamic Networks, Fast Attack 
Detection, Neural Networks  

1 Introduction 
The widespread growth of the Internet and the 
development of streaming applications directed 
the Internet society to focus on the design and 
development of architectures and protocols that 
would provide the requested level of Quality of 
Service (QoS) [15-26]. QoS is an intuitive concept 
defined as “the collective effect of the service 
performance which determines the degree of 
satisfaction of a user of the service” or “a measure 
of how good a service is, as presented to the user. 
It is expressed in user understandable language 
and manifests itself in a number of parameters, all 
of which have either subjective or objective 
values”. 

The goal of AN is to support customized protocol 
mechanisms that can be introduced in a network. 
Differences in known AN approaches concern, 

e.g., the question of whether remote applications 
should be able to download protocol mechanisms 
to a node (router) or whether this right should be 
reserved to the operators of nodes, and the 
question of whether the code for these 
mechanisms should be carried as an additional 
payload by the data packets in transit or whether 
shipping and installing such code should be 
separated from the issue of data transfer. 
Simulation results of this paper are compared with 
the results presented in [15] and high 
improvement in the QoS parameter jitter is 
appreciated when applied on active network with 
slight modifications in the application of the 
proposed algorithm. 

In addition, the main objective of this paper is to 
improve the speed of time delay neural networks 
for fast attack detection. The purpose is to 
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perform the testing process in the frequency 
domain instead of the time domain. This approach 
was successfully applied for sub-image detection 
using fast neural networks (FNNs) as proposed in 
[1,2,3]. Furthermore, it was used for fast face 
detection [7,9], and fast iris detection [8]. Another 
idea to further increase the speed of FNNs through 
image decomposition was suggested in [7]. FNNs 
for detecting a certain code in one dimensional 
serial stream of sequential data were described in 
[4,5]. Compared with conventional neural 
networks, FNNs based on cross correlation 
between the tested data and the input weights of 
neural networks in the frequency domain showed 
a significant reduction in the number of 
computation steps required for certain data 
detection [1,2,3,4,5,7,8,9,11,12].  Here, we make 
use of the previous theory on FNNs implemented 
in the frequency domain to increase the speed of 
time delay neural networks for fast attack 
detection.  

2 QoS Routing 
Active Networks (AN) is a framework where 
network elements, essentially routers and switches 
are programmable. Programs that are injected into 
the network are executed by the network elements 
to achieve higher flexibility and to present new 
capabilities. With the help of AN programs can be 
injected in to the network and executed with in the 
network itself without involving the end systems. 
QoS routing is a term used for routing 
mechanisms which consider QoS. It suffers from 
the static nature of networking today. QoS routing 
is bound to the use of common metrics and 
procedures which usually rely on distributed 
network performance data (increasing network 
traffic) and sophisticated algorithms (increasing 
the processor load on routers) but usually yield 
considerable improvements only for certain 
classes of applications. In [16], the authors used 
randomness at the link level to achieve balance 
between  the safety rate and delay of the routing 
path. 

A) QOS SUPPORT IN ACTIVE NETWORKS 

Possible utilizations of AN to support QoS 
roughly fall into the following categories [15]: 
1. Mechanisms which transfer application layer 
functionality into the network:  

2. Mechanisms which are usually associated with 
layers 3 or 4: AQR mechanism falls in this 
category. 
3. Mechanisms which rely on non-active QoS 
provisioning mechanisms: Here, AN are merely 
used to add greater flexibility to the specification 
of a QoS request. 

B) AQR OPERATION 
AQR is an on demand based QoS routing 
algorithm. The AQR algorithm can be described 
as follows as in [15].  
1. The AQR sender calculates all non-cyclic paths 
to the destination from the link state routing table.  
2. A probing packet carrying the QoS 
requirements, code for QoS calculation, the sender 
and receiver’s addresses and a list of visited nodes 
is sent to each first hop of these paths. 
3. Upon receiving an AQR probing packet, an 
AQR compliant transit node executes the AA 
code (contained in the packet or cached), which 
· checks if the minimum QoS requirements found 
in the packet can be met (if a threshold say a 
maximum delay is exceeded, the packet is 
dropped), 
· compares and updates the QoS data, 
adds itself to the list of already visited nodes, 
· Executes the code of the AQR sender, starting at 
step 2 — except that no probing packets are sent 
to the source or to any other already visited node 
(packets are multicast in the proper direction at 
each AQR-compliant transit node). 
4. Only packets which conform to the minimum 
QoS requirements reach the AQR receiver, where 
a list of valid paths is generated. After a 
predefined period, the best path is chosen and 
communicated to the sender. If there is more than 
one best path, the traffic is split among the best 
paths. 

C) DESIGN CONSIDERATIONS 

The resources used are network bandwidth and 
CPU cycles to load the network. The system 
assumes overlay mode of deploying active code in 
network. The security issues are taken care of by 
the ANTS system itself For AQR, these 
parameters are delay and available bandwidth. For 
each of these parameters, a channel is given the 
properties of the underlying network .The overall 
flow is depicted as follows. 
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There are three important modules in the system. 
They are Application, Protocol and capsule 
modules. The application module consists of 
Router, Sender, Receiver sub modules. The 
capsule module consists of DataCapsule, 
Probecapsule and Replycapsule sub modules.  

 

3 Implementation Details 
The proposed AQR algorithm is implemented for 
the sample network topology shown below. In 
ANTS, the network topology is configured. The 
topology used is shown below. The routing 
protocol is implemented using the ANTS toolkit. 
ANTS is an EE running over the node OS Janos. 
The protocol is implemented as an active 
application that runs on each of the nodes of the 
network. In ANTS, there are three special classes 
to create capsules, protocols and active 
applications. The detailed information about 
ANTS is provided in [8].A new protocol is 
developed by sub classing the virtual class 
Protocol. This requires identifying all of the 
different types of packet that will enter the 
network by their different forwarding routines. 
Each type of packet and its forwarding routine is 
specified by sub classing the virtual class Capsule. 
· A new application is developed by sub classing 
the virtual class Application. 
· An instance of the class Node represents the 
local ants runtime. 
· A new protocol and application are used by 
creating instances of their classes and attaching 
them to node. The application is connected to the 
node in order to send and receive capsules from 
the network. 
· The protocol is registered with the node in order 
for the network to be able to obtain its code when 
it is needed. 
 
This model allows customization by the network 
users assuming that a network of active nodes 
already exists and is up and running. The active 
nodes, however, will often be part of the system 
under study, particularly for experimentation with 
different topologies, application workloads, and 
node services. For these purposes, ANTS provides 
two facilities: 
 
· Configuration tools allow a network topology 

complete with applications to be managed. This 
includes the calculation of routes and the 
initialization of local node configurations. 
 
· A node extension architecture allows different 
nodes to support different service components, 
e.g., multicast, caching, trans coding, etc., as 
appropriate. Extensions are developed by sub 
classing the virtual class Extension. 

 
The Protocol class is extended to form the AQR 
Protocol class. There are three capsules – Probe 
Capsule, Reply Capsule and AQR Data Capsule. 
These capsules form the protocol itself. 
 

A) Capsule Types 

A capsule is a combination of a packet and its 
forwarding routine; the forwarding routine is 
executed at every active node the capsule visits 
while in the network. New types of capsule, with 
different forwarding routines, are developed by 
sub classing the virtual class Capsule. The capsule 
starts with the sequence id of the data capsule. 
Then the timestamp of when the capsule is sent is 
stored. Then some flags and index values are 
stored. The path index is the pointer to the next 
node to reach. The path valid is a flag that is set 
true when the capsule carries a path to travel. 
Otherwise default shortest path is used to reach 
the destination. There is another flag, aqrFlag 
which is set to differentiate between capsules sent 
using AQR and capsules sent using SPR. Finally 
the path to travel is stored.  
 
The active code of this capsule is the forwarding 
routine to guide the capsule to the destination. It 
checks for the pathValid flag and if set uses the 
path in the capsule to travel. Otherwise shortest 
path is used to forward the capsule to the 
destination. For valid path, the next node is 
obtained from the path stored using the path index 
pointer. The data capsule is then forwarded to this 
node. Once the nodes in the path stored get over, 
it indicates that the capsule has reached the 
destination. The capsule is then delivered to the 
receiver application. 
 
 
B) Application 
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Applications are the entities that make use of the 
network to send and receive capsules as well as 
run independent activities. New applications are 
developed by sub classing the virtual class 
Application. It provides access to the node and its 
services. 
 
C) Other modules 

The data traffic is generated by a thread AQR 
Data Sender. It is run on the sender node. This 
data traffic is received by another application on 
the receiver node, AQR Data Receiver. There are 
also other utility classes. 
 
4 Configuration  
Experimenting with an active network requires 
that a network topology and ANTS provides some 
tools and infrastructure conventions to automate 
this process. First, entire network configurations, 
node addresses, applications and all initialization 
parameters are specified text files that are read by 
Configuration Manager Class to start one of its 
nodes locally. This includes creating the node 
runtime, applications, and extensions, connecting 
them to each other, and starting their operation. 

A) Performance Analysis 
The algorithm is run under various test scenarios 
and the test results are presented in this section. 
The QoS performance is analyzed for data traffic 
with and without background traffic .TG is a 
packet Traffic Generator (TG) tool that can be 
used to characterize the performance of packet-
switched network communication protocols. The 
TG program generates and receives one-way 
packet traffic streams transmitted from the UNIX 
user level process between traffic source and 
traffic sink nodes in a network. TG is used for 
generating the background traffic. The TG serving 
as the traffic source always logs datagram 
transmit times. This mode of operation may be 
useful for analyzing network blocking 
characteristics or for loading a network. The TG 
serving as a traffic sink logs all received data 
grams. The behavior of the protocol is analyzed 
after the intermediate routers are loaded to make 
the default shortest path congested. For the same 
topology the shortest path routing is tested. Two 
applications are run on the source and destination 
nodes. The active code in the capsule is used to 

route the capsule through the shortest path. The 
delay changes and the routes taken are recorded 
and analyzed. 

 
 

B)  Performance analysis without background 
traffic 
In this test run, the data capsules of length 100 
bytes are used to test the protocol. No background 
traffic is used to load the shortest path. Instead the 
routers along the shortest path are loaded to 
increase the delay along the shortest path. In this 
scenario the test is run and the results shown 
below. The delay values are relative and are not 
exact with respect to the sender in all the data 
presented. 
 
C) Performance analysis with background 
traffic type 1 
In this test run, the data capsules of length 100 
bytes are used to test the protocol. Also 
background traffic is introduced along the shortest 
path to increase the delay along the shortest path. 
The traffic is introduced using the tool TG. The 
background traffic is udp. Packets of length 500 
bytes at a rate of 100Mbps are used for the traffic.  

5 Fast Attack Detection using Neural 
Networks 

Finding a certain attack, in the incoming serial 
data, is a searching problem. First neural networks 
are trained to classify attack from non attack 
examples and this is done in time domain. In 
attack detection phase, each position in the 
incoming matrix is tested for presence or absence 
of an attack. At each position in the input one 
dimensional matrix, each sub-matrix is multiplied 
by a window of weights, which has the same size 
as the sub-matrix. The outputs of neurons in the 
hidden layer are multiplied by the weights of the 
output layer. When the final output is high, this 
means that the sub-matrix under test contains an 
attack and vice versa. Thus, we may conclude that 
this searching problem is a cross correlation 
between the incoming serial data and the weights 
of neurons in the hidden layer.   

The convolution theorem in mathematical analysis 
says that a convolution of f with h is identical to 
the result of the following steps: let F and H be 
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the results of the Fourier Transformation of f and 
h in the frequency domain. Multiply F and H* in 
the frequency domain point by point and then 
transform this product into the spatial domain via 
the inverse Fourier Transform. As a result, these 
cross correlations can be represented by a product 
in the frequency domain. Thus, by using cross 
correlation in the frequency domain, speed up in 
an order of magnitude can be achieved during the 
detection process [1,2,3,4,5,7,8,9,14]. Assume 
that the size of the attack code is 1xn.  In attack 
detection phase, a sub matrix I of size 1xn (sliding 
window) is extracted from the tested matrix, 
which has a size of 1xN. Such sub matrix, which 
may be an attack code, is fed to the neural 
network. Let Wi be the matrix of weights between 
the input sub-matrix and the hidden layer. This 
vector has a size of 1xn and can be represented as 
1xn matrix. The output of hidden neurons h(i) can 
be calculated as follows:  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+∑

=
= ib(k)I(k)

n

1k iWgih               (1) 

where g is the activation function and b(i) is the 
bias of each hidden neuron (i). Equation 1 
represents the output of each hidden neuron for a 
particular sub-matrix I. It can be obtained to the 
whole input matrix Z as follows: 

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
∑
−=

++=
n/2

n/2k i bk)   Z(uk)(iWg(u)ih           (2) 

Eq.2 represents a cross correlation operation. 
Given any two functions f and d, their cross 
correlation can be obtained by: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
∞

∞−=
+=⊗

n
n)d(n)f(xf(x)d(x)                  (3) 

Therefore, Eq. 2 may be written as follows [1]: 
( )ibZiWgih +⊗=                    (4) 

where hi is the output of the hidden neuron (i) and 
hi (u) is the activity of the hidden unit (i) when the 
sliding window is located at position (u) and (u) ∈ 
[N-n+1].  

Now, the above cross correlation can be expressed 
in terms of one dimensional Fast Fourier 
Transform as follows [1]: 

( ) (( iW*FZF1FZiW •−=⊗

Hence, by evaluating this cross correlation, a 
speed up ratio can be obtained comparable to 
conventional neural networks. Also, the final 
output of the neural network can be evaluated as 
follows:  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
=

+=
q

1i
ob)u(ih (i)oWgO(u)              (6) 

where q is the number of neurons in the hidden 
layer. O(u) is the output of the neural network 
when the sliding window located at the position 
(u) in the input matrix Z. Wo is the weight matrix 
between hidden and output layer. 
The complexity of cross correlation in the 
frequency domain can be analyzed as follows: 
1-  For a tested matrix of 1xN elements, the 1D-
FFT requires a number equal to Nlog2N of 
complex computation steps [13]. Also, the same 
number of complex computation steps is required 
for computing the 1D-FFT of the weight matrix at 
each neuron in the hidden layer.  
2-  At each neuron in the hidden layer, the inverse 
1D-FFT is computed. Therefore, q backward and 
(1+q) forward transforms have to be computed. 
Therefore, for a given matrix under test, the total 
number of operations required to compute the 1D-
FFT is (2q+1)Nlog2N. 

3- The number of computation steps required by 
FTDNNs is complex and must be converted into a 
real version. It is known that, the one dimensional 
Fast Fourier Transform requires (N/2)log2N 

complex multiplications and Nlog2N complex 
additions [13]. Every complex multiplication is 
realized by six real floating point operations and 
every complex addition is implemented by two 
real floating point operations. Therefore, the total 
number of computation steps required to obtain 
the 1D-FFT of a 1xN matrix is: 

ρ=6((N/2)log2N) + 2(Nlog2N)                  (7) 

which may be simplified to: 

ρ=5Nlog2N                              (8) 

))              (5) 

4- Both the input and the weight matrices should 
be dot multiplied in the frequency domain. Thus, a 
number of complex computation steps equal to qN 
should be considered. This means 6qN real 
operations will be added to the number of 
computation steps required by FTDNNs.  
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5- In order to perform cross correlation in the 
frequency domain, the weight matrix must be 
extended to have the same size as the input 
matrix. So, a number of zeros = (N-n) must be 
added to the weight matrix. This requires a total 
real number of computation steps = q(N-n) for all 
neurons. Moreover, after computing the FFT for 
the weight matrix, the conjugate of this matrix 
must be obtained. As a result, a real number of 
computation steps = qN should be added in order 
to obtain the conjugate of the weight matrix for all 
neurons.  Also, a number of real computation 
steps equal to N is required to create butterflies 
complex numbers (e-jk(2Πn/N)), where 0<K<L. 
These (N/2) complex numbers are multiplied by 
the elements of the input matrix or by previous 
complex numbers during the computation of FFT. 
To create a complex number requires two real 
floating point operations. Thus, the total number 
of computation steps required for FTDNNs 
becomes: 

σ=(2q+1)(5Nlog2N) +6qN+q(N-n)+qN+N        (9) 
which can be reformulated as: 
           σ=(2q+1)(5Nlog2N)+q(8N-n)+N          (10) 

6- Using sliding window of size 1xn for the same 
matrix of 1xN pixels, q(2n-1)(N-n+1) 
computation steps are required when using 
CTDNNs for certain attack detection or 
processing (n) input data. The theoretical speed up 
factor η can be evaluated as follows: 

   N n)-q(8N N) 1)(5Nlog(2q
 1)n-1)(N-q(2n

2 +++
+

=η         (11) 

CTDNNs and FTDNNs are shown in Figures 6 
and 7 respectively. 

Time delay neural networks accept serial input 
data with fixed size (n). Therefore, the number of 
input neurons equals to (n). Instead of treating (n) 
inputs, the proposed new approach is to collect all 
the incoming data together in a long vector (for 
example 100xn). Then the input data is tested by 
time delay neural networks as a single pattern 
with length L (L=100xn). Such a test is performed 
in the frequency domain as described in section II. 
The combined attack in the incoming data may 
have real or complex values in a form of one or 
two dimensional array. Complex-valued neural 
networks have many applications in fields dealing 

with complex numbers such as 
telecommunications, speech recognition and 
image processing with the Fourier Transform 
[6,10]. Complex-valued neural networks mean 
that the inputs, weights, thresholds and the 
activation function have complex values. In this 
section, formulas for the speed up ratio with 
different types of inputs (real /complex) will be 
presented. Also, the speed up ratio in case of a one 
and two dimensional incoming input matrix will 
be concluded. The operation of FTDNNs depends 
on computing the Fast Fourier Transform for both 
the input and weight matrices and obtaining the 
resulting two matrices. After performing dot 
multiplication for the resulting two matrices in the 
frequency domain, the Inverse Fast Fourier 
Transform is determined for the final matrix. 
Here, there is an excellent advantage with 
FTDNNs that should be mentioned. The Fast 
Fourier Transform is already dealing with 
complex numbers, so there is no change in the 
number of computation steps required for 
FTDNNs. Therefore, the speed up ratio in case of 
complex-valued time delay neural networks can 
be evaluated as follows: 

1) In case of real inputs  

A) For a one dimensional input matrix 
Multiplication of (n) complex-valued weights by 
(n) real inputs requires (2n) real operations. This 
produces (n) real numbers and (n) imaginary 
numbers. The addition of these numbers requires 
(2n-2) real operations. The multiplication and 
addition operations are repeated (N-n+1) for all 
possible sub matrices in the incoming input 
matrix. In addition, all of these procedures are 
repeated at each neuron in the hidden layer. 
Therefore, the number of computation steps 
required by conventional neural networks can be 
calculated as: 

θ=2q(2n-1)(N-n+1)                    (12) 
The speed up ratio in this case can be computed as 
follows: 

 
   N n)-q(8N N) 1)(5Nlog(2q

 1)n-1)(N-2q(2n

2 +++
+

=η          (13) 

Practical speed up ratio for searching short 
successive (n) data in a long input vector (L) 
using complex-valued time delay neural networks 
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is shown in Figure 8. This has beed performed by 
using a 700 MHz processor and MATLAB.  

B) For a two dimensional input matrix 
Multiplication of (n2) complex-valued weights by 
(n2) real inputs requires (2n2) real operations. This 
produces (n2) real numbers and (n2) imaginary 
numbers. The addition of these numbers requires 
(2n2-2) real operations. The multiplication and 
addition operations are repeated (N-n+1)2 for all 
possible sub matrices in the incoming input 
matrix. In addition, all of these procedures are 
repeated at each neuron in the hidden layer. 
Therefore, the number of computation steps 
required by conventional neural networks can be 
calculated as: 

θ=2q(2n2-1)(N-n+1) 2                 (14)  

The speed up ratio in this case can be computed as 
follows: 

 
   N )n-q(8N )N log1)(5N(2q

 1)n-1)(N-2q(2n
222

2
2

22

+++
+

=η      (15) 

Practical speed up ratio for detecting (nxn) real 
valued submatrix in a large real valued matrix 
(NxN) using complex-valued time delay neural 
networks is shown in Fig. 9. This has beed 
performed by using a 700 MHz processor and 
MATLAB.  

2) In case of complex inputs  

A) For a one dimensional input matrix 
Multiplication of (n) complex-valued weights by 
(n) complex inputs requires (6n) real operations. 
This produces (n) real numbers and (n) imaginary 
numbers. The addition of these numbers requires 
(2n-2) real operations. Therefore, the number of 
computation steps required by conventional neural 
networks can be calculated as: 

θ=2q(4n-1)(N-n+1)                    (16)  

The speed up ratio in this case can be computed as 
follows: 

 
   N n)-q(8N N) 1)(5Nlog(2q

 1)n-1)(N-2q(4n

2 +++
+

=η         (17) 

Practical speed up ratio for searching short 
complex successive (n) data in a long complex-
valued input vector (L) using complex-valued 
time delay neural networks is shown in Fig. 10. 

This has beed performed by using a 700 MHz 
processor and MATLAB.   

B) For a two dimensional input matrix 
Multiplication of (n2) complex-valued weights by 
(n2) real inputs requires (6n2) real operations. This 
produces (n2) real numbers and (n2) imaginary 
numbers. The addition of these numbers requires 
(2n2-2) real operations. Therefore, the number of 
computation steps required by conventional neural 
networks can be calculated as: 

θ=2q(4n2-1)(N-n+1)2                     (18)  

The speed up ratio in this case can be computed as 
follows: 

   N )n-q(8N )N log1)(5N(2q
 1)n-1)(N-2q(4n

222
2

2

22

+++
+

=η       (19) 

Practical speed up ratio for detecting (nxn) 
complex-valued submatrix in a large complex-
valued matrix (NxN) using complex-valued neural 
networks is shown in Fig. 11. This has beed 
performed by using a 700 MHz processor and 
MATLAB. 

An interesting point is that the memory capacity is 
reduced when using FTDNN. This is because the 
number of variables is reduced compared with 
CTDNN. The neural algorithm presented here can 
be inserted very easily in any Anti-Attack 
gateway software.  
 
6. Conclusion 
The AQR protocol is implemented using ANTS 
and the performance of the AQR algorithm is 
analyzed. It is inferred that with background 
traffic, the AQR finds alternative paths quickly. It 
reduces the delay and subsequently reduces the 
jitter involved. The variant of AQR using the 
product of available bit rate and delay for finding 
the best path is useful in reducing the jitter where 
the overall traffic in the network is heavy. It helps 
to maintain the jitter in networks with more bursty 
traffic. It is also inferred that the performance of 
AQR is better than that of SPR in both cases. 
Performance is analyzed for various traffic 
classes. The probe capsules are sent along each 
path from the source to the destination to find the 
best path. By tuning the probing frequency to an 
optimal value, the traffic caused by the probe 
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capsules can be reduced. Comparing with the data 
traffic, probe capsules are small in number. The 
topology should be known by all nodes to find the 
best path. In this paper dynamic topology is 
considered and flooding is used to find the best 
path. This finds application in finding effective 
QoS routing in ad-hoc networks as well as 
defending DDoS attacks by identifying the attack 
traffic path using QoS regulations. The flooding 
overhead involved is unavoidable and some pay 
off measures need to be identified. It is also 
proposed to choose the best path based on error 
rate so that the loss of probe capsules can also be 
taken into consideration. A new approach for fast 
attack detection has been presented. Such strategy 
has been realized by using a new design for time 
delay neural networks. Theoretical computations 
have shown that FTDNNs require fewer 
computation steps than conventional ones. This 
has been achieved by applying cross correlation in 
the frequency domain between the incoming serial 
data and the input weights of time delay neural 
networks. Simulation results have confirmed this 
proof by using MATLAB. Furthermore, the 
memory complexity has been reduced when using 
the fast neural algorithm. In addition, this 
algorithm can be combined in any Anti-attack 
gateway software.  
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Table 1. Performance data without background traffic. 
 SPR AQR 
Max. delay (ms) 8364 7006 
Min. delay (ms) 5554 5554 
Avg. delay (ms) 5760 5584 
Max. jitter (ms) 2810 1452 

 
Table  2.  Performance data with background traffic type 1 

 SPR AQR 
Max. delay (ms) 1825 1827 
Min. delay (ms) 1806 1806 
Avg. delay (ms) 1808 1806 
Max. jitter (ms) 19 21 
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Fig. 1. Data flow diagram. 

 

 

 
 

Fig. 2. Sample network topology. 
 
 
 

 
Fig. 3. Structure of AQR protocol. 
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Fig. 4   Delay response without background traffic. 
 

 
Fig.5. Delay response with background traffic type 1. 
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Fig.6. Classical time delay neural networks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7. Fast time delay neural networks. 
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Fig. 8.  Practical speed up ratio for time delay neural networks in case of one dimensional real-valued input matrix and 

complex-valued weights. 
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Fig. 9. Practical speed up ratio when using FTDNNs in case of two dimensional real-valued input matrix and complex-valued 

weights. 
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Fig. 10.  Practical speed up ratio when using FTDNNs in case of one dimensional complex-valued input matrix and complex-

valued weights. 
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Fig. 11. Practical speed up ratio when using FTDNNs in case of two dimensional complex-valued input matrix and complex-

valued weights. 
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