
Redundant Data Transmission and Nonlinear Codes 
 

WACKER H. D., BOERCSOEK J. 
Development 

HIMA Paul Hildebrandt GmbH + Co KG 
Albert-Bassermann-Strasse 28, D-68782 Bruehl 

GERMANY 
h.wacker@hima.com    j.boercsoek@hima.com    http://www.hima.com 

HILLMER, H. 
University of Kassel, 

Institute of Nanostructure Technologies and Analytics (INA) and  
Center for Interdisciplinary Nanostructure Science and Technology (CINSaT) 

Kassel 
GERMANY 

hillmer@ina.uni-kassel.de    http://www.uni-kassel.de/fb16/te/start.shtml 
 
 
Abstract: - In their paper the authors investigate redundant data transmission protected by arbitrary (not 
necessarily linear) codes. They generalize results known so far for linear codes, in particular for cyclic 
redundancy checks (CRCs). They use the concept of the Generalized Erasure Channel (GEC) to determine the 
probability of undetected error for some binary symmetric and non-symmetric channels protected by 
appropriate encoding procedures. In detail, they investigate communication via different Binary Symmetric 
Channels (BSCs), Generalized Erasure Channels and Symmetrized Binary Non Symmetric Channels (BNSCs). 
Simple upper bounds are given, relating the new formulas to that one of the BSC, and the channel capacities are 
calculated. Finally the results in connection with an inequality for proper codes are applied to multi channel 
coloured transmission via laser beams propagating through Polymer Optical Fiber (POF). 
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1 Introduction 
Safety related systems can get strongly affected due 
to electromagnetic disturbances. These disturbances 
can be caused by high frequency transmitters, 
mobile phones, or walky-talkies etc. Especially in 
high safety critical applications, like oil and gas 
extraction, or Ethylene and Phenol processes, 
disturbances can have fatal consequences.  
     To implement a safety related system of 
redundant processors, it is of paramount importance 
to have undisturbed communication channels with a 
transmission rate in the Gbps scope.  
     Basically, there are two attributes in order to 
avoid those difficulties:  
 
-     reduction of the bit error probability 
-     reduction of the probability of undetected error 
 
An approved method to achieve the first aim is the 
usage of fiber optics. The bit error probability of 
channels using fiber optics  has been investigated 

in [3],  [4],  [7],  [8],  [12],  [13],  [15],  [16],  [18],  [24], 
and  [25].  
In case of a poor (large) bit error probability, a 
frequently used procedure to achieve the second aim 
is redundant data transmission, protected by 
appropriate checksum and monitoring procedures. 
In  [23] Wacker&Boercsoek investigated the case of 
transmitting each message block via the same 
channel or at least via channels with the same bit 
error probability ε. They then found formulas and 
upper bounds for the probability of undetected error. 
Hillmer et al. in  [9] and  [10] suggested an approach 
by killing two birds with one stone: Fiber optics 
together with multi channel coloured transmission 
by Wavelength Division Multiplexing (WDM). 
With this approach it would be possible to 
implement a feedback-free, redundant and safe 
transmission with only one single fiber. 

The aim of this paper is to determine equations 
for the probability of undetected error in the case 
redundant transmission via different channels, and 
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then to apply it to laser beams, thus bringing 
together both of the above features. Actually, there 
is a second way of generalizing the results of  [23]: 
In  [23] the authors restricted themselves to linear 
codes. In this paper we consider arbitrary (not 
necessarily) linear codes. The results turned out to 
remain valid in this more general case.  
 

 

2 The Probability of Undetected 

Error for Non Linear Codes 
 
 
2.1 The Distance Distribution of a Code 
Let there be given a binary transmission channel and 
a transmission procedure protected by a (n, K) code. 
A (n, K) code is a subset C of the n- dimensional 
linear space GF(2)n of all n-tuples consisting of K 
elements. The space GF(2) is the Galois field of 
order 2, consisting of the elements 0 and 1. The 
number n is called the block length. Given the n-
tuples x = (x1,…,xn) and y = (y1,…,yn) , xl, yl = {0, 
1}, the Hamming distance of x and y is defined as 
the number of components in which x and y differ: 
 
              |}:,1,{),( ll yxn l|d ≠== Kyx . 
 
The Hamming distance induces a metric on the 
space GF(2)n of all n-tuples. The minimum distance 
of the code is defined as 
 
              }., :),(min{ Cdd ∈= yxyx  
 
The distance distribution of an (n, K) code is the 
vector 
 
         )()( 10 nD,,D,DCD K= , 
 
where 
              

        |}),(and, :),{(|
1

ld  C
K

Dl =∈= yxyxyx  

 
is the average number of code words being at 
distance l from a codeword of C (see  [14]). 
The Hamming weight w(x) of a vector x is 
defined as the distance of x from 0: 
              ),()( 0xx dw =  
 
The weight distribution of an (n, K) code is the 
vector 
 

    )()( 10 nA,,A,ACA K= , 
 
where 
 
         |})( :{| lwC =∈= xxAl  
 
is the number of code words being at distance l 
from 0.  
     A linear [n, k] code C is a k-dimensional linear 
subspace GF(2)n of all n-tuples. For linear codes the 
weight distribution and the distance distribution 
coincide. 
 
 
2.2 The Binary Symmetric Channel (BSC) 
Let there be given a binary symmetric channel 
without memory with a bit error probability ε and a 
transmission procedure protected by a (n, K) code C, 
for example a cyclic redundancy check (CRC). The 
probability of undetected error is given by (see  [14] 
or  [17]): 
 

           ( ) lnl
n

l

lDCp
−

=

−=∑ ε1ε),(ε
1

ue , 

               
where  
 
             ε = bit error probability (bit error ratio, 
                   BER) of the  channel. 
 
In the case of CRCs, bounds on the distance 
distribution and the probability of undetected 
error can be found in  [20],  [21], and  [22]. 
  
 
2.3 The Generalized Erasure Channel 

(GEC) 
In the present paper we shall use the concept of the 
GEC to extend the results of Wacker&Boercsoek in 
 [23] to the case described in the introduction: 
Redundancy with channels of different physical 
properties and non linear codes.  
     To get an approach to redundant data 
transmission, we shall take advantage of the concept 
of the Generalized Erasure Channel (GEC), 
introduced in  [23] by Wacker & Boercsoek, and 
which we shall present now in short. Consider a 
channel with 2 input variables 0 and 1, but 3 output 
variables 0, 1, and e. The output e stands for the 
situation of receiving a symbol which cannot be 
decoded, i.e. can not be identified as a “0” or a ”1”. 
Hence, the symbol e may be considered as the error 
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symbol. We supposed the transition probabilities to 
be given by  
                                                                                                             
p(e|0) = p(e|1) = ζ,  
p(1|0) = p(0|1) = η 
p(0|0) = p(1|1) = θ 
 
(ζ ≥ 0, η ≥ 0, and θ ≥ 0, ζ + θ + η = 1, see Figure 1 
below). Here p(y|x) is the probability of receiving y 
given x is sent.  
     We called a channel defined by this properties 
“Generalized Erasure Channel” (GEC), because for 
η = 0 it is about the customary erasure channel. For 
ζ = 0 it is the BSC. For linear codes the probability 
of undetected error of the GEC turned out to be 
given by  
 

(1)    ln
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=
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1
ue

l
n

l

lACp  

 
In this subsection we shall prove that (1) is true for 
arbitrary codes. In the course of the proof we shall 
make use of Bayes’ theorem of the total probability 
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j
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Here { Cj : j = 1, … , N} is a partition of the 
probability space Ω 
 

             0
1
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=

kj

N

j
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and p(B| Cj) is the conditional probability of B 
given Cj. 
 
Theorem 1: The probability of undetected error of 
the generalized erasure channel for an arbitrary (n, 
K) code is given by 
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Proof: We may assume that each code word is sent 
with equal probability. Therefore the probability 
p(x) that a certain code word is sent is given by 
 

         
K

p
1
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Let further p(y|x) denote the probability of receiving 
the message vector y, given the code word x is sent. 
Then, by Bayes’ theorem of the total probability,  
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As for the channel capacity of the GEC we got in 
 [23] 
 
(2)      θηθ)θ)log(η(ηθlogθηlogηθ)η,,(ζ ++++−+=c . 
        

 
Fig. 1 The GEC 

 
 
 

3 Data Protection by Transmission 

via µ Different Channels∅ 
 
 
3.1 µ BSCs Considered as one GEC 
Suppose there is a transmission procedure 
transmitting each message block via µ different 



binary symmetric channels without memory, each 
one with an individual bit error probability ε1,...,εµ. 
Assume further that the receiving device is 
performing a cross check between all µ message 
blocks having been received: A message block will 
be accepted by the receiver if and only if all of the µ 
blocks coincide bit by bit, otherwise it will be 
rejected as an error. The situation is cleared by table 
1.  
 
Table 1 Transmission via µ BSCs  

Transmitter Receiver Probability 
0 (0,…,0) (0,…,0) 0 
1 (1,…,1) (1,…,1) 1 

(1 – ε1)···(1 -εµ) 

0 (0,…,0) (1,…,1) 1 
1 (1,…,1) (0,…,0) 0 

ε1···εµ 

0 (0,…,0) (…,1,…) e 
1 (1,…,1) (…,0,…) e 

1-(1 – ε1)···(1 -εµ) 
-ε1···εµ 

                         
The symbol e means that the received symbol 

cannot be identified. I.e. transmission via µ BSCs 
turns out to be transmission via a single GEC with 
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3.2 The Probability of Undetected Error for 

Transmission via µ Different BSCs 
Suppose now the transmission procedure via each of 
the µ channels to be protected additionally by an 
arbitrary (n, K) code C (same code applied 
separately to each channel,). Let pue(ε1,...,εµ,C) 
denote the probability of undetected error of C 
considered under this transmission procedure. What 
we expect is the inequality 
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      By Theorem 1 and (3) we get 
 
Theorem 2: In the case of µ BSCs with individual 
bit error probabilities ε1,...,εµ, the probability of 
undetected error of the (n, K) code C is given by 
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Corollary 3 states that the performance of the 
code C considered on the GEC of table 1 at bit error 
probabilities of ε1,...,εµ is at least as good as the 
performance of the same code C considered on the 
BSC at a bit error probability of ε1·...·εµ. 
 
Corollary 3: For each (n, K) code C and 0 ≤ εj ≤ 1 

 

   ).,ε(),ε,,(ε
µ

1
µ1 CpCp

j

jueue ∏
=

≤K  

               
Proof: Firstly, by induction, we prove the inequality 
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for µ = 1, 2, 3, ....  
For µ = 1 inequality (5) reduces to the most trivial 
statement 
 
     11 ε-1ε-1 ≤  
 
If (5) is true for some natural number µ, then, 
because of 0 ≤ εj ≤ 1, 
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and therefore, by induction hypothesis, 
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Corollary 4 is the well known result mentioned at 

the beginning of this subsection (see (4)): 
 

Corollary 4: For each (n, K) code C and 0 ≤ εj ≤ 1 
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Proof: The prove will again be done by induction. 
For µ = 1 the statement is evident. 
Let now be  
 

∏
=

≤
µ

1
ueµ1ue ),(ε),ε,,(ε

j

j CpCp K  

 
for some natural number µ, then surely for each l = 
1, ... , n 
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Hence, by induction hypothesis, 
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The last three results generalize Theorem 1, 
Corollary 2 and Corollary 3 of 
Wacker&Boercsoek in  [23].  
 

 
3.3 The Probability of Undetected Error for 

Transmission via µ Different GECs 
In this subsection we consider transmission via µ 
different GECs together with a cross check and 
protected by a (n, K) code C. To this end, let ζ1, θ1, 
η1 ,..., ζµ, θµ, ηµ be the transition probabilities 
corresponding to each of the µ channels.  
 
Table 2 Transmission via µ GECs 

Transmitter Receiver Probability 
0 (0,…,0) (0,…,0) 0 
1 (1,…,1) (1,…,1) 1 

θ1···θµ  

0 (0,…,0) (1,…,1) 1 
1 (1,…,1) (0,…,0) 0 

η1···ηµ 

0 (0,…,0) (…,1,…) e 
1 (1,…,1) (…,0,…) e 
0 (0,…,0) (…,e,…) e 
1 (1,…,1) (…,e,…) e 

1- θ1···θµ -η1···ηµ  

 
As in subsection 3.1 the procedure is described by a 
table (table 2) and turns out to be equivalent to 
transmission via a single GEC with 
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Finally, let pue(ζ1, θ1, η1,..., ζµ, θµ, ηµ,C) denote the 
probability of undetected error of C considered on 
this channel. Then in a completely analogous 
manner as for the BSC in subsection 3.2 we get 
from Theorem 1: 
 
Theorem 5: In the case of µ GECs with individual 
transition probabilities ζ1, θ1, η1 ,..., ζµ, θµ, ηµ, the 
probability of undetected error of (n, K) code C is 
given by 
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The probability of undetected error via µ GECs is 
related to that one via µ BSCs by a simple 
inequality:  
 
Corollary 6: For each (n, K) code C 
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Proof: By Theorem 5 
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and 
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This means that transmission via µ GECs is at 
least as good as transmission via µ BSCs at bit error 
probabilities of η1,..., ηµ and 1 - θ1,..., 1 - θµ.                         
 
 
3.4 The Probability of Undetected Error for 

Transmission via µ Different BNSCs 
A Binary Non Symmetric Channel (BNSC) is 
characterized by the fact that the transition 
probability from “0” to ”1” is different from the 
transition probability from ”1” to ”0”. Thus the 
situation is described by the equations 
 
p(1|0) = δ,             p(0|1) = ε,  
p(0|0) = 1 – δ,       p(1|1) = 1 – ε. 
(ε ≥ 0, δ ≥ 0, ε ≠ δ). 
 
In  [23] Wacker&Boercsoek symmetrized the BNSC 
by transmitting each block twice: the original block 
and the second one with an inverted bit pattern. If a 
cross check is performed in the receiving device, the 
resulting channel is a GEC with transition 
probabilities given by: 
 
p(0|0) = (1 - δ)·(1 - ε),     p(0|1) = δ·ε, 
p(1|0) = δ·ε,                     p(1|1) = (1 - δ)·(1 - ε), 
p(e|0) = δ + ε - 2·δ·ε,       p(e|1) = δ + ε - 2·δ·ε. 
 

They then calculated the probability of undetected 
error of this transmission procedure, when it is 
protected by a linear code.  
In this subsection we shall consider transmission via 
µ BNSCs with different transition probabilities δ1, ε1 
,..., δµ, εµ protected by a (n, K) code. When each of 
the µ channels is symmetrized in the way described 
above, we get transmission via µ GECs. Therefore 
Theorem 5 yields 
 
Theorem 7: In the case of µ symmetrized BNSCs 
with individual transition probabilities δ1, ε1,..., δµ, 
εµ, the probability of undetected error of the (n, K) 
code C is given by  
 

      
∑ ∏∏
=

−

==

−−=
n

l

ln

j

jj

l

j

j

jA

Cp

1

µ

1

µ

1
l

µµ11ue

.))ε)(1δ(1()εδ(

),ε,δ,,ε,δ( K

               

 
Similar to subsection 3.3, the undetected error 
probability of µ BNSCs is upper bounded by that 
one of transmission via µ BSCs: 
 
Corollary 8: For each (n, K) code C and 0≤ εj,δj ≤ 
1. 
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Proof: Firstly, 
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and then by Theorem 7 and Theorem 2 
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3.5 The Channel Capacity of µ Different 

Channels 
The capacity of a channel with the input alphabet X 
and the output alphabet Y is defined by   



 
Cap:= sup{Ip(X,Y): p probability measure on X}, 
 
where 
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is the mutual information between X and Y. All 
logarithms are related to the base 2. In  [23] 
Wacker&Boercsoek used the concept of the GEC 
and the formula for its channel capacity (cf. (2)) to 
calculate the channel capacity of the symmetrized 
BNSC 
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And so, by (2) and by the results of the preceding 
section we get: 
 
Theorem 9: For a channel consisting of µ different 
channels, the channel capacity turns out to be equal 
to:  
a) In case of µ BSCs with bit error probabilities  
ε1,...,εµ 
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b) In case of µ GECs with transition probabilities ζ1, 
θ1, η1,..., ζµ, θµ, ηµ 
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c) In case of µ symmetrized BNSCs with transition 
probabilities δ1, ε1,..., δµ, εµ 
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3.6 Redundancy with Proper Linear Codes  
The aim of this subsection is an upper bound on the 
probability of undetected error for redundant 
transmission protected by proper linear codes. A 
linear code C is said to be proper if and only if the 
probability of undetected error pue(ε,C) is an 
increasing function of ε in the interval [0, 1/2].  In 
 [20] and  [21] Wacker&Boercsoek proved that for 
proper linear codes and for all 0 ≤ ε ≤ 1/2 the 
inequality 
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holds, where d is the minimum distance of  C.  
     Therefore by the Corollaries 3, 6, and 8 for 
proper linear codes and redundant transmission via 
µ channels the probability of undetected satisfies the 
upper bounds of  
 
Theorem 10: Let C be a proper linear code, then 
a) In the case of µ BSCs 
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where 0 ≤ ε1, … , εµ ≤ 1/2 and εmax = max (ε1, … , 
εµ). 
b) In the case of µ GECs 
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where  0 ≤ η1, … , ηµ, θ1, … , θµ ≤ 1/2, ηmax = max 
(η1, … , ηµ) and θmin = min (θ1, … , θµ). 
c) In the case of µ symmetrized BNSCs 
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where 0 ≤ ε1, … , εµ, δ1, … , δµ ≤ 1/2, εmax = max (ε1, 
… , εµ) and δmax = max (δ1, … , δµ).  
 
Proof: a) By Corollary 3 and (6) 
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b) By Corollary 3 and (6) 
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then, by Corollary 6 
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b) By Corollary 8 and 3 and by (6) 
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Even for relatively poor ε the remainder term 
 
        1)2ε2( −n  
                 
is small compared with the other term on the 
right hand sight of (6). So Theorem 10 is very 
useful to determine maximum values of ε and n 
for meeting specific upper bound B on pue(ε,C): 
Firstly choose  ε0 and n0 such that  
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     Let us state, at this place, without proof, that the 
results of Theorem 10 remain valid for nonlinear 
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proper codes. But for our needs in section 4, this 
generalization is not essential. 
 

 

4 Laser Channels 
 
 
4.1 Safety Integrity levels (SIL) 
In this section we investigate the problem of 
achieving a certain Safety Integrity Level (SIL) by 
optical data transmission via fibers using multiple 
wavelength semiconductor laser sources (short: 
laser channels, in the following) protected by a CRC 
C.  
     Safety Integrity Levels are defined by bounds on 
the number Λ of undetected errors per hour, given 
by 
 
(7)    1001)-(ν)(3600Λ ue ⋅⋅⋅⋅ = mCp    
        
where 
 
    ν = number of safety related messages per second 
   m = number of communicating devices 
100 = 1% factor   
 
For details see IEC 61508 2000,  [11]. In  [11] it is 
highly recommended that “the safety 
communication channel does not consume more 
than 1 % of the maximum PFH (Probability of 
Failure per Hour) of the target SIL for which the 
functional safety communication profile is 
designed”. The 1%-factor is introduced to avoid the 
proof of this assumption. The respective bounds on 
Λ are shown in table 3. 
 
Table 3 Safety Integrity Levels 

SIL 4 3 2 1 
Λ high demand 10-8 10-7 10-6 10-5 

    
     A more detailed analysis of safety networks and 
the used items can be found in  [1] and  [2]. In  [19] a 
safety analysis of fieldbus systems is performed by 
means of a Markov model. 
 
4.2 The Bit Error Probability of Laser 

Channels  
A lot of publications have been dealing with laser 
channels and their respective bit error probabilities. 
Clearly the bit error probability depends on the 
material the waveguides are consisting of. Because 
of long-term low cost arguments we mainly studied 
waveguides based on polymers or fibers and multi 

channel transmission techniques by Wavelength 
Division Multiplexing (WDM).  Table 4 contains a 
list of POF waveguides together with the respective 
bit error probabilities reported in the literature. The 
example of Boom et al.  [4] shows that WDM does 
not affect the bit error probability. 
                     
Table 4 Bit Error Probabilities 

ref. 

m
aterial 

w
ave-length 

[nm
] 

transfer rate 
[G

bps] 

B
E
R
 

 [3] GI-POF 840 1.25 10-9 

 [4] GI-POF 
WDM 840/1310 2.5 10-9 

 [7] MMF 850 3.125 <10-11 
 [8] GI-POF 1300 11 10-10 
 [12] GI-POF 647 2.5 10-9 

    [13] PMMA 
GI-POF 645 2.5 10-9 

 [15] GI-POF 
MMF 935 3 10-11 

 [15] GI-POF 935 7 10-11 
 [16] GI-POF 850 2.5 10-11 
 [18] MMP 850 1.0625 10-11 
 [24] GI-POF 850 2.5 10-12 

 [25] GPF 
POF 1300 1 10-9 

 
4.3 Redundancy by 4 Laser Channels  
For our application we consider 2 communicating 
devices, a redundant 2-processor system for 
example in a back to back arrangement (Fig.2), 
communicating at a maximum transfer rate of 10 
Gigabit per second via 4 binary symmetric channels 
without memory: 2 waveguides, each one 
multiplexed by 2 laser beams. The 
 
 

 
Fig. 2 Laser Channels 
 
message length is supposed to be fixed at 1024 
bytes, and data transmission should be protected by 
a CRC32. Take for example the CRC32/6 of 
Castagnoli et al. from  [5] or the standard ethernet 
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polynomial IEEE 802.3 investigated by Fujiwara et 
al. in  [6]. In any case we have a block length n = 
8224. Then, by (7) and table 3, SIL 4 is achieved, if 
 

(8)      -20
ue 10)( <Cp  

        
Now, by  [5], at a block length of  n = 8224, the 
CRC32/6 has a minimum distance of d = 6. And, by 
 [6], at the same block length, the IEEE802.3 
polynomial has d = 4. By  [5] both CRCs are proper 
for this block length. Therefore by (8) and Theorem 
10 a) SIL 4 is surely achieved, if the maximum bit 
error probability εmax occurring in our example 
satisfies the bounds presented in table 5. Taking 
account of the possible failure of one waveguide, 
table 5 also includes the maximum values in the 
case of  2 channels.  
 
Table 5 Maximum Bit Error Probability 

CRC εmax for 4 
channels 

εmax for 2 
channels 

CRC32/6 0.04 0.0017 
IEEE 802.3 0.02 0.0004 

 
 
A comparison of table 5 with the results mentioned 
in table 4 shows that in any case the bit error 
probability of our example is small enough to meet 
SIL4. Even in the case of a complete failure of one 
waveguide there is a safety margin of at least 10-5 
between the bounds of table 5 and the measured 
values. 
 
 
4 Conclusion 
Formulas for the probability of undetected error of 
redundant data transmission via different channel 
types protected by an arbitrary (not necessarily 
linear) (n, K) code have been derived. The result is 
applied to ensure Safety Integrity Level 4 for multi 
channel coloured laser transmission protected by 
CRC32/6 of Castagnoli et al. or the standard 
Ethernet polynomial IEEE 802.3. As was to be 
expected because of the larger minimum distance d 
CRC32/6 performs slightly better than IEEE 802.3. 
In any case the performance of both polynomials is 
sufficient to guarantee SIL4 in the gigabit scope..  
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